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Abstract

Controlled tabular adjustment (CTA) is an emerging protection technique for tabular data pro-

tection. CTA formulates a mixed integer linear programming problem, which is tough for tables

of moderate size. Finding a feasible initial solution may even be a challenging task for large

instances. On the other hand, end users of tabular data protection techniques give priority to fast

executions and are thus satisfied in practice with suboptimal solutions. In this work the fix-and-

relax strategy is applied to large CTA instances. Fix-and-relax is based on partitioning the set of

binary variables into clusters to selectively explore a smaller branch-and-cut tree. We report ex-

tensive computational results on a set of real and random CTA instances. Fix-and-relax is shown

to be competitive compared to plain CPLEX branch-and-cut in terms of quickly finding either a

feasible solution or a good upper bound in difficult instances.

Key words: Fix-and-Relax, Mixed-integer Linear Programming, Controlled Tabular

Adjustment, Primal Heuristics, Feasibility Pump, Statistical Disclosure Control

1. Introduction

Microdata and tabular data protection are the two main disciplines of statistical disclosure

control. The purpose of this field is to avoid that no confidential information can be derived from

data released. This is one of the main concerns of National Statistical Agencies (NSA’s), which

have to disseminate a large amount of information minimizing at the same time the disclosure

risk of individual respondents. Tabular data is obtained by crossing two or more categorical

variables in a microdata file. For each cell, the table may report either the number of individuals

(frequency tables) or information about another variable (magnitude tables). More details can be

found in the recent survey [5] and the monograph [16].

Although cell tables report aggregated information for several respondents, there is a risk of

disclosing individual data. Figure 1 illustrates this situation with a simple case. The left table

(a) reports the average salary of individuals by age (row variable) and town (column variable),

while table (b) provides the number of individuals. If there were only one individual of age

between 51–55 in town t2, then any external attacker would know the confidential salary of this

person. For two individuals, any of them could disclose the other’s salary, becoming an internal

attacker. Even if the number of respondents was larger, this cell could be considered unsafe if
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Nord, Office C5218, Jordi Girona 1–3, 08034 Barcelona, Catalonia, Spain

Email addresses: daniel.baena@upc.edu (Daniel Baena), jordi.castro@upc.edu (Jordi Castro)

July 25, 2013



t1 t2
... ... ... ... ...

51–55 ... 38000d 40000d ...

56–60 ... 39000d 42000d ...
... ... ... ... ...

(a)

t1 t2
... ... ... ... ...

51–55 ... 20 1 or 2 ...

56–60 ... 30 35 ...
... ... ... ... ...

(b)

Figure 1: Example of disclosure in tabular data. (a) Average salary per age and town. (b) Number of individuals per age

and town. If there is only one individual in town t2 and age interval 51–55, then any external attacker knows the salary of

this single person is 40000d. For two individuals, any of them can deduce the salary of the other, becoming an internal

attacker.

one individual could obtain a good estimator of another’s salary (for instance, by subtracting its

own contribution from the cell value). Cells that require protection are named unsafe, sensitive

or confidential cells. Controlled Tabular Adjustment (CTA) [3] is a recent technique for the pro-

tection of any tabular data. The goal of CTA—which will be formulated in Section 2—is to add

the minimum amount of deviations to the original cell tables to obtain the safe table which is

closest to the original one. Although it is a recent approach, CTA is gaining recognition among

NSAs; for instance, CTA is considered as an emerging method in the recent monograph [16].

We recently implemented a package for CTA in collaboration with the NSAs of Germany and

the Netherlands, within a project funded by Eurostat, the Statistical Office of the European Com-

munities. In recent specialized workshops on statistical disclosure control, some NSAs stated

that perturbative methods, like CTA, are gaining acceptance [18], and perturbative approaches

are being used for the protection of national census tables (e.g., [14] for Germany).

From a computational point of view, the size of the CTA optimization problem is by far

smaller than for other well-known protection methods, such as the cell suppression problem

(CSP) [4, 13]. Moreover, the quality of CTA solutions has shown to be higher than that provided

by CSP in some real instances, exhibiting a low disclosure risk [6]. Despite these nice features,

CTA formulates a challenging mixed integer linear problem (MILP) for current state-of-the-art

solvers (such as CPLEX or XPress). Optimal (or suboptimal, e.g., with a 5% gap) solutions

may require many hours of execution for medium instances; very large or massive tables can

not be tackled with current technology. Several approaches have been tried to speed up the

solution time. A straightforward Benders reformulation of the problem was attempted in [7], but

promising results were only obtained for two-dimensional tables (i.e., tables obtained by crossing

two categorical variables, whose constraints are represented by a node-arc network incidence

matrix [5]). Heuristic approaches based on block coordinate descent (BCD) have also been

applied to some classes of tables [15].

