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This paper is concerned with the computation of the interval availability (proportion of time in a time inter-val in which the system is up) distribution of a fault-tolerant system modeled by a finite (homogeneous)
continuous-time Markov chain (CTMC). General-purpose methods for performing that computation tend to
be very expensive when the CTMC and the time interval are large. Based on a previously available method
(regenerative transformation) for computing the interval availability complementary distribution, we develop a
method called bounding regenerative transformation for the computation of bounds for that measure. Similar
to regenerative transformation, bounding regenerative transformation requires the selection of a regenerative
state. The method is targeted at a certain class of models, including both exact and bounding failure/repair
models of fault-tolerant systems with increasing structure function, with exponential failure and repair time
distributions and repair in every state with failed components having failure rates much smaller than repair
rates (F/R models), with a “natural” selection for the regenerative state. The method is numerically stable and
computes the bounds with well-controlled error. For models in the targeted class and the natural selection for
the regenerative state, computational cost should be traded off with bounds tightness through a control param-
eter. For large models in the class, the version of the method that should have the smallest computational cost
should have small computational cost relative to the model size if the value above which the interval availabil-
ity has to be guaranteed to be is close to 1. In addition, under additional conditions satisfied by F/R models,
the bounds obtained with the natural selection for the regenerative state by the version that should have the
smallest computational cost seem to be tight for all time intervals or not small time intervals, depending on
whether the initial probability distribution of the CTMC is concentrated in the regenerative state or not.
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1. Introduction
Consider a finite (homogeneous) continuous-time
Markov chain (CTMC) X = �X�t�� t ≥ 0� modeling a
fault-tolerant system that can be up or down. Let U
denote the subset of “up” states. Let 1c denote the
indicator function returning the value 1 when condi-
tion c is satisfied and the value 0 otherwise. Then, the
interval availability at time t is the random variable

IAV�t�= 1
t

∫ t

0
1X�
�∈U d
�

i.e., the fraction of time in the time interval 
0� t� in
which the fault-tolerant system is up. The distribu-
tion of the interval availability is of practical interest
because it quantifies the probability with which a cer-
tain interval availability level can be guaranteed to the
user or users of the fault-tolerant system. The interval
availability distribution is

IAVD�t� p�= P
IAV�t�≤ p�= P

[
1
t

∫ t

0
1X�
�∈U d
 ≤ p

]
�

Sometimes, the interval availability complementary
distribution

IAVCD�t� p�= P
IAV�t� > p�= P

[
1
t

∫ t

0
1X�
�∈U d
 > p

]
is used. Obviously, IAVCD�t� p� = 1− IAVD�t� p�. To
illustrate a typical behavior of the measure, Figure 1
plots IAVCD�t� p� of a fault-tolerant system using
the pair-and-spare technique (Johnson 1989) in which
active modules fail with a rate �M = 10−3 h−1, the
spare module does not fail, the failure of an active
module is covered with probability CM = 0�95, failed
modules are repaired by a single repairman with
rate �M = 1 h−1, and modules do not fail when the
system is down, for several values of t and values
of p around the steady-state availability SSA= 0�9999,
assuming that initially all modules are unfailed. Fig-
ure 1 also gives the state diagram of the CTMC mod-
eling the system. The up states are the states 1, 3,
and 5. Note that the horizontal axis of the plot is
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Figure 1 State Diagram of Continuous-Time Markov Chain Modeling a Repairable Fault-Tolerant System Using the Pair-and-Spare Technique (Left)
and Behavior of IAVCD�t� p� (Right)

labelled with 1− p, so that IAVCD�t� p� decreases as
p increases, as it should happen. Being irreducible and
finite, the CTMC is ergodic (see, for instance, Kulkarni
1995), and as predicted by renewal reward process
and regenerative process theories (see, for instance,
Ross 1983), for t → �, IAVCD�t� p� has an asymp-
totic shape with IAVCD�t� p� = 1 for p < SSA and
IAVCD�t� p� = 0 for p ≥ SSA, but the convergence to
that asymptotic shape is very slow, making meaning-
ful the computation of the measure for very large val-
ues of t and stressing the need for methods that have
a small computational cost for large t.
Computing IAVD�t� p� or IAVCD�t� p� of a system

modeled by a CTMC has been proved to be a chal-
lenging problem (Carrasco 2004; de Souza e Silva
and Gail 1986; Goyal and Tantawi 1988; Ross 1983;
Rubino and Sericola 1992, 1993, 1995; Sericola 1990;
Takács 1957). The first effort is reported in Takács
(1957), where a closed-form integral expression for
IAVCD�t� p� is given for a two-state CTMC. In Ross
(1983), randomization is used to obtain a closed-form
expression for IAVD�t� p� for the same two-state
CTMC. The first method able to deal with arbitrary
finite CTMCs is presented in de Souza e Silva and
Gail (1986), who develop a method for computing
IAVD�t� p� using randomization. Goyal and Tantawi
(1988) develop an approximate finite-differences
method without error bounds for computing
P
IAV�t�≥ p� for arbitrary finite CTMCs. We note that,
for 0< p < 1, P
IAV�t�≥ p�= IAVCD�t� p�, since the
event IAV�t�= p has probability measure 0. Sericola
(1990) obtains a closed-form solution for IAVD�t� p�
in terms of growing size matrices for arbitrary finite
CTMCs. Rubino and Sericola (1992) develop an
efficient method for the computation of IAVD�t� p�
for finite CTMCs having a particular structure so

that initially the system is up, consecutive up and
down periods are independent, all up periods (except
perhaps the first one) are identically distributed, and
all down periods are identically distributed. Rubino
and Sericola (1993) develop two randomization-based
algorithms for arbitrary finite CTMCs reducing the
computational requirements of the method devel-
oped by de Souza e Silva and Gail (1986). The first
such algorithm reduces the time requirements and
computes IAVD�t� p�; the second one reduces the
storage requirements and computes IAVCD�t� p�. This
second algorithm is reviewed in Rubino and Sericola
(1995) as Algorithm A, where it is taken as a starting
point to develop another algorithm (Algorithm B) for
computing IAVCD�t� p�, which is competitive when
the number of up states of the model is small and
furthermore can deal with some class of CTMCs with
denumerable infinite state spaces.
Finally, a method that we will call regenerative trans-

formation, has been developed by Carrasco (2004).
The method covers finite CTMC models with a par-
ticular structure. The method computes IAVCD�t� p�,
requires the selection of a regenerative state, and
is targeted at a class of finite CTMC models,
class C1. This class includes both exact and bound-
ing failure/repair models of fault-tolerant systems
with increasing structure function (see, for instance,
Barlow and Proschan 1981), with exponential failure
and repair time distributions and repair in every state
with failed components having failure rates much
smaller than repair rates (F/R models in the fol-
lowing), with a “natural” selection for the regener-
ative state. In this method, a truncated transformed
CTMC is built that, with an appropriate subset of
up states, has the same interval availability dis-
tribution as the original model with an arbitrarily
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small error, and that truncated transformed CTMC
is solved using Algorithm A of Rubino and Seri-
cola (1995) (Algorithm A in the following). As with
all other randomization-based methods, regenerative
transformation is numerically stable and computes
IAVCD�t� p� with well-controlled error. For large class
C1 models, large t, and p close to 1, which is the
interesting case for fault-tolerant systems, the method
can have significantly less computational cost than
Algorithm A, which can be considered the current
randomization-based general-purpose state-of-the-art
method for computing IAVCD�t� p� for finite CTMCs.
In this paper, we take the regenerative transforma-

tion method as starting point to develop a method,
called bounding regenerative transformation, for comput-
ing bounds for IAVCD�t� p�. Similar to regenerative
transformation, bounding regenerative transforma-
tion requires the selection of a regenerative state and
is targeted at a class of models, class C′

1, which is
a subclass of model class C1, including F/R mod-
els, with a given natural selection for the regenerative
state.
The rest of this paper is organized as follows.

Section 2 discusses the computational cost of Algo-
rithm A and reviews the regenerative transformation
method at the detail required by the developments
to follow. Section 3 describes the bounding regener-
ative transformation method, specifying the CTMC
models covered by the method, describing the model
class C′

1 at which the method is targeted, motivat-
ing the method, and showing that it indeed obtains
bounds. The method depends on a control param-
eter DC that for class C′

1 models with the natural
selection for the regenerative state should trade off
computational cost with bounds tightness. In §3, it is
also argued that for class C′

1 models with the natural
selection for the regenerative state, bounding regen-
erative transformation can have a smaller computa-
tional cost than regenerative transformation, and, for
large C′

1 models with the natural selection for the
regenerative state, large t, p close to 1, and DC set
so that the computational cost should be the smallest
one, it should have small computational cost relative
to the model size, much smaller than that of Algo-
rithm A. Section 3.2 justifies and describes a more effi-
cient implementation of the method for an important
particular case. Section 4 analyzes the performance
of the method using a representative large class C′

1
model and compares using that example the com-
putational cost of the method with those of Algo-
rithm A and regenerative transformation for p close
to 1. We also illustrate that, under additional con-
ditions satisfied by F/R models, the bounds seem
to be tight for any time interval or not small time
intervals, depending on whether the initial proba-
bility distribution of the model is concentrated in

the regenerative state or not. The Online Supplement
(available at http://joc.pubs.informs.org/ecompanion
.html) includes all proofs.

2. Preliminaries
Let X = �X�t�� t ≥ 0� be a CTMC with state space �
partitioned into the set of up states U and the set
of down states D. In this paper, we target the com-
putation of bounds for IAVCD�t� p�, where t > 0 and
0< p < 1.
Algorithm A is based on the randomization con-

struct. In that construct (see, for instance, Kijima
1997), the given CTMC X is interpreted in terms of a
discrete-time Markov chain subordinated to a Poisson
process with arrival rate � ≥ maxi∈� �i, where �i is
the output rate of X from state i. For not too small X,
large �t, and p close to 1, the method has an approx-
imate flop count NC ′�2T + 2����, where N and C ′ are
(Rubino and Sericola 1993) truncation parameters and
T is the number of transitions of X. An important fea-
ture of the method is that it is numerically stable, the
only important error source being the truncation error.
The truncation parameters N and C ′ increase with �,
making � =maxi∈� �i the best selection for �. Using
the well-known result (see, for instance, Theorem 3.3.5
in Ross 1983) that the number of arrivals in the time
interval 
0� t� of a Poisson process with arrival rate
� has for �t →� an asymptotic normal distribution
with mean and variance �t, for large �t and a trun-
cation error requirement �� 1, the required N will be
≈�t, and, then, the method will be very costly if the
model is large. As an example, for the model consid-
ered in §4, which has 646,646 states, 15,578,290 transi-
tions, and �=maxi∈� �i ≈ 2�25 h−1, we can estimate a
flop count of 8�25×1013 when the method is run with
a single target �t� p� pair with t = 20,000 h and p =
0�9995 and a truncation error requirement �= 10−8,
which yields N = 46,241 and C ′ = 55.
The regenerative transformation method developed

in Carrasco (2004) was an effort to reduce the high
computational cost of Algorithm A for large CTMCs,
large t, and p close to 1. The method requires the
selection of a regenerative state r and is targeted at
a particular class of models, class C1, including F/R
models, with a natural selection for the regenerative
state. Because the method developed in this paper for
computing bounds for IAVCD�t� p� is based on regen-
erative transformation, in the remainder of this sec-
tion we will review the regenerative transformation
method at the detail required by the developments
to follow. Let �i = P
X�0� = i� and let �i� j denote the
transition rate of X from state i to state j . Given B ⊂�,
let �B =∑

i∈B �i denote the initial probability of X in
subset B, and given i ∈ � and B ⊂ � − �i�, let �i�B =∑

j∈B �i� j denote the transition rate of X from state i
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to subset B. With the notation S ′ = S − �r�, US =
U ∩ S, DS = D ∩ S, U ′

S = US − �r�, and D′
S = DS − �r�,

the method will cover CTMCs X and selections for r
satisfying the following conditions (the set S is implic-
itly defined by Conditions 2, 4, and 8; see the follow-
ing discussion).
Condition 1. � is finite.
Condition 2. Either �= S or �= S∪ �f �, f being an

absorbing state.
Condition 3. �S� ≥ 2.
Condition 4. Either all states in S are transient or X

has a single recurrent class of states F ⊂ S.
Condition 5. All states are reachable (from some

state with non-null initial probability).
Condition 6. U �= � and D �= �.
Condition 7. maxi∈U �i > 0 and maxi∈D �i > 0.
Condition 8. r ∈ S and, if X has a single recurrent

class of states F ⊂ S, r ∈ F .
Condition 9. If U ′

S �= �, �r�U ′
S
> 0.

Condition 10. If U ′
S �= �, �D′

S
> 0, and �U ′

S
= 0, then

�i�U ′
S
> 0 for some i ∈D′

S with �i > 0.
Note that Conditions 2, 4, and 8 and the required

specification of the regenerative state r “force” the
subset S and, if existent, the state f for which the
remaining conditions have to be checked to deter-
mine whether the given X with the given r is covered
by regenerative transformation. More specifically, if
X does not have any absorbing state, by Condition 2,
S must be � and f does not exist; if X has a single
absorbing state a and r �= a, then S must be � − �a�
and f must be a, since S =� would make, by Condi-
tion 4, F = �a�, and, by Condition 8, r should be a; if X
has a single absorbing state a and r = a, then S must
be � and f does not exist, since S =�− �a� and r = a
would contradict r ∈ S (Condition 8); if X has two
absorbing states a and b, and r is one of them, say, a,
then S must be �− �b� and f must be b, since S = �
would make S to have at least two recurrent classes,
in contradiction with Condition 4, and S = � − �a�,
f = a would imply r �∈ S, in contradiction with Condi-
tion 8; if X has two absorbing states, say, a and b, but
none of them is r , then no selections for S and f exist
satisfying the conditions, since S = � would imply
that S has at least two recurrent classes, in contradic-
tion with Condition 4, and, say, S = � − �a� would
imply that S has at least the recurrent class �b� and,
by Condition 8, we should have r = b; finally, if X
has more than three absorbing states, S = � makes S
to include at least three recurrent classes, in contra-
diction with Condition 4, and S = � − �f �, where f
is one of the absorbing states, makes S to include at
least two recurrent classes, also in contradiction with
Condition 4.
Conditions 3, 6, and 7 are mild, in the sense

that when they are not satisfied, computation of
IAVCD�t� p� either is trivial or can be reduced to

a simpler problem. Thus, assuming U �= � and
maxi∈U �i = 0, all up states would be absorbing,
and we would have IAVCD�t� p�= P
X��1− p�t� ∈U�.
Similarly, assuming D �= � and maxi∈D �i = 0, all
down states would be absorbing, and we would have
IAVCD�t� p� = P
X�pt� ∈ U�. Condition 5 can be triv-
ialized by deleting unreachable states. Finally, Con-
ditions 9 and 10 can be circumvented by adding to
X a tiny transition rate � ≤ 10−10�/�2tmax� between
an appropriate pair of states, where � is the allowed
error and tmax is the largest time t at which
IAVCD�t� p� has to be computed, with a negligible
impact on IAVCD�t� p� no greater than 10−10� (see
Carrasco 2004).
That X can have an absorbing state f is allowed

so as to cover bounding CTMCs (de Souza e Silva
and Ochoa 1992), which are useful for systems for
which an exact CTMC would have a state space of
unmanageable size. A bounding CTMC would have a
state space �= S∪ �f �, where S is a subset of the state
space of the exact CTMC and f is an absorbing state
in which the bounding CTMC is whenever the exact
CTMC has visited some state outside S. The initial
probability distribution in S would be as in the exact
CTMC and the initial probability of f would be the
probability that the exact CTMC is initially outside S.
Transition rates between states in S would be as in the
exact CTMC and transition rates from states i ∈ S to f
would be equal to the transition rates from states i ∈ S
to outside S in the exact CTMC. The up states in S
would be as in the exact CTMC. Considering f to be a
down (up) state results in an IAVCD�t� p� measure for
the bounding CTMC that bounds from below (above)
the IAVCD�t� p� measure of the exact CTMC.
The model class C1 at which the regenerative trans-

formation method is targeted includes all CTMCs
X satisfying Conditions 1–7 and the following
condition:
Condition 11. A partition U0 ∪U1 ∪ · · · ∪UNC

for US

exists satisfying the following properties:
Property 1. U0 = �o� (i.e., �U0� = 1).
Property 2. If X has a single recurrent class of

states F ⊂ S, o ∈ F .
Property 3. If �US � ≥ 2, �o�U1∪···∪UNC

> 0.
Property 4. If �US � ≥ 2, �DS

> 0, and �U1∪···∪UNC
= 0,

�i�U1∪···∪UNC
> 0 for some i ∈DS with �i > 0.

Property 5. If NC > 0,

max
0≤k≤NC

max
i∈Uk

�i�Uk−�i�∪Uk+1∪···∪UNC
∪DS

is significantly smaller than

min
0<k≤NC

min
i∈Uk

�i�U0∪···∪Uk−1 > 0 if �= S

or

min
0<k≤NC

min
i∈Uk

�i�U0∪···∪Uk−1∪�f � > 0 if �= S ∪ �f ��
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The natural selection for the regenerative state for
class C1 models is r = o. With that natural selec-
tion, Properties 2, 3, and 4 imply the fulfillment of,
respectively, Conditions 8, 9, and 10. Model class C1
includes F/R models. A partition for US showing that
those models are in class C1 would be the partition
in which Uk includes up states with a given num-
ber of failed components, with the subsets Uk sorted
following increasing numbers of failed components.
That the structure function of the fault-tolerant sys-
tem be increasing is required because otherwise there
could be fast repair transitions from up states to down
states, and, then, Property 5 of the partition for US

might not be satisfied. Properties 2, 3, and 4 were
not mentioned in Carrasco (2004), but they are implic-
itly enforced for the natural selection r = o by Condi-
tions 8, 9, and 10. The condition �US � ≥ 2 was enforced
for class C1 models in Carrasco (2004), but the par-
ticular case �US � = 1 taken out from the definition
of class C1 models in Carrasco (2004) was discussed
there, and we have decided to include it here.
The regenerative transformation method includes

two phases. In the first one, a truncated trans-
formed CTMC, VT , is built by analyzing the given
CTMC X, which, with an appropriate subset of up
states, has the same IAVCD�t� p� measure as X with
error ≤�/2. In the second one, the IAVCD�t� p� mea-
sure of VT is computed with truncation error ≤�/2
using Algorithm A. This results in the computation of
IAVCD�t� p� for the given CTMC X with an error that
can be estimated to be ≤�. VT is obtained by first char-
acterizing the behavior of X from S ′ = S − �r� until
either hit of state r or, if existing, hit of the absorb-
ing state f , and from r until either next hit of state
r or, if existing, hit of the absorbing state f , while
keeping track of the amount of time spent in US . This
gives a CTMC with infinite state space with the same
IAVCD�t� p� measure. Finally, up to two truncations
on that CTMC with infinite state space are performed
to obtain VT . The reader is referred to Carrasco (2004)
for details.
We now start describing VT as a black box and