The purpose of this work is to apply a fix-and-relax heuristic [8] to the MILP CTA problem.

Briefly, fix-and-relax partitions the set of binary variables into k clusters, and iteratively optimizes

for each cluster i = 1, . . . , k, fixing the binary variables of clusters j < i at the optimal value found

in previous iterations, and relaxing the integrality of binary variables of clusters j > i. The effect

of this partitioning of the set of binary variables is that the nodes of the branch-and-cut tree are

selectively explored. Equipping this procedure with a backward repartition strategy (details will

be given in Section 3), if the MILP is feasible then fix-and-relax will always provide a feasible,

hopefully good and efficient, suboptimal solution. The approach cannot guarantee the optimal
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C1 C2 C3

R1 5 6 11

R2 10 15 25

R3 15 21 36

T1

C1 C2 C3

R21 8 10 18

R22 2 5 7

R2 10 15 25

T2

C1 C2 C3

R211 6 6 12

R212 2 4 6

R21 8 10 18

T3

Figure 2: 1H2D table made of three subtables: “region”×“profession”, “municipality”×“profession” and

“zip code”×“profession”.

solution, but in practice end users of statistical data protection techniques prefer quick suboptimal

solutions than optimal costly ones, i.e., requiring too many hours, days or weeks of CPU time.

Fix-and-relax has been successfully applied in the past mainly to scheduling problems [8,

10, 11]. In those applications, variables and constraints can naturally be partitioned according

to some sequential stages, two consecutive ones being only linked by a few of the variables

and constraints of each partition. Such a structure can also be found in some classes of tables,

named two dimensional tables with one hierarchical variable, or, shortly, 1H2D tables. These

tables are obtained by crossing a particular categorical variable with a set of, say, h categorical

variables that have a hierarchical relation; this results in a set of h two-dimensional tables with

some common cells. For instance, Figure 2 (from [5]) illustrates a particular 1H2D table. The

left subtable shows number of respondents for “region”×“profession”; the middle subtable is a

“zoom in” of region R2, providing the number of respondents in municipalities of this region;

finally the right subtable details the ZIP codes of municipality R21. 1H2D is a relevant type of

tables for NSAs, which is a priori suitable for fix-and-relax. Most of the instances tested in the

computational results of this work are 1H2D, and, as it will be shown, fix-and-relax provides

good solutions in a fraction of the time required by state-of-the-art branch-and-cut solvers (to

obtain equivalent solutions, i.e., with the same objective function value).

The paper is organized as follows. Section 2 outlines the MILP CTA problem. Section 3

describes the fix-and-relax heuristic for CTA. Finally, Section 4 presents extensive computational

results, showing the effectiveness of the approach for some classes of tables.

2. The MILP formulation of the CTA problem

Any CTA problem instance, either with one table or with any number of tables, can be rep-

resented by the following parameters :

• A set of cells ai, i ∈ N = {1, . . . , n}, that satisfiesM = {1, . . . ,m} linear relations Aa = b,

a ∈ Rn being the vector of ai’s, and A ∈ Rm×n. These linear relations impose that the set of

inner cells has to be equal to the total or marginal cell, i.e., if I j is the set of inner cells of

relation j ∈ M, and t j is the index of the total cell of relation j, the constraint associated

to this relation is
(

∑

i∈I j
ai

)

− at j
= 0.

• Nonnegative cell weights wi, i ∈ N , used in the definition of the objective function.

• A lower and upper bound for each cell i ∈ N , respectively lai
and uai

, which can be

considered publicly known.
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• A set S = {i1, i2, . . . , is} ⊆ N of indices of sensitive or confidential cells.

• A lower and upper protection level for each sensitive cell, respectively, lpli and upli, i ∈ S.