how can it be built from X at the detail required by
the developments to follow in §3. X can be inter-
preted as an (homogeneous) discrete-time Markov
chain (DTMC) X̂ = �X̂n�n = 0�1�2� � � �� randomized
with rate �U = �1+ ,�maxi∈U �i > 0 in the states in U
and rate �D = �1+ ,�maxi∈D �i > 0 in the states in D,
where , is a small quantity >0, say, , = 10−4. The
DTMC X̂ has same state space and initial probability
distribution as X and transition matrix P= �Pi� j �i� j∈�,
where Pi� j = �i� j/�U , i ∈ U , j �= i, Pi� i = 1 − �i/�U ,
i ∈U , Pi� j = �i� j/�D, i ∈ D, j �= i, and Pi� i = 1− �i/�D,
i ∈D. Let X̂ ′ denote a version of X̂ with initial state r ,
and, given a DTMC Y , let Ym1/m2

c, m1�m2 ≥ 0, denote

the predicate that is true when Yn satisfies condi-
tion c for all n, m1 ≤ n≤m2 (by convention, Ym1/m2

c is
true for m2 < m1) and let #�Ym1/m2

c� denote the num-
ber of indices n, m1 ≤ n ≤ m2, for which Yn satisfies
condition c. Let ��n�k� = �0i�n�k��i∈S , n ≥ 0, 0 ≤ k ≤
n + 1, denote row vectors where 0i�n�k� = P
X̂ ′

n =
i ∧ X̂ ′

1/ n �= r ∧ #�X̂ ′
0/ n ∈ U� = k�, and let �′�n�k� =

�0 ′
i �n� k��i∈S′ , n ≥ 0, 0 ≤ k ≤ n + 1, denote row vectors

where 0 ′
i �n� k�= P
X̂n = i ∧ X̂0/ n �= r ∧ #�X̂0/ n ∈U�= k�.

In other words, 0i�n�k� is the probability that in the
first n steps X̂ ′ will not have entered state r , has vis-
ited k up states, and at step n is in state i, i ∈ S; and
0 ′

i �n� k� is the probability that in the first n steps X̂ has
not visited state r , has visited k up states, and at step
n is in state i, i ∈ S ′. Let a�n�k�=∑

i∈S 0i�n�k�, am�k�=∑k+m−1
n=k−1 a�n�k�, k ≥ 2, m ≥ 1, a′�n�k� = ∑

i∈S′ 0
′
i �n� k�,

and a′
m�k�=∑k+m−1

n=k−1 a′�n�k�, k ≥ 2, m≥ 1.
The truncated transformed CTMC VT is defined by

up to three truncation parameters, K, L, and C. The
truncation parameter C is given by

C =min
{

c ≥ 1 /
�∑

m=c+1

�� tqmax�
m

m! e−� tqmax ≤ �1

}
� (1)

where � =max��U ��D�, tqmax is the largest value of
tq = t�1−p� at which IAVCD�t� p� has to be computed,
and �1 = �/4 if U ′

S �= � and �1 = �/2 if U ′
S =�. For the

case U ′
S �= � and �S′ > 0, the truncation parameters K

and L are given by

K = min
{

k ≥ 2 / �SaC�k�
�∑

m=k

�m− k+ 2�

· ��U tmax�
m

m! e−�U tmax ≤ �

8

}
� (2)

L=min
{

k≥2 / a′
C�k�

�∑
m=k

��U tmax�
m

m! e−�U tmax≤ �

8

}
� (3)

and, for the case U ′
S �= � and �S′ = 0, the truncation

parameter K is given by

K = min
{

k ≥ 2 / �SaC�k�
�∑

m=k

�m− k+ 2�

· ��U tmax�
m

m! e−�U tmax ≤ �

4

}
� (4)

where tmax is the largest value of t at which
IAVCD�t� p� has to be computed.
Then, with xB denoting the restriction of the row

vector x to the subset of indices B, 0 denoting a row
vector of appropriate dimension with all components
null, f , a, and b being absorbing states, and

⋃
c denot-

ing a union to be performed when condition c is sat-
isfied, VT has, for the case �S′ > 0, state space (note
that Conditions 2, 6, and 7 imply US �= � and DS �= �)

�T = �su
n�k / �n�k� ∈DT ∧ ��n�k�US �= 0�

∪ �sd
n�k / �n�k� ∈DT ∧ ��n�k�DS �= 0�
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⋃
U ′

S �=�
�s′un�k / �n�k� ∈D′

T ∧ �′�n�k�U ′
S �= 0�

⋃
D′

S �=�
�s′dn�k / �n�k� ∈D′

T ∧ �′�n�k�D′
S �= 0�

⋃
�=S∪�f �

�f �∪ �a�
⋃

U ′
S �=�

�b��

and, for the case �S′ = 0, state space
�T = �su

n�k / �n�k� ∈DT ∧ ��n�k�US �= 0�
∪ �sd

n�k / �n�k� ∈DT ∧ ��n�k�DS �= 0�⋃
�=S∪�f �

�f �∪ �a�
⋃

U ′
S �=�

�b��

where, for U ′
S �= �,

DT = ��n�k� / 0≤ k ≤K ∧max�0� k−1�≤ n≤ k+C −1�
and

D′
T = ��n�k� / 0≤ k ≤ L∧max�0� k−1�≤ n≤ k+C−1� �

for U ′
S =� and r ∈US ,

DT = ��n�1� / 0≤ n≤C��

for U ′
S =� and r ∈DS ,

DT = ��n�0� / 0≤ n≤C − 1� �

and, for U ′
S =�,

D′
T = ��n�0� / 0≤ n≤C − 1� �

Figure 2 depicts the domain DT for the case U ′
S �= �.

The domain D′
T for the case U ′

S �= � is identical with
K replaced by L.
The initial probability distribution of VT is P
VT =

s�0��� = �r , P
VT = s′u0�1� = �U ′
S
, P
VT = s′d0�0� = �D′

S
,

P
VT = f � = �f , and P
VT = i� = 0, i �∈
�s�0��� s′u0�1� s′d0�0� f �, where s�0�� denotes state su

0�1 if r ∈US

and state sd
0�0 if r ∈ DS . Note that, according to the

definition of ��n�k� and �T , for r ∈US , the only state
su
0� k or sd

0� k present in �T is state su
0�1, and, for r ∈ DS ,

K – 1 K + C – 1

k = n + 1 k = n – C + 1

n

k

K

C – 1

1

Figure 2 Domain DT for the Case U ′
S �= � (the Domain Includes the

Points in the Frontier)

the only state su
0� k or sd

0� k present in �T is state sd
0�0. It

is that single state that is denoted by s�0��.
With Pi�B, B ⊂ � denoting

∑
j∈B Pi� j , the transition

rates in VT are as follows. Let

wuu
n�k = ∑

i∈US

0i�n�k�Pi�U ′
S

/ ∑
i∈US

0i�n�k��

wud
n�k = ∑

i∈US

0i�n�k�Pi�D′
S

/ ∑
i∈US

0i�n�k��

wdu
n�k = ∑

i∈DS

0i�n�k�Pi�U ′
S

/ ∑
i∈DS

0i�n�k��

wdd
n�k = ∑

i∈DS

0i�n�k�Pi�D′
S

/ ∑
i∈DS

0i�n�k��

qu
n�k = ∑

i∈US

0i�n�k�Pi� r

/ ∑
i∈US

0i�n�k��

qd
n�k = ∑

i∈DS

0i�n�k�Pi� r

/ ∑
i∈DS

0i�n�k��

vu
n�k = ∑

i∈US

0i�n�k�Pi� f

/ ∑
i∈US

0i�n�k��

vd
n�k = ∑

i∈DS

0i�n�k�Pi� f

/ ∑
i∈DS

0i�n�k��

w′uu
n�k = ∑

i∈U ′
S

0 ′
i �n� k�Pi�U ′

S

/ ∑
i∈U ′

S

0 ′
i �n� k��

w′ud
n�k = ∑

i∈U ′
S

0 ′
i �n� k�Pi�D′

S

/ ∑
i∈U ′

S

0 ′
i �n� k��

w′du
n�k = ∑

i∈D′
S

0 ′
i �n� k�Pi�U ′

S

/ ∑
i∈D′

S

0 ′
i �n� k��

w′dd
n�k = ∑

i∈D′
S

0 ′
i �n� k�Pi�D′

S

/ ∑
i∈D′

S

0 ′
i �n� k��

q′u
n�k = ∑

i∈U ′
S

0 ′
i �n� k�Pi� r

/ ∑
i∈U ′

S

0 ′
i �n� k��

q′d
n�k = ∑

i∈D′
S

0 ′
i �n� k�Pi� r

/ ∑
i∈D′

S

0 ′
i �n� k��

v′u
n�k = ∑

i∈U ′
S

0 ′
i �n� k�Pi� f

/ ∑
i∈U ′

S

0 ′
i �n� k��

v′d
n�k = ∑

i∈D′
S

0 ′
i �n� k�Pi� f

/ ∑
i∈D′

S

0 ′
i �n� k��

Then,
• If U ′

S �= �, each state su
n�k, 0 ≤ k < K, has a tran-

sition rate wuu
n�k�U to state su

n+1� k+1, a transition rate
wud

n�k�U to state sd
n+1� k if n ≤ k + C − 2 and to state

a otherwise, a transition rate qu
n�k�U to state s�0�� if

su
n�k �= s�0��, and, if � = S ∪ �f �, a transition rate vu

n�k�U

to state f .
• If U ′

S �= �, each state su
n�K has a transition rate �U

to state b.
• If U ′

S = �, each state su
n�k has a transition rate

wud
n�k�U to state sd

n+1� k if n ≤ k + C − 2 and to state
a otherwise, a transition rate qu

n�k�U to state s�0�� if



Carrasco: An Efficient and Numerically Stable Method for Computing Bounds
274 INFORMS Journal on Computing 23(2), pp. 268–283, © 2011 INFORMS

su
n�k �= s�0��, and, if � = S ∪ �f �, a transition rate vu

n�k�U

to state f .
• If U ′

S �= �, each state sd
n�k, 0 ≤ k < K, has a tran-

sition rate wdu
n�k�D to state su

n+1� k+1, a transition rate
wdd

n�k�D to state sd
n+1� k if n ≤ k + C − 2 and to state

a otherwise, a transition rate qd
n�k�D to state s�0�� if

sd
n�k �= s�0��, and, if � = S ∪ �f �, a transition rate vd

n�k�D

to state f .
• If U ′

S �= �, each state sd
n�K has a transition rate �D

to state b.
• If U ′

S = �, each state sd
n�k has a transition rate

wdd
n�k�D to state sd

n+1� k if n≤ k+C−2 and to state a oth-
erwise, a transition rate qd

n�k�D to state s�0�� if s
d
n�k �= s�0��,

and, if �= S ∪ �f �, a transition rate vd
n�k�D to state f .