The purpose of CTA is to find the closest safe values xi to ai. Considering any distance L,

CTA can be formulated as

min
x

||x − a||L

s. to Ax = b

lai
≤ xi ≤ uai

i ∈ N

xi ≤ ai − lpli or xi ≥ ai + upli i ∈ S.

(1)

The disjunctive constraints of (1) guarantee the published value is safely out of the interval

(ai − lpli, ai + upli). Problem (1) can also be formulated in terms of deviations from the current

cell values. Defining zi = xi − ai, i ∈ N—and similarly lzi
= lai

− ai and uzi
= uai

− ai—, (1) can

be recast as
min

z
||z||L

s. to Az = 0

lzi
≤ zi ≤ uzi

i ∈ N

zi ≤ −lpli or zi ≥ upli i ∈ S,

(2)

z ∈ Rn being the vector of deviations. Using the L1 or Manhattan distance and the cell weights wi,

the objective function is
∑

i∈N wi|zi|. Since wi are nonnegative, splitting the vector of deviations

z in two nonnegative vectors z+ ∈ R
n and z− ∈ R

n, model (2) with the L1 distance can thus be

written as

min
z+,z−,y

∑

i∈N

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0

0 ≤ z+
i
≤ uzi

i < S

0 ≤ z−
i
≤ −lzi

i < S

upli yi ≤ z+
i
≤ uzi

yi i ∈ S

lpli(1 − yi) ≤ z−
i
≤ −lzi

(1 − yi) i ∈ S

yi ∈ {0, 1}, i ∈ S,

(3)

y ∈ R
s being the vector of binary variables associated to protection senses. When yi = 1 the

constraints mean upli ≤ z+
i
≤ uzi

and z−
i
= 0, thus the protection sense is “upper”; when yi = 0

we get z+
i
= 0 and lpli ≤ z−

i
≤ −lzi

, thus the protection sense is “lower”.

3. Fix-and-relax heuristic applied to CTA

Model (3) is a difficult MILP even for medium size tables. Finding an optimal (or quasi-

optimal) solution may require many hours (even weeks or days) of execution. When the num-

ber of sensitive cells is large, the branch-and-cut scheme has shown to be inefficient, in some

cases even to provide a first feasible solution. For some massive instances—such as, e.g., those

in http://www-eio.upc.es/~jcastro/huge_sdc_instances.html— the linear problems

(LPs) obtained by fixing the value of binary variables—associated to the protection senses—are

even not solvable with moderate computational resources. For example, the LPs derived from

the six million cells instances of the above web address exhaust the memory of a 16 gigabytes

workstation when solved with the CPLEX barrier solver. Unfortunately, the alternative simplex
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solver is even more prohibitive, but in terms of CPU time: interior-point algorithms have shown

to be much more efficient than the simplex for the LPs derived from CTA [3, 5].

In this work we consider a fix-and-relax heuristic for CTA. Fix-and-relax is a decomposi-

tion method based on partitioning the set of binary variables into clusters to iteratively solve a

sequence of MILPs of smaller complexity than the original problem. In those smaller MILPs

only a subset of variables retain their binary constraints while the rest are either fixed or relaxed.

Since only a reduced subset of (non-fixed) 0-1 variables is kept integer at each fix-and-relax iter-

ation, a computational improvement is expected. Fix-and-relax can both be seen as an approach

for obtaining (hopefully good) initial feasible solutions and primal bounds. There are other ap-

proaches for initial good solutions in MILPs, like the feasibility pump [1, 2, 12], but in practice

fix-and-relax provided solutions with better optimality gaps (see below Table 5 of Section 4).

Fix-and-relax can be briefly stated as follows. The set of binary variables is partitioned into

a finite set of clusters {V1, . . . ,Vk}. The original MILP is then decomposed into k subproblems

and at each iteration one of them is solved. At first iteration (counter r set to 1) the subproblem

considers as binary only the variables of V1, while the integrality of binary variables in the re-

maining clusters is relaxed. Continuous variables in the original MILP maintain this same status

at each subproblem. Hopefully, this first subproblem will be easily solved since the cardinality

of V1 is much smaller than the number of binary variables in the original MILP. Once solved, the

counter r is incremented and the next subproblem is considered. At subproblem of iteration r,

k > r > 1, the binary variables of clusters Vi, i < r, are fixed to the values of optimal solutions

from the previous iterations; variables of cluster Vr are considered binary, while the integrality

of variables in clusters V j, j > r is relaxed. The process is repeated until r = k. If no subproblem

is infeasible, a (hopefully good) feasible solution will be available after the solution of subprob-

lem k. In the particular case of CTA, the set S of sensitive cells is partitioned into the subsets

{V1, . . . ,Vk}, and the subproblem r associated to (3)—which will be referred as (CT Ar
FR

)—is

min
z+,z−,y

n
∑

i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0

0 ≤ z+
i
≤ uzi

i < S

0 ≤ z−
i
≤ −lzi

i < S

upli yi ≤ z+
i
≤ uzi

yi i ∈ S

lpli(1 − yi) ≤ z−
i
≤ −lzi

(1 − yi) i ∈ S

yi = ỹi i ∈
⋃

h=1,...,r−1 Vh

yi ∈ {0, 1} i ∈ Vr

yi ∈ [0, 1] i ∈
⋃

h=r+1,...,k Vh,

(4)

where ỹi, i ∈ ∪h=1,...,r−1Vh, are the values of binary variables found at subproblems CT A1
FR

, . . .,

CT Ar−1
FR

. Although fix-and-relax is a heuristic for MILP problems, it is easily switched to an

optimal approach by setting k = 1.

It is worth noting that the first subproblem CT A1
FR

has two main features compared to the

subsequent ones:

• The lower bound on the objective function provided by CT A1
FR

is a global lower bound

of (3). On the other hand, the lower bound of subproblems r > 1 are just local lower

bounds. The lower bound reported by the fix-and-relax algorithm will then be that of

CT A1
FR

. Note that the optimal solution of CT A1
FR

can be considered a lower bound of (3)
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1. Input: Number of clusters k ≥ 1

2. Partition S into {V1, . . . ,Vk} clusters

3. Initialize r = 1 and solve CT A1
FR

4. if CT A1
FR

is infeasible, STOP

5. else Store values of binary variables of CT A1
FR

, set lower bound LB, and r ← r + 1

6. while r ≤ k do

7. Solve CT Ar
FR

8. if infeasible, redefine the partition structure as in (5)

9. else Store optimal values of binary variables of CT Ar
FR

, and r ← r + 1

10. end while

11. Return UB (solution of CT Ak
FR

) and LB

Figure 3: The fix-and-relax heuristic applied to the CTA problem

only if computed with a 0% gap. However, such a gap is impractical, because the solution

of CT A1
FR

would take a long execution time—something to avoid, since the goal of fix-

and-relax is to quickly provide a decent solution. In the implementation developed, the

lower bound was obtained by the CPLEX routine CPXgetbestobjval. When a problem has

been solved to optimality, this routine provides the optimal solution value. Otherwise, it

provides the minimum objective function value of all remaining unexplored nodes in the

branch-and-cut tree.

• If CT A1
FR

is infeasible, then (3) is infeasible as well. However, if some subproblem r > 1

is infeasible it can not be concluded that (3) is infeasible; it just means that we can not fix

yi = ỹi, for i ∈ Vr−1, at subproblem r. To fix this drawback, when subproblem r > 1 is

reported as infeasible, we backtrack to problem r − 1, modifying the partition by joining

the clusters Vr−1 and Vr as follows:































Vr−1 ← Vr−1

⋃

Vr

Vi ← Vi+1, i = r, . . . , k − 1

k ← k − 1

r ← r − 1.

(5)

Note that the above repartition strategy will always provide a feasible solution if (3) is

feasible. Indeed, in the worst case, if subproblem k is infeasible and (5) is applied k −

1 times, we will end up with a unique cluster, i.e., we will be solving (3). However,

in practice, as it was observed in the computational results of Section 4, this repartition

strategy was never needed in the instances tested.

An outline of the fix-and-relax algorithm for CTA is shown in Figure 3.