• If U ′
S �= �, each state s′un�k, 0 ≤ k < L has a tran-

sition rate w′uu
n�k�U to state s′un+1� k+1, a transition rate

w′ud
n�k�U to state s′dn+1� k if n ≤ k + C − 2 and to state a
otherwise, a transition rate q′u

n�k�U to state s�0��, and, if
�= S ∪ �f �, a transition rate v′u

n�k�U to state f .
• If U ′

S �= �, each state s′un�L has a transition rate �U

to state b.
• If U ′

S �= �, each state s′dn�k, 0 ≤ k < L has a tran-
sition rate w′du

n�k�D to state s′un+1� k+1, a transition rate
w′dd

n�k�D to state s′dn+1� k if n ≤ k + C − 2 and to state a
otherwise, a transition rate q′d

n�k�D to state s�0��, and, if
�= S ∪ �f �, a transition rate v′d

n�k�D to state f .
• If U ′

S �= �, each state s′dn�L has a transition rate �D

to state b.
• If U ′

S = �, each state s′dn�k has a transition rate
w′dd

n�k�D to state s′dn+1� k if n ≤ k + C − 2 and to state a
otherwise, a transition rate q′d

n�k�D to state s�0��, and, if
�= S ∪ �f �, a transition rate v′d

n�k�D to state f .
The states that have to be considered up in VT are

the states su
n�k, the states s′un�k, and state f if �= S∪ �f �

and f is an up state in X.
To illustrate the “structure” of VT , Figure 3 gives

a sketch of the state diagram of VT for the case � =
S ∪ �f �, r ∈ US , U ′

S �= �, D′
S �= �, �U ′

S
> 0, and �D′

S
> 0,

with truncation parameters K = 3, L = 3, and C = 2.
In that case, since r ∈ US , s�0�� = su

0�1, and state sd
0�0 is

not present. We include in the state space all possible
candidate states su

n�k, s
d
n�k, s

′u
n�k, s

′d
n�k subject to the con-

sidered particular case, taking into account the formal
definition of �T . States su

n�k, �n�k� ∈DT and states sd
n�k,

�n�k� ∈ DT that are always (for the considered par-
ticular case) outside �T are indicated by dotted cir-
cles. Similarly, states s′un�k, �n�k� ∈ D′

T and states s′dn�k,
�n�k� ∈ D′

T that are always outside �T are indicated
with dotted circles. The initial probability distribution
of VT is

P
VT �0�= su
0�1�= �r� P
VT �0�= s′u0�1�= �U ′

S
�

P 
VT �0�= s′d0�0�= �D′
S
� P 
VT �0�= f �= �f �

P
VT �0�= i�= 0� i �∈ �su
0�1� s′u0�1� s′d0�0� f ��

For the sake of readability, we do not plot the arrows
corresponding to the transition rates to states f and
s�0�� = su

0�1. There is a transition rate with value qu
n�k�U

from every state su
n�k, n > 0, k < K = 3 to state su

0�1,
a transition rate with value qd

n�k�D from every state
sd
n�k, k < K = 3 to state su

0�1, a transition rate with value
q′u

n�k�U from every state s′un�k, k < L= 3 to state su
0�1, and

a transition rate with value q′d
n�k�D from every state

s′dn�k, k < L= 3 to state su
0�1. Finally, there is a transition

rate with value vu
n�k�U from every state su

n�k, k < K = 3
to state f , a transition rate with value vd

n�k�D from
every state sd

n�k, k < K = 3 to state f , a transition rate
with value v′u

n�k�U from every state s′un�k, k < L = 3 to
state f , and a transition rate with value v′d

n�k�D from
every state s′dn�k, k < L= 3 to state f .
The construction of VT requires the computation of

��n�k�, �n�k� ∈DT and, if �S′ > 0, �′�n�k�, �n�k� ∈D′
T .

Taking into account the definition of the row vec-
tors ��n�k�, and with PB�C denoting the submatrix of
P collecting the elements with index pairs in B × C,
the required row vectors ��n�k� can be obtained, for
increasing k and for each k for increasing n, using the
recurrences

��n�k�U ′
S =��n− 1� k− 1�PS� U ′

S
�

n≥ 1� 1≤ k ≤ n+ 1 � (5)

��n�k�D′
S =��n− 1� k�PS� D′

S
� n≥ 1� 0≤ k ≤ n� (6)

and

0r�n�k�= 0� n≥ 1� 0≤ k ≤ n+ 1 � (7)

0r�0�0�= 1r∈DS
� (8)

0r�0�1�= 1r∈US
� (9)

��0� k�U ′
S = 0� 0≤ k ≤ 1 � (10)

��n�0�U ′
S = 0� n≥ 1 � (11)

��0� k�D′
S = 0� 0≤ k ≤ 1 � (12)

��n�n+ 1�D′
S = 0� n≥ 1 � (13)

Similarly, with � denoting the row vector ��i�i∈�, the
required row vectors �′�n�k� can be obtained, for
increasing k and for each k for increasing n, using the
recurrences

�′�n�k�U ′
S =�′�n−1�k−1�PS′�U ′

S
�

n≥1� 1≤k≤n+1� (14)

�′�n�k�D′
S =�′�n−1�k�PS′�D′

S
� n≥1� 0≤k≤n� (15)

and

�′�0�0�U ′
S = 0 � (16)

�′�0�1�U ′
S =�U ′

S � (17)

�′�n�0�U ′
S = 0� n≥ 1 � (18)
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. . .

.
.

.

f

b

b

su
0,1

a

a

su
2,3

su
1,2 sd

3,2su
3,2sd

2,2su
2,2sd

1,2

sd
0,1 su

1,1 sd
2,1

sd
1,0su

1,0sd
0,0su

0,0

su
2,1sd

1,1

sd
2,3 su

3,3 sd
3,3 su

4,3 sd
4,3

ΛU

ΛU

ΛU
ΛU

ΛUΛU

wuu ΛU1,2

w′uu ΛU1,2

w′uu ΛU0,1 w′ud ΛU1,2

w′uu ΛU1,1 1,1

w′uu ΛU2,2 w′du ΛD2,2

w′uu ΛU3,2 w′du ΛD3,2

wuu ΛU0,1

wud ΛU0,1
wdd ΛD1,1

wdd ΛD2,1

wdd ΛD3,2

wud ΛU1,2
wud ΛU2,2

wdd ΛD2,2
wud ΛU3,2

wdu ΛD1,1
wdu ΛD2,1

wuu ΛU2,2
wuu ΛU3,2

wdu ΛD3,2
wdu ΛD2,2

s′u
2,3

s′u
1,2

s′u
0,1

s′u
0,0

s′d
0,0

s′u
1,0

s′d
1,0

s′d
0,1

s′u
1,1

s′d
1,1

s′u
2,1

s′d
2,1

s′d
1,2

s′u
2,2

s′d
2,2 s′u

3,2
s′d
3,2

s′d
2,3

s′u
3,3

s′d
3,3

s′u
4,3

s′d
4,3

w′du ΛD 2,1
w′uu ΛU 2,1

w′du ΛD
2,2

w′dd ΛD

2,1
w′dd ΛD

2,1
w′ud ΛU

1,0
w′dd ΛD

1,1
w′dd ΛD

1,0
w′du ΛD

1,1
w′ud ΛU

0,0
w′du ΛD

0,1
w′ud ΛU

0,0
w′dd ΛD

3,2
w′ud ΛU

3,2
w′dd ΛD

w′ud ΛU2,2

Figure 3 Sketch of the State Diagram of VT for the Case � = S ∪ �f �, r ∈ US, U ′
S �= �, D ′

S �= �, �U′
S
> 0, and �D′

S
> 0, with Truncation Parameters

K = 3, L= 3, and C = 2

�′�0�0�D′
S =�D′

S � (19)

�′�0�1�D′
S = 0 � (20)

�′�n�n+ 1�D′
S = 0� n≥ 1 � (21)

Those orderings allow the computation of aC�k� and
a′

C�k� for increasing k and thus the determination of
the truncation parameters K ((2) and (4)) and L (3).

For the case U ′
S �= � and not too small models,

the model transformation phase of regenerative trans-
formation (construction of VT ) has an approximate
flop count CK�2T + M ���� + 1�S′>0CL�2T + M ����,
where T is the number of transitions of X, M = 11 if
�= S ∪ �f �, and M = 9 if � = S. For class C1 mod-
els with �US � ≥ 2 and the selection r = o, we have
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the following additional result (Carrasco 2004), where
c�n�∼ d�n� for n→� denotes limn→� c�n�/d�n�= 1.

Theorem 1. For class C1 models with �US � ≥ 2 and
r = o, aC�n� ≤ �C + 1�h�n� and a′

C�n� ≤ �S′�C + 1� ·
h′�n�, where, for n → �, h�n� ∼ B

(
n−1
p−1

)
;n and

h′�n�∼ B′(n−1
p′−1

)
;′n, with B > 0, B′ > 0, p�p′ integers ≥ 1,

;�;′ ≈ 1− 1/R′, and R′ =maxi∈US
�i/mini∈US−�o� �i.