4. Computational results

The fix-and-relax heuristic for CTA has been coded in C++, using the state-of-the-art CPLEX

12.4 branch-and-cut solver for the solution of subproblems (4). This approach was compared

with the direct solution of (3) through CPLEX branch-and-cut, which will be referred as “plain

CPLEX branch-and-cut” or simply “plain branch-and-cut”. All the runs were carried out on a
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Instance n s m nz

Random 1H2D instances

asym-30-40-5-2 76137 3712 4440 154816

asym-30-40-5-5 75657 3689 4428 153857

asym-30-40-5-10 75476 3680 4424 153493

asym-30-40-10-2 75301 4583 4420 153143

asym-30-40-10-5 75451 5149 4423 153445

asym-30-40-10-10 75823 5553 4432 154187

asym-30-50-5-2 78536 5424 4524 159703

asym-30-50-5-5 80610 5328 4593 163917

asym-30-50-5-10 82151 5251 4646 167052

asym-30-50-10-2 83418 5655 4688 169626

asym-30-50-10-5 84420 5982 4722 171665

asym-30-50-10-10 85225 6251 4750 173302

asym-40-40-5-2 86399 6147 4772 175625

asym-40-40-5-5 87550 6065 4794 177909

asym-40-40-5-10 88296 5982 4808 179381

asym-40-40-10-2 89187 6233 4825 181148

asym-40-40-10-5 89779 6436 4835 182318

asym-40-40-10-10 90463 6631 4849 183674

asym-40-50-5-2 92541 6618 4897 187853

asym-40-50-5-5 94398 6604 4940 191587

asym-40-50-5-10 96077 6592 4978 194961

asym-40-50-10-2 97428 6853 5010 197679

asym-40-50-10-5 98768 7102 5041 200374

asym-40-50-10-10 100002 7330 5070 202857

sym-30-40-5 76137 3712 4440 154816

sym-30-40-10 75178 7330 4417 152897

sym-30-50-5 93432 4577 5045 190026

sym-30-50-10 93014 9114 5037 189190

sym-40-40-5 101844 4966 5067 206230

sym-40-40-10 103935 10136 5118 210412

sym-40-50-5 126970 6221 5703 257101

sym-40-50-10 127480 12493 5713 258121

Real instances

cbs 11163 2467 244 22326

dale 16514 4923 405 33028

destatis 5940 621 1464 18180

hier13 2020 112 3313 11929

hier13x13x13a 2197 108 3549 11661

hier13x13x13b 2197 108 3549 11661

hier13x13x13c 2197 108 3549 11661

hier13x13x13d 2197 108 3549 11661

hier13x13x13e 2197 112 3549 11661

hier13x13x7d 1183 75 1443 5369

hier13x7x7d 637 50 525 2401

osorio 10201 7 202 20402

table1 1584 146 510 4752

table3 4992 517 2464 19968

table4 4992 517 2464 19968

table6 1584 146 510 4752

table7 624 17 230 1872

table8 1271 3 72 2542

toy3dsarah 2890 376 1649 9690

Table 1: Characteristics for symmetric/asymmetric random 1H2D and real instances.
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Dell PowerEdge 6950 server with four dual core AMD Opteron 8222 3.0 GHZ processors (with-

out exploitation of parallelism capabilities) and 64 GB of RAM. Default values were used for the

CPLEX parameters, unless explicitly stated. For the computational tests we considered a set of

real general and random 1H2D tables. Real general tables are standard instances used in the liter-

ature [5]. Random tables were obtained with a generator of 1H2D synthetic tables. This genera-

tor is governed by several parameters, as, for instance, the number of rows in a subtable; the num-

ber of columns per subtable; the depth of the hierarchical tree; the minimum and maximum num-

ber of rows with hierarchies for each subtable; and the probability for a cell to be marked as sensi-

tive. The random generator is available from http://www-eio.upc.es/~jcastro/generators_csp.html.

We fixed all parameters, but three: the number of rows per subtable (r ∈ {30, 40}), the number of

columns per subtable (c ∈ {40, 50}) and the percentage of sensitive cells (s ∈ {5, 10}). We con-

sidered either symmetric and asymmetric instances, i.e., instances where uai
= lai

for all i ∈ N

and uai
, lai

for some i ∈ N , respectively. Asymmetric instances were obtained by considering

uai
= a · lai

for all i ∈ N , where a ∈ {2, 5, 10} is the asymmetry parameter. For each combination

of parameters we generated a sample of five instances varying the random generator seed, and

all the reported results are averaged on these five replications. This amounted to 24 and eight

samples of five instances each one, for asymmetric and symmetric instances respectively. Table 1

reports the characteristics of the symmetric/asymmetric 1H2D instances and real tables: the num-

ber of cells (”n”), the number of sensitive cells (”s”), the number of table relations (”m”) and the

number of coefficients in linear constraints (”nz”). Hierarchical tables are identified by the par-

ticular combination of parameters, i.e., sym-r-c-s for symmetric instances and asym-r-c-s-a

for asymmetric ones. The dimensions of the MILP problems (3) are 2n continuous variables, s

binary variables, and m + 4s linear constraints.