3. The Bounding Regenerative
Transformation Method

We will start by identifying the CTMC models cov-
ered by bounding regenerative transformation and
the model class C′

1 at which the method is targeted.
Then, we will motivate and justify the method and
will describe it in the general case. The method allows
to compute a lower bound for IAVCD�t� p�, an upper
bound for IAVCD�t� p�, or both, and depends on a
control parameter DC that for class C′

1 models should
trade off computational cost with bounds tightness.
A separate subsection will be dedicated to justify
and describe a more efficient implementation of the
method that is available for the case DC = 1 when
both bounds have to be computed and an additional
condition is satisfied.

3.1. Motivation and General Case
Similar to regenerative transformation, the bound-
ing regenerative transformation method requires the
selection of a regenerative state r and covers the same
class of CTMC models X and selections for the
regenerative state r as the regenerative transforma-
tion method (Conditions 1–10) with the additional
condition:
Condition 12. U ′

S �= �.
The additional condition is imposed because bound-
ing regenerative transformation can be described as
a succession of a phase in which transition rates of
X from states in U ′

S are scaled and an application
of regenerative transformation to the CTMCs with
scaled transition rates; when U ′

S =�, there are no tran-
sition rates to be scaled.
The method is targeted at a model class C′

1 with a
natural selection for the regenerative state r . Model
class C′

1 is a subclass of model class C1 defined by
Conditions 1–7 and the conditions:
Condition 13. �US � ≥ 2.
Condition 14. A partition U0 ∪U1 ∪ · · · ∪UNC

for US

exists satisfying the following properties:
Property 1. U0 = �o� (i.e., �U0� = 1).
Property 2. If X has a single recurrent class of

states F ⊂ S, o ∈ F .
Property 3. �o�U1∪···∪UNC

> 0.
Property 4. If �DS

> 0 and �U1∪···∪UNC
= 0,

�i�U1∪···∪UNC
> 0 for some i ∈DS with �i > 0.

Property 5. max0≤k≤NC
maxi∈Uk

�i�Uk−�i�∪Uk+1∪···∪UNC
∪DS

is significantly smaller than

min
0<k≤NC

min
i∈Uk

�i�U0∪···∪Uk−1 > 0 if �= S

or

min
0<k≤NC

min
i∈Uk

�i�U0∪···∪Uk−1∪�f � > 0 if �= S ∪ �f ��

Property 6. �o ≤mini∈U1∪···∪UNC
�i.

Class C′
1 models obviously includes F/R models,

the only additional condition being that there must
be at least two up states apart from the absorbing
state f , if existent. The natural selection for the regen-
erative state for class C′

1 models is r = o. Since class
C′
1 is a subclass of class C1, and for any model in class
C′
1, �US � ≥ 2 and maxi∈US

�i =maxi∈US−�o� �i because of
Property 6 of the partition for US , we have, from The-
orem 1, the following result.

Theorem 2. For class C′
1 models and r = o, aC�n� ≤

�C + 1�h�n� and a′
C�n� ≤ �S′�C + 1�h′�n�, where, for

n→�, h�n� ∼ B
(

n−1
p−1

)
;n and h′�n� ∼ B′(n−1

p′−1
)
;′n, with

B > 0, B′ > 0, p�p′ integers ≥ 1, ;�;′ ≈ 1 − 1/R′′, and
R′′ =maxi∈US−�o� �i/mini∈US−�o� �i.

The bounding regenerative transformation method
is motivated by Theorem 2 and is based on the fol-
lowing result. See, for instance, Kijima (1997) for the
definitions of conservative and uniformizable CTMCs
with denumerable state space. In short, they are
CTMCs with denumerable state space in which the
output rate from any state i is equal to the sum of the
transition rates from i and in which the output rates
are uniformly bounded from above. Any finite CTMC
is both conservative and uniformizable. Although we
will only use the result for finite CTMCs, that restric-
tion does not lead to a simpler proof.

Theorem 3. Let W be a conservative, uniformizable
CTMC with denumerable state space �, subset of “up”
states U , and transition rates �i� j , i� j ∈ �, j �= i, and let
W ′ be another conservative, uniformizable CTMC with
same state space, same initial probability distribution, same
subset of up states, same transition rates from non-up
states as X, and transition rates from up states �′

i� j =
>i�i� j , i ∈ U , j ∈ �, j �= i, 0 < >i ≤ 1. Let IAVCD�t� p�
be the complementary interval availability distribution
of W ; i.e., IAVCD�t� p� = P
�

∫ t

0 1W�
�∈U d
�/t > p�,
t > 0, 0 < p < 1. Let IAVCD′�t� p� be the comple-
mentary interval availability distribution of W ′; i.e.,
IAVCD′�t� p� = P
�

∫ t

0 1W ′�
�∈U d
�/t > p�, t > 0,
0< p < 1. Then, IAVCD′�t� p� ≥ IAVCD�t� p�. Fur-
thermore, it is enough that >k < 1 for a reachable up
state k from which a down state can be reached to have
IAVCD′�t� p� > IAVCD�t� p�.

Proof. See the Online Supplement. �
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t

1

0

1

0

1W(�)∈U

1W ′(�)∈U

�

Figure 4 Comparison of Corresponding Realizations of W and W ′

Essentially, the reason why Theorem 3 holds is that
scaling transition rates from up states keeping their
relative values will not modify the embedded DTMC
? of W . Because (see, for instance, Kijima 1997) W
can be interpreted in terms of ? by associating with
the states visited by ? independent exponential hold-
ing times with a parameter equal to the output rate
from the visited state and W ′ can be interpreted in
terms of ? by associating with the states visited by
? scaled up versions of those holding times, each
realization of W will have a corresponding realiza-
tion of W ′ differing from the former only in that the
holding times in the up states will be non-smaller,
and, as Figure 4 illustrates, this will cause the up
time in the time interval 
0� t� of the realization of
W ′ to be non-smaller than the up time in the same
interval of the corresponding realization of W . As a
consequence, IAVCD′�t� p� will be non-smaller than
IAVCD�t� p�. That, under the condition stated by the
theorem, IAVCD′�t� p� > IAVCD�t� p� follows from the
fact that under that condition there will realizations
of W ′ with a total non-null probability contributing
to IAVCD′�t� p� with corresponding realizations of W
that do not contribute to IAVCD�t� p�.
According to Theorem 3, scaling up the transition

rates from some up states will result in a CTMC
model whose IAVCD�t� p� measure will bound from
below the IAVCD�t� p� measure of the original model.
Conversely, scaling down the transition rates from
some up states will result in a CTMC model whose
IAVCD�t� p� measure will bound from above the
IAVCD�t� p� measure of the original model.
Let �min =mini∈U ′

S
�i and �max =maxi∈U ′

S
�i. The con-

trol parameter DC is required to satisfy 1 ≤ DC <
�max/�min. Note that �min > 0. This follows, for the
CTMC models and selections for the regenerative
state r covered by bounding regenerative transforma-
tion, because S cannot include any absorbing state:
by Condition 4 it can include at most one, and by
Condition 8 that one should be r , in contradiction
with �r�U ′

S
> 0 (Conditions 9 and 12). Then, U ′

S ⊂ S

does not include any absorbing state and �min > 0. The
bounding regenerative transformation method allows
the computation of a lower bound, IAVCDlb�t� p�,
for IAVCD�t� p�; an upper bound, IAVCDub�t� p�, for
IAVCD�t� p�; or both. The lower bound IAVCDlb�t� p�
is computed by solving by regenerative transforma-
tion with regenerative state r , subset of up states U ,
and error requirement � a CTMC, X lb, which differs
from X only in that transition rates from states i ∈U ′

S

have been scaled up using �lbi� j = �i� j ��
lb
i /�i�, �lbi =

max��i��max/DC�, where the superscript lb makes ref-
erence to quantities defining X lb. The upper bound
IAVCDub�t� p� is computed by solving by regenera-
tive transformation with regenerative state r , subset
of up states U , and error requirement � a CTMC,
Xub, which differs from X only in that transition rates
from states i ∈U ′

S have been scaled down using �ubi� j =
�i� j ��

ub
i /�i�, �ubi = min��i�DC�min�, where the super-

script ub makes reference to quantities defining Xub.
Figure 5 illustrates bounding regenerative transfor-
mation (BRT), showing the two phases of regenera-
tive transformation (RT). The truncated transformed
CTMC obtained in the first phase of regenerative
transformation applied to X lb is denoted by V lbT , and
the truncated transformed CTMC obtained in the first
phase of regenerative transformation applied to Xub

is denoted by V ubT . We will also denote throughout
this paper by the superscript lb the objects associated
with the generation of V lbT in the first phase of regen-
erative transformation and by the superscript ub the
objects associated with the generation of V ubT in the
first phase of regenerative transformation.
Note that because larger values of DC potentially

yield smaller values for the output rates from some
up states in X lb and potentially yield larger values
for the output rates from some up states in Xub,
according to Theorem 3, the larger DC is, the tighter
IAVCDlb�t� p� and IAVCD�t� p�ub can be. In fact, as DC

approaches �max/�min, both X lb and Xub approach X,
and IAVCDlb�t� p� and IAVCDub�t� p� become arbitrar-
ily tighter. In addition, for class C′

1 models and r = o,
X lb and Xub still belong to the class:

Theorem 4. For class C′
1 models and r = o, X lb and

Xub belong to class C′
1.

Proof. See the Online Supplement. �

Furthermore, for class C′
1 models and r = o, the R′′

parameter defined in Theorem 2 for both X lb and Xub

is equal to DC : R′′ lb = maxi∈US−�o� �lbi /mini∈US−�o� �lbi =
maxi∈U ′

S
�lbi /mini∈U ′

S
�lbi = �max/��max/DC� = DC and

R′′ub = maxi∈US−�o� �ubi /mini∈US−�o� �ubi = maxi∈U ′
S
�ubi /

mini∈U ′
S
�ubi = DC�min/�min = DC . Then, using Theo-

rem 2, for class C′
1 models and r = o, the con-

trol parameter DC should trade off computational
cost with bounds tightness. As recently discussed,
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Figure 5 Schematic Representation of Bounding Regenerative Transformation

the larger DC is, the tighter IAVCDlb�t� p� and
IAVCDub�t� p� can be, and the more costly bound-
ing regenerative transformation should be, since (1)
�lbU = �1 + ,�maxi∈US

�lbi = �1 + ,��max = �1 + ,�·
maxi∈U1∪···∪UNC

�i = �1 + ,�maxi∈US
�i = �U , implying

�lb = �, and �ubU = �1 + ,�maxi∈US
�ubi = �1 + ,� ·

DC�min = �1 + ,�DCmini∈U1∪···∪UNC
�i, which increases

with DC , implying that �ub cannot decrease with DC ,
C lb =C(1) and Cub can increase with DC(1); and (2) by
Theorem 2, alb

C lb
�n�, aub

Cub
�n� and a′ lb

C lb
�n�, a′ub

Cub
�n� should

decrease asymptotically more slowly with n, imply-
ing that K lb and Kub ((2) and (4)) and Llb and Lub

(3) should increase. Regenerative transformation can
be looked at as the application of bounding regen-
erative transformation for the computation of either
IAVCDlb�t� p� or IAVCDub�t� p� for DC → �max/�min,
but according to the previous reasoning, this implies
that for class C′

1 models and r = o, bounding regenera-
tive transformation can have a smaller computational
cost than regenerative transformation.
For class C′

1 models, r = o and DC = 1, R′′ lb =
R′′ub = 1. Then, by Theorem 2, alb

C lb
�n�, aub

Cub
�n�

and a′ lb
C lb

�n�, a′ub
Cub

�n� will decrease asymptotically fast
with n, and K lb, Kub ((2) and (4)) and Llb, Lub

(3) should be small; and, if p is close to 1, so
that maxi∈� �itqmax is moderate (�

lb tqmax = � tqmax
and �ub tqmax ≤ � tqmax, since �lb = � and �ub cannot
decrease with DC and �= limDC→�max/�min

�ub), C lb and
Cub will be moderate; then, if X has a large size and
maxi∈� �it is large, the computational cost of bound-
ing regenerative transformation relative to the model
size should be small and much smaller than that of
Algorithm A. This is because the first phase of regen-
erative transformation applied to both X lb and Xub

should have a computational cost relative to the size
of X much smaller than that of Algorithm A applied
to X (see the beginning and end of §2), and because
�lb =� and �ub ≤� and since the size of both V lbT and
V ubT should be moderate, the second phase of regen-
erative transformation applied to both X lb and Xub

should have a computational cost much smaller than
the computational cost of Algorithm A applied to X
(see the beginning of §2). In the case �max = �min, no
selection for DC is possible, but in that case regen-
erative transformation has for class C′

1 models and
r = o a parameter R′′ = 1, and, according to the pre-
vious discussion, that method should have a small
computational cost relative to the model size when
the model is large and maxi∈� �itqmax is moderate.
Because regenerative transformation is numeri-

cally stable and has good error control (Carrasco
2004), bounding regenerative transformation will
compute the bounds with numerical stability and
well-controlled error.

3.2. Particular Implementation
The particular case in which both IAVCDlb�t� p� and
IAVCDub�t� p� have to be computed, DC = 1, and if
r ∈ US , �r ≤mini∈U ′

S
�i allows a computationally more

efficient implementation of the bounding regenerative
transformation method than the one described in the
previous subsection. That more efficient implementa-
tion is based on the fact that V ubT can be obtained
from quantities associated with the generation of V lbT
during the first phase of regenerative transformation
applied to X lb.
The justification of the particular implementation is

elaborated. However, for class C′
1 models and r = o,

the case DC = 1 is an important one because it is in
that case that, if X has a large size and p is close
to 1, the method should have a small computational
cost relative to the size of X, much smaller than that
of Algorithm A. Also, the additional condition �r ≤
mini∈U ′

S
�i will be satisfied because of Property 6 of

the partition for US , and, often, both bounds will be of
interest to “bracket” the exact solution of the model.
Recall that for the CTMC models and selections

for r covered by bounding regenerative transforma-
tion, U ′

S �= � (by Condition 12), and, according to
the review of regenerative transformation in §2, VT
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is defined by the truncation parameters C, K, and, if
�S′ > 0, L; DT = ��n�k� / 0 ≤ k ≤ K ∧ max�0� k − 1� ≤
n ≤ k + C − 1�; and, if �S′ > 0, D′

T = ��n�k�/ 0 ≤ k ≤
L ∧ max�0� k− 1�≤ n≤ k+C − 1�. Let

ET �u = ��n�k� / �n�k� ∈DT ∧ k < K ∧ ��n�k�US �= 0��
ET �d = ��n�k� / �n�k� ∈DT ∧ k < K ∧ ��n�k�DS �= 0��
and, assuming �S′ > 0, let

E ′
T �u = ��n�k� / �n�k� ∈D′

T ∧ k < L ∧ �′�n�k�U ′
S �= 0��

and, if D′
S �= �, let

E ′
T �d = ��n�k� / �n�k� ∈D′

T ∧ k < L ∧ �′�n�k�D′
S �= 0� �

Note that ET �u (ET �d) collects the pairs �n�k� corre-
sponding to the states su

n�k (s
d
n�k) in �T with k < K, and

E ′
T �u (E

′
T �d) collects the pairs �n�k� corresponding to

states s′un�k (s
′d
n�k) in �T with k < L.

Then, the quantities associated with the generation
of V lbT during the first phase of regenerative transfor-
mation applied to X lb that have to be saved are �lbU ;
�lbD ; alb�n�k�, �n�k� ∈ DlbT , k ≥ 2; if �S′ > 0, a′ lb�n�k�,
�n�k� ∈ D′ lb

T , k ≥ 2; wuu lb
n�k , wud lb

n�k , �n�k� ∈ ElbT �u; qu lb
n�k,

�n�k� ∈ ElbT �u − ��0�1��; if �= S ∪ �f �, vu lb
n�k, �n�k� ∈ ElbT �u;

wdu lb
n�k , w

dd lb
n�k , �n�k� ∈ ElbT �d; q

d lb
n�k, �n�k� ∈ ElbT �d − ��0�0��; if

� = S ∪ �f �, vd lb
n�k, �n�k� ∈ ElbT �d; if �S′ > 0, w′uu lb

n�k , w′ud lb
n�k ,

q′u lb
n�k , �n�k� ∈ E ′lb

T �u; if �S′ > 0 and � = S ∪ �f �, v′u lb
n�k ,

�n�k� ∈ E ′ lb
T �u; if �S′ > 0 and D′

S �= �, w′du lb
n�k , w′dd lb

n�k , q′d lb
n�k ,

�n�k� ∈ E ′ lb
T �d; and, if �S′ > 0, D′

S �= �, and � = S ∪ �f �,
v′d lb

n�k , �n�k� ∈ E ′ lb
T �d.

Construction of V ubT from those quantities is pos-
sible because (1) Cub ≤ C lb; Kub ≤ K lb; for �S′ > 0,
Lub ≤ Llb; �ub�n�k�US �= 0 if and only if �lb�n�k�US �= 0
and �ub�n�k�DS �= 0 if and only if �lb�n�k�DS �= 0; for
�S′ > 0, �′ub�n�k�U ′

S �= 0 if and only if �′ lb�n�k�U ′
S �= 0;

and, for �S′ > 0 and D′
S �= �, �′ub�n�k�D′

S �= 0 if and
only if �′ lb�n�k�D′

S �= 0, implying DubT ⊂ DlbT , if �S′ > 0,
D′ub

T ⊂ D′ lb
T , and �ubT ⊂ �lbT ; (2) there exist simple rela-

tionships between �ubU , �ubD , �ub, aub�n�k�, a′ub�n�k�,
wuuub

n�k , w
udub
n�k , q

uub
n�k , v

uub
n�k , w

duub
n�k , w

ddub
n�k , q

dub
n�k , v

dub
n�k , w

′uuub
n�k ,

w′udub
n�k , q′uub

n�k , v′uub
n�k , w′duub

n�k , w′ddub
n�k , q′dub

n�k , v′dub
n�k and the

corresponding quantities for X lb. Using those rela-
tionships and noting that aub

Cub
�k� =∑k+Cub−1

n=k−1 aub�n�k�,
k ≥ 2, and, if �S′ > 0, a′ub

Cub
�k�=∑k+Cub−1

n=k−1 a′ub�n�k�, k ≥ 2,
it is possible to determine (1)–(4) Cub, Kub, and, if
�S′ > 0, Lub, and to build V ubT . In the remainder of this
section we will prove (1) and will obtain the above-
mentioned relationships. The relationships are estab-
lished in terms of the parameter R = �max/�min, with,
we remember, �min =mini∈U ′

S
�i and �max =maxi∈U ′

S
�i.

Note that R > 1, since DC < �max/�min and DC = 1 for
the particular implementation to apply.
We start by relating �U ��D�� =max��U ��D� and

the transition probabilities of the randomized DTMCs
of X lb and Xub.

Theorem 5. Assume DC = 1, and, if r ∈US , �r ≤ �min.
Then, �ubU = �lbU /R, �ubD = �lbD , �ub = max��ubU ��ubD � ≤
�lb, if r ∈ US , P ubr� j = RP lbr� j , j �= r , if r ∈ DS , P ubr� j = P lbr� j ,
j �= r , and P ubi� j = P lbi� j , i ∈ S ′.