4.1. Tuning the number of clusters in fix-and-relax

The performance of the fix-and-relax heuristic mainly depends on the number of clusters k

considered. We performed an empirical study of the effect of k on two particular metrics: the

CPU time and the quality of the solutions provided by fix-and-relax. This empirical analysis was

done for the asymmetric 1H2D instances considering values k ∈ K = {3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50}.

Each instance was solved |K| times, randomly partitioning the set S of sensitive cells into k ∈ K

subsets. The stoping criterion for all the runs, i.e., subproblems (4), was a 5% optimality gap,

which is computed by CPLEX as (UB−LB)/(|UB|+10−10), where UB is the best integer solution

(upper bound) and LB is the best achievable value from the current branch-and-cut tree (lower

bound).

Figure 4 reports the CPU time (in seconds, averaged for the five replications of each instance)

used by fix-and-relax for the different k ∈ K number of clusters. Clearly, the CPU time increases

with k, and the heuristic becomes prohibitive if the number of clusters is large. The second

metric, the quality of the solutions, was evaluated using the performance profile proposed in [9].

Quality was measured as the value of the objective function (thus, the lower, the better). Let Qtk

be the quality of the solution of instance t solved by fix-and-relax with k clusters. Note that Qtk

for CTA is always strictly positive. The performance ratio is thus defined as

v(t, k) =
Qt,k

min{Qt,k : k ∈ K}
,

i.e., the ratio between the quality of the solution obtained when instance t is solved by fix-and-

relax with k clusters over the strategy with the best (minimum) performance for this instance.

8
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The (cumulative) distribution function Pk(q) : [1,∞)→ [0, 1] is defined as

Pk(q) =
|{t ∈ T : v(t, k) ≤ q}|

|T |
, q ≥ 1.

where T is the set of instances. Figure 5 shows the performance profiles for the different k ∈ K .

Pk(q) = 1 means fix-and-relax with k clusters is able to solve all the instances within a factor q

of the best possible ratio. In our case k = 3 is the first strategy to converge to 1 for q = 1.01 (i.e.,

fix-and-relax with 3 blocks solves all the instances within a factor 1.01 of the best ratio). It can

also be observed that k = 3 provides the highest quality for 40% of the instances (P3(1) ≈ 0.4).

Table 2 confirms the previous results. This table reports the CPU time and primal gap (av-

eraged for the five replications) for all the instances and k ∈ K . The primal gap is defined as

(UB − LB)/|UB|, where UB is the best feasible solution and LB is the best known lower bound

computed with either fix-and-relax or plain CPLEX branch-and-cut (primal gaps will also be

used in tables 3–5). The last row of Table 2 shows averaged values for all the instances. Clearly,

k = 3 provides the fastest executions and at the same time the lowest gap.

4.2. Comparison between fix-and-relax and plain branch-and-cut

From the discussion of previous Subsection, k = 3 was set for fix-and-relax. An optimality

gap of 5% was considered for all the optimization problems, either (3) or fix-and-relax subprob-

lems (4). The time limit was set to one hour for 1H2D random instances and five hours for real

instances. Note that fix-and-relax subproblems are also solved by CPLEX branch-and-cut; there-

fore the comparison is between whether using or not the fix-and-relax scheme. We will refer to

these two variants as “fix-and-relax” and “plain branch-and-cut”.

Tables 3 and 4 report an exhaustive comparison between fix-and-relax and plain branch-

and-cut for random asymmetric and symmetric 1H2D instances and real instances, respectively.

These tables report the fix-and-relax CPU time (columns “TFR”); the primal gap of the solution

reported by fix-and-relax (columns “GAPFR%”); the primal gap of the solution reported by plain

branch-and-cut after TFR seconds of CPU time (columns “GAPBC%”), i.e., using the same time

than fix-and-relax; the difference between both primal gaps (columns “∆(BC, FR)”); the primal

gap and CPU time needed by plain branch-and-cut to compute a better solution than the feasi-

ble solution found by fix-and-relax (columns “GAP
up

BC
%” and “T

up

BC
”); and finally the difference

between the time needed by fix-and-relax to compute a feasible solution and the time needed

by plain branch-and-cut to improve that solution (columns “∆(TFR,T
up

BC
)”). Positive values at

column ∆(BC, FR) mean that fix-and-relax achieved a better solution than branch-and-cut in the

same CPU time.