Proof. See the Online Supplement. �

Using Theorem 5, it is possible to prove the fol-
lowing result, which relates the vectors ��n�k� and
�′�n�k�.

Proposition 1. Assume DC = 1, and, if r ∈US ,
�r ≤ �min. Then, if r ∈ US , �ub�0� k� =
�lb�0� k�, 0≤ k ≤ 1, and �ub�n�k� = R�lb�n�k�, n ≥ 1,
0≤ k ≤ n+ 1; if r ∈DS , �ub�n�k� = �lb�n�k�, n ≥ 0,
0 ≤ k ≤ n + 1; and, for �S′ > 0, �′ub�n�k� = �′ lb�n�k�,
n≥ 0, 0≤ k ≤ n+ 1.
Proof. See the Online Supplement. �

Note that Proposition 1 implies, as required,
that �ub�n�k�US �= 0 if and only if �lb�n�k�US �= 0,
�ub�n�k�DS �= 0 if and only if �lb�n�k�DS �= 0, for
�S′ > 0, �′ub�n�k�U ′

S �= 0 if and only if �′ lb�n�k�U ′
S �= 0,

and, for �S′ > 0 and D′
S �= �, �′ub�n�k�D′

S �= 0 if and
only if �′ lb�n�k�D′

S �= 0. The following result, relat-
ing the quantities a�n�k� and a′�n�k�, is an immedi-
ate consequence of Proposition 1, taking into account
a�n�k�=∑

i∈S 0i�n�k� and a′�n�k�=∑
i∈S′ 0

′
i �n� k�.

Theorem 6. Assume DC = 1, and, if r ∈ US , �r ≤
�min. Then, if r ∈ US , aub�0� k� = alb�0� k�, 0≤ k ≤ 1, and
aub�n�k� = Ralb�n�k�, n ≥ 1, 0 ≤ k ≤ n + 1; if r ∈ DS ,
aub�n�k�= alb�n�k�, n≥ 0, 0≤ k ≤ n+1; and, for �S′ > 0,
a′ub�n�k�= a′ lb�n�k�, n≥ 0, 0≤ k ≤ n+ 1.
The following theorem relates the truncation param-

eters associated with V ubT with the truncation parame-
ters associated with V lbT .

Theorem 7. Assume DC = 1, and, if r ∈US , �r ≤ �min.
Then, Cub ≤C lb, Kub ≤K lb, and, for �S′ > 0, Lub ≤ Llb.

Proof. See the Online Supplement. �

Finally, the following theorem relates the quantities
wuu

n�k, wud
n�k, qu

n�k, vu
n�k, wdu

n�k, wdd
n�k, qd

n�k, vd
n�k, w′uu

n�k, w′ud
n�k,

q′u
n�k, v

′u
n�k, w

′du
n�k, w

′dd
n�k, q

′d
n�k, and v′d

n�k.

Theorem 8. Assume DC = 1, and, if r ∈US , �r ≤ �min.
Then, if r ∈ US , wuuub

0�1 = Rwuu lb
0�1 , wudub

0�1 = Rwud lb
0�1 , and,

if � = S ∪ �f �, vuub
0�1 = Rvu lb

0�1 ; if r ∈ DS , wduub
0�0 = wdu lb

0�0 ,
wddub
0�0 =wdd lb

0�0 , and, if �= S∪�f �, vdub
0�0 = vd lb

0�0; for �n�k� ∈
EubT �u − ��0�1��, wuuub

n�k =wuu lb
n�k , wudub

n�k =wud lb
n�k , quub

n�k = qu lb
n�k,

and, if � = S ∪ �f �, vuub
n�k = vu lb

n�k; and, for �n�k� ∈ EubT �d −
��0�0��, wduub

n�k =wdu lb
n�k , wddub

n�k =wdd lb
n�k , qdub

n�k = qd lb
n�k, and, if

� = S ∪ �f �, vdub
n�k = vd lb

n�k. Finally, if �S′ > 0, for �n�k� ∈
E ′ub

T �u, w′uuub
n�k =w′uu lb

n�k , w′udub
n�k =w′ud lb

n�k , q′uub
n�k = q′u lb

n�k , and, if
�= S ∪ �f �, v′uub

n�k = v′u lb
n�k ; and, for �n�k� ∈ E ′ub

T �d, w′duub
n�k =

w′du lb
n�k , w′ddub

n�k = w′dd lb
n�k , q′dub

n�k = q′d lb
n�k , and, if � = S ∪ �f �,

v′dub
n�k = v′d lb

n�k .

Proof. See the Online Supplement. �
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4. Numerical Analysis
In this section we illustrate, using a representative
large model in the class, that, for large class C′

1 models
with r = o when p is close to 1 so that maxi∈� �i tqmax
is moderate, bounding regenerative transformation
with the selection DC = 1 can compute bounds for
IAVCD�t� p� with a computational cost smaller than
that of regenerative transformation and much smaller
relative to the model size than that of Algorithm A
when maxi∈� �it is large. We also discuss under which
conditions the obtained bounds with the selection
DC = 1 seem to be tight. Finally, we illustrate the
trade-off between bounds tightness and computa-
tional cost controlled by the parameter DC . The exper-
iments were performed taking the value 10−4 for the ,
parameter defining �U and �D in regenerative trans-
formation (see §2).
The example is a CTMC model of a fault-tolerant

storage system made up of 10 five-level RAID subsys-
tems, each one comprising eight disks, two redundant
disk controllers (CONT), and two redundant power
supplies (PS) (see Figure 6). The power supplies work
in cold standby redundancy. The system is up if all
RAID subsystems are up. A RAID subsystem is up
if, ignoring coverage faults, at least one controller is
unfailed, at least one power supply is unfailed, and
at least seven disks have updated data (when a failed
disk is repaired in an up subsystem, a reconstruc-
tion process fills the repaired disk with data con-
sistent with the data stored in the remaining seven
disks). Disks in up subsystems fail at a rate of 4 ×
10−6 h−1 if no disk is under reconstruction and at a
rate of 6× 10−6 h−1 if one disk is under reconstruc-
tion. Controllers in up subsystems fail at a rate of
2× 10−5 h−1 if the subsystem has two unfailed con-
trollers and at a rate of 3× 10−5 h−1 if the subsystem
has one unfailed controller. The active power sup-
ply of an up subsystem fails at a rate of 2× 10−5 h−1.
The coverage to controller failures is 0�95, and the
coverage to power supply failures is 0�98. Disks are

CONT CONT

PS PS

Figure 6 Architecture of the RAID Subsystem

reconstructed at a rate of 0�125 h−1. Components of
down RAID subsystems do not fail. It is assumed
the availability of an unlimited number of repairmen
to repair failed components in up RAID subsystems.
However, there is only a repairman to recover down
RAID subsystems. The repair rate of failed compo-
nents in up RAID subsystems is 0�05 h−1, and down
subsystems are brought up to a fully operational state
with no component failed and all disks containing
consistent data at a rate of 0.10 h−1. In case several
RAID subsystems are down, the repairman selects at
random the one to be brought up. Advantage is taken
of the fact that all RAID subsystems have identical
behavior to reduce the size of the state space of the
model. A more detailed description of the model can
be found in Carrasco (2003). The model is quite large:
646,646 states and 15,578,290 transitions. The model
has no absorbing state and, thus, illustrates the case
�= S. A partition for the subset of up states US show-
ing that the model is in class C′

1 is US =U0∪U1∪ · · ·∪
U40, Uk = �s ∈ US / NC�s�+ 2ND�s�+NP�s�+NR�s� = k�,
where NC�s� is the number of up RAID subsystems
with one failed controller in state s, ND�s� is the num-
ber of up RAID subsystems with one failed disk in
state s, NP�s� is the number of up RAID subsys-
tems with one failed power supply in state s, and
NR�s� is the number of up RAID subsystems with
one disk under reconstruction in state s. We will start
by assuming that the system is initially in the state
where all RAID subsystems are in their fully oper-
ational state. That state is the single state o belong-
ing to the subset U0. The steady-state availability of
the system is 0.99975425, making 0.9995 and 0.9999
reasonable choices that we will take for p. All meth-
ods were run with a single target �t� p� pair and an
error requirement � = 10−8. The bounding regenera-
tive transformation method is requested to compute
both the lower and upper bounds. CPU times are
measured (estimated) in (for) a workstation with a
Sun-Blade 1000 processor and 4 GB of memory (sig-
nificantly larger than the memory consumption for
all methods). For large t, the CPU times for Algo-
rithm A are enormous; thus, we estimated those CPU
times using measured CPU times for smaller t and
the approximate flop count of that method given at
the beginning of §2.
We start by considering the selection DC = 1

for bounding regenerative transformation with r = o,
and, thus, bounding regenerative transformation will
use the particular, more efficient implementation
discussed in §3.2. For regenerative transformation
we also took r = o. Table 1 gives the bounds
obtained by bounding regenerative transformation
(BRT), the values of the truncation parameters C lb
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Table 1 Results for BRT with DC = 1, RT, and Algorithm A (A)

BRT RT A

t(h) p IAVCDlb
�t� p� IAVCDub

�t� p� C lb K lb C K C ′ N

1 0.9995 0.99997543 0.99997600 2 8 2 13 2 15
10 0.9995 0.99975017 0.99975927 3 13 3 47 3 55

100 0.9995 0.99751052 0.99757828 6 15 6 278 5 316
1,000 0.9995 0.97644748 0.97700453 12 16 12 884 11 2�528

10,000 0.9995 0.85732856 0.86048627 36 18 36 1�009 35 23�375
20,000 0.9995 0.81889809 0.82303294 55 18 55 1�041 55 46�241

1 0.9999 0.99997542 0.99997599 2 8 2 13 2 15
10 0.9999 0.99974996 0.99975907 2 13 2 47 2 55