From Table 3 it can be concluded that fix-and-relax is more efficient than plain branch-and-

cut for fast good feasible solutions of 1H2D tables. In several runs (marked with ‡) branch-

and-cut could not find a better solution than fix-and-relax within the time limit. It is worth

noting that for all the 1H2D instances fix-and-relax provided solutions with gaps below 10%.

For the real general instances of Table 4 the situation is slightly different. These instances are

not guaranteed to have a hierarchical structure, and this may explain why fix-and-relax is not

so competitive. It only outperforms plain branch-and-cut in eight of the 19 instances, and they

both provide the same gap in two adittional cases (”cbs” and ”osorio”). In one of these cases

(“toy3dsarah”) branch-and-cut could not improve the fix-and-relax solution within the time limit.

In the remaining instances branch-and-cut outperformed fix-and-relax.

We tried to warm start plain CPLEX branch-and-cut with the fix-and-relax solution. It could

be expected that providing a good incumbent from the beginning would reduce the computational
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instance TFR GAPFR% GAPBC % ∆(BC, FR) GAP
up

BC
% T

up

BC
∆(TFR, T

up

BC
)

asym-30-40-5-2 38.79 4.93 86.26 81.33 3.02 154.09 115.30

asym-30-40-5-5 21.47 1.92 100 98.08 0.51 56.46 34.99

asym-30-40-5-10 18.15 0.52 100 99.48 0.42 49.52 31.37

asym-30-40-10-2 50.45 5.19 100 94.81 ‡(2.39,3) ‡(434.48,3) ‡(384.02,3)

asym-30-40-10-5 31.02 2.24 100 97.76 0.32 138.70 107.68

asym-30-40-10-10 28.78 0.65 100 99.35 0.39 72.48 43.70

asym-30-50-5-2 54.37 4.5 †(100,1) †(95.50,1) 1.58 216.45 162.07

asym-30-50-5-5 37.79 2.14 †(100,1) †(97.86,1) 1.06 79.02 41.23

asym-30-50-5-10 27.23 0.22 100 99.78 0.08 70.65 43.42

asym-30-50-10-2 74.86 3.66 100 96.34 ‡(2.45,1) ‡(560.14,1) ‡(485.29,1)

asym-30-50-10-5 44.24 3.22 100 96.78 1.86 224.29 180.05

asym-30-50-10-10 41.11 0.68 100 99.32 0.27 106.30 65.20

asym-40-40-5-2 55.41 5.09 †(100,1) †(94.91,1) 1.08 178.16 122.75

asym-40-40-5-5 45.69 1.54 †(100,1) †(98.46,1) 0.76 88.39 42.70

asym-40-40-5-10 30.79 1.22 100 98.78 1.14 79.44 48.65

asym-40-40-10-2 74.2 4.32 100 95.68 ‡(2.63,3) ‡(365.38,3) ‡(291.17,3)

asym-40-40-10-5 49.43 1.91 100 98.09 0.59 182.68 133.26

asym-40-40-10-10 44 1.49 100 98.51 ‡(0.75,1) ‡(101.66,1) ‡(57.66,1)

asym-40-50-5-2 91.41 4.49 †(100,1) †(95.51,1) 2.22 283.61 192.19

asym-40-50-5-5 73.07 1.29 100 98.71 0.52 110.03 36.96

asym-40-50-5-10 51.59 1.17 100 98.83 0.67 91.08 39.49

asym-40-50-10-2 119.35 4.94 100 95.06 ‡(3.77,1) ‡(1235.97,1) ‡(1116.61,1)

asym-40-50-10-5 88.87 3.22 †(100,2) †(96.78,2) 0.64 335.49 246.62

asym-40-50-10-10 68.91 0.90 †(100,2) †(99.10,2) 0.68 151.26 82.35

sym-30-40-5 139.06 5.28 100 94.72 ‡(4.67, 2) ‡(194.62,2) ‡(55.56,2)