100 0.9999 0.99749956 0.99755676 4 15 4 278 4 316
1,000 0.9999 0.97548885 0.97606827 7 16 7 884 6 2�528

10,000 0.9999 0.79696265 0.80124391 16 18 16 1�009 15 23�375
20,000 0.9999 0.66211670 0.66861207 22 18 22 1�041 21 46�241

and K lb associated with V lbT (the truncation param-
eters Cub and Kub associated with V ubT are non-
greater than, respectively, C lb and K lb; see Theo-
rem 7), the values of the truncation parameters C
and K associated with VT in regenerative trans-
formation (RT), and the values of the truncation
parameters C ′ and N of Algorithm A (A), for p =
0.9995 and 0.9999 and increasing values of t. Fig-
ure 7 gives the CPU times consumed by the meth-
ods. As suggested theoretically, K lb has small values.
Since maxi∈� �it�1 − p� = maxi∈� �itq has moderate
values (for p = 0.9995 and t = 20,000 h, maxi∈� �itq ≈
22.5) and maxi∈� �lbi tq = maxi∈� �itq, C lb has moder-
ate values. All this makes the CPU times consumed
by BRT relatively small: for the largest t consid-
ered, 5,494 s (about 92 minutes) for p = 0.9995 and
1,883 s (about 31 minutes) for p = 0.9999. Since C is
identical to C lb (this will always be the case, since,
as discussed at the end of §3.1, �lbtq = �tq; see (1));
as discussed at the end of §3.1, �lb = � (the maxi-
mum output rate in V lbT is �lb), Cub ≤ C lb, and Kub ≤
K lb; and, as discussed also at the end of that section,
�ub ≤� (the maximum output rate in V ubT is �ub); the
CPU times for RT compared with those of BRT scale

100

1,000

10,000

100,000

1e+06

1e+07

1e+08

1 10 100 1,000 10,000
t (h) t (h)

BRT
RT
A

100

1,000

10,000

100,000

1e+06

1e+07

1e+08

1 10 100 1,000 10,000

Figure 7 CPU Times of BRT with DC = 1, RT, and Algorithm A (A) for p= 0�9995 (Left) and p= 0�9999 (Right)

approximately as the truncation parameter K scales
with K lb and are, therefore, significantly larger for
large t: for the largest t considered, 399,853 s (about
111 h) for p = 0.9995 and 103,290 s (about 29 h) for
p = 0�9999. The values of K satisfy the rough upper
bound 30R′ mentioned in Carrasco (2004), since, for
the example, R′ ≈ 2�25/0�05 = 45 and 30R′ ≈ 1,350.
Finally, since the model is large, the truncation param-
eter N is significantly larger than K lb and K for large
t, and the truncation parameter C ′ is very similar to
C lb and C (this will almost always be the case; see
(1) and Rubino and Sericola 1993), the CPU times of
Algorithm A are significantly larger than the CPU
times of both BRT and RT: for the largest t considered,
the estimated CPU time for Algorithm A is 1�158 ×
107 s (about 134 days) for p = 0.9995 and 4�482 ×
106 s (about 52 days) for p = 0.9999, and, thus, for
large values of t and a conventional hardware plat-
form, the example can be considered out of reach of
Algorithm A.
Figure 8 gives the breakdown of the CPU times con-

sumed by BRT into its three main components: gener-
ation of V lbT , trans (lb); solution of V

lb
T by Algorithm A,

sol (lb); and solution of V ubT by Algorithm A, sol (ub).
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Figure 8 Breakdown of CPU Times of BRT with DC = 1 for p= 0�9995 (Left) and p= 0�9999 (Right)

Scaling of transition rates and generation of V ubT from
quantities associated with the generation of V lbT con-
sumed negligible CPU times, and those CPU times
are not shown. For the considered values of t, most
of the CPU times consumed by the method were due
to the generation of V lbT , but the CPU times resulting
from the solution by Algorithm A of both V lbT and V ubT

increase with t faster than the CPU time consumed in
the generation of V lbT and, for large enough t, would
dominate the computational cost of the method. As
the figure clearly illustrates, the importance of those
components also increases with 1− p.
The bounds obtained by BRT with DC = 1 are quite

tight. Intuitively, for large t, this is because all X, X lb,
and Xub spend most of the time in US in state o, and
the three models only differ in the holding times in
the states in US −�o�. This will be the case for any class
C′
1 model provided that the partition for US satisfies
the additional properties:
Property 7. For each i ∈Uk� 0< k ≤NC�

�i�Uk−�i�∪Uk+1∪···∪UNC
∪DS
if �= S

or
�i�Uk−�i�∪Uk+1∪···∪UNC

∪DS∪�f � if �= S ∪ �f �

is significantly smaller than �i�U0∪···∪Uk−1 .
Property 8. �o �mini∈U1∪···∪UNC

�i.
The reason is that Property 7 implies that, from

any state i ∈ US − �o�, the embedded DTMC will go
toward state o with almost one probability and Prop-
erty 8 implies that each holding time in a state i ∈
US − �o� will be much smaller than each holding time
in state o. Note that

min
i∈U1∪···∪UNC

�lbi = max
i∈U1∪···∪UNC

�i > min
i∈U1∪···∪UNC

�i � �o

and
min

i∈U1∪···∪UNC

�ubi = min
i∈U1∪···∪UNC

�i � �o�

Properties 7 and 8 are satisfied moderately by the
example, since for the partition for US previously

discussed, max0<k≤40 maxi∈Uk
�i�Uk−�i�∪Uk+1∪···∪DS

= 1�08×
10−3 h−1, min0<k≤40 mini∈Uk

�i�U0∪···∪Uk−1 = 0�05 h−1, �o =
9�2 × 10−4 h−1, and min0<k≤40 mini∈Uk

�i ≈ 0�05 h−1.
Class C′

1 models with the additional Properties 7 and
8 for the partition for US include F/R models. The
fact that the bounds are also tight for small t seems
to have to do with the fact that the initial probability
of the CTMC in US is concentrated in state o. Table 2
gives the bounds obtained by BRT with DC = 1 when
the initial state of the CTMC model is the state in
which one RAID subsystem has one unfailed con-
troller, no other component failed, and no disk under
reconstruction, and the remaining RAID subsystems
are in their fully operational state. In that case, the
bounds are not so tight for small values of t.
Finally, we analyze the trade-off in BRT between

computational cost and bounds tightness controlled
by the parameter DC . As DC increases, the out-
put rate in X lb from the up state in U1 ∪ · · · ∪UNC

with minimum output rate in X decreases. Fur-
thermore, as DC increases, the output rate in Xub

from the up state in U1 ∪ · · · ∪ UNC
with maxi-

mum output rate in X increases. Then, because X
is irreducible, the condition of Theorem 3 ensur-
ing IAVCD′�t� p� > IAVCD�t� p� is satisfied, imply-
ing that IAVCDlb�t� p� will increase strictly as DC

increases and IAVCDub�t� p� will decrease strictly as
DC increases. Table 3 gives the bounds obtained by
BRT and the CPU times for t = 10,000 h, p = 0.9995,
Table 2 Bounds Obtained by BRT with DC = 1 for an Initial Probability

Distribution Not Concentrated in State o

p= 0�9995 p= 0�9999

t(h) IAVCDlb
�t� p� IAVCDub

�t� p� IAVCDlb
�t� p� IAVCDub

�t� p�

1 0.99905631 0.99994872 0.99905616 0.99994870
10 0.99870751 0.99954032 0.99870689 0.99953997

100 0.99647487 0.99703209 0.99645977 0.99701923
1,000 0.97547825 0.97648897 0.97448111 0.97553219

10,000 0.85677215 0.86018960 0.79620927 0.80084126
20,000 0.81853341 0.82283871 0.66154598 0.66830577
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Table 3 Trade-off in BRT Between Bounds Tightness and
Computational Cost for t = 10�000 h, p= 0�9995, and
Initial State o

DC IAVCDlb
�t� p� IAVCDub

�t� p� C lb K lb Cub K ub CPU time (s)

1 0.85732856 0.86048627 36 18 35 18 3,002
2 0.85740339 0.86005160 36 48 35 37 13,429

10 0.85799895 0.85996905 36 277 35 221 80,027
20 0.85869229 0.85996905 36 520 35 452 158,420

and increasing DC , assuming that the initial state is
state o. We also give C lb, K lb, Cub, and Kub. We can
note that the bounds become moderately tighter as
DC increases, but, as a result of a significant increase
of K lb and Kub, the computational cost of the method
increases sharply.

5. Conclusions
We have developed a method for the computation
of bounds for the interval availability complementary
distribution. The method requires the selection of a
regenerative state, is numerically stable, and com-
putes the bounds with well-controlled error. For
models belonging to a certain class, class C′

1, and
a particular, “natural” selection for the regenerative
state, the method should trade off bounds tightness
with computational cost through a control parameter
DC . For large class C′

1 models, the version that should
have the smallest computational cost should provide
bounds at a small computational cost relative to the
model size if the abscissa at which bounds are sought
is close to 1, which is the interesting case for fault-
tolerant systems. When the model satisfies additional
conditions, the bounds obtained by the version of the
method that should have the smallest computational
cost seem to be tight for any time interval or not small
time intervals, depending on whether the initial prob-
ability distribution of the model in up states different
from the absorbing state, if existing, is concentrated in
the natural selection for the regenerative state. Class
C′
1 models with those additional conditions include
F/R models.
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CORRECTION

In this article, “An Efficient and Numerically Stable Method for Computing Bounds” by
Juan Carrasco (INFORMS Journal on Computing, Articles in Advance, September 24, 2010, DOI:
10.1287/ijoc.1100.0399), an error was found in the abstract. The second sentence from the end has
been corrected to read as “For large models in the class, the version of the method that should
have the smallest computational cost should have small computational cost relative to the model
size if the value above which the interval availability has to be guaranteed to be is close to 1.”