sym-30-40-10 224.51 8.94 62.69 53.75 5.73 472.62 248.11

sym-30-50-5 202.66 7.60 82.61 75.01 1.97 463.04 260.38

sym-30-50-10 426.43 6.75 †(34.06,1) †(27.31,1) 4.75 757.79 331.36

sym-40-40-5 206.97 5.38 †(78.89,1) †(73.51,1) 2.69 487.67 280.71

sym-40-40-10 909.91 5.57 63.85 58.28 ‡(5.04,3) ‡(2972.69,3) ‡(2062.79,3)

sym-40-50-5 291.80 7.49 82.10 74.62 4.65 701.59 409.79

sym-40-50-10 976.78 5.55 62.80 57.25 ‡(7.62,4) ‡(226.62,4) ‡(−750.16,4)

†(x,y) plain branch-and-cut could not find a solution in y of the five replications within TFR seconds;

x is the average value for the 5 − y successful runs.

‡(z,w) plain branch-and-cut could not improve the fix-and-relax solution in w of the five replications within the time limit;

z is the average value for the 5 − w successful runs.

Table 3: Comparison between fix-an-relax and plain branch-and-cut for random asymmetric and symmetric 1H2D in-

stances

instance TFR GAPFR% GAPBC % ∆(BC, FR) GAP
up

BC
% T

up

BC
∆(TFR,T

up

BC
)

cbs 2.31 100 100 0 0 2.41 0.1

dale 319.09 88.8 0 −88.8 0 100.72 −218.37

destatis 162.66 16.24 99.97 83.73 2.27 505.09 342.43

hier13 509.65 6.93 4.95 −1.98 5.34 234.76 −274.89

hier13x13x13a 378.49 5.25 4.96 −0.29 4.96 369.96 −8.53

hier13x13x13b 436.29 5.66 7.74 2.08 5.11 961.68 525.39

hier13x13x13c 431.12 5.6 5.09 −0.51 5.09 229.81 −201.31

hier13x13x13d 123.15 7.07 28.06 20.99 4.84 145.49 22.34

hier13x13x13e 272.59 5.43 3.78 −1.65 3.78 152.01 −120.58

hier13x13x7d 37.19 5.15 4.91 −0.24 4.91 33.85 −3.34

hier13x7x7d 3.25 5.26 9.52 4.26 4.97 9.26 6.01

osorio 1.6 0 0 0 0 0.61 −0.99

table1 0.57 8.47 44.93 36.46 4.62 1.29 0.72

table3 810.07 19.11 8.32 −10.79 12.37 368.46 −441.61

table4 450.51 20.11 100 79.89 16.6 473.1 22.59

table6 0.45 11.03 11.42 0.39 9.47 0.78 0.33

table7 0.12 0.56 0.41 −0.15 0.41 0.02 −0.1

table8 0.17 2.44 0 −2.44 1.35 0.03 −0.14

toy3dsarah 21.54 0.36 2.44 2.08 † † †

† Time limit reached without improving the feasible fix-and-relax solution.

Table 4: Comparison between fix-an-relax and plain branch-and-cut for real instances
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instance GAPFR% TFR GAPFP% TFP ∆(TFP, TFR) ∆(FP, FR)

asym-30-40-5-2 4.93 38.79 69.75 167.20 128.41 64.82

asym-30-40-5-5 1.92 21.47 84.91 173.20 151.73 82.99

asym-30-40-5-10 0.52 18.15 90.40 197.00 178.85 89.88

asym-30-40-10-2 5.19 50.45 72.64 249.40 198.95 67.46

asym-30-40-10-5 2.24 31.02 84.18 281.40 250.38 81.93

asym-30-40-10-10 0.65 28.78 93.07 346.20 317.42 92.42

asym-30-50-5-2 4.50 54.37 63.81 221.20 166.83 59.31

asym-30-50-5-5 2.14 37.79 80.92 242.80 205.01 78.78

asym-30-50-5-10 0.22 27.23 93.60 308.80 281.57 93.38

asym-30-50-10-2 3.66 74.86 68.60 372.40 297.54 64.94

asym-30-50-10-5 3.22 44.24 84.32 401.80 357.56 81.10

asym-30-50-10-10 0.68 41.11 92.56 495.60 454.49 91.89

asym-40-40-5-2 5.09 55.41 66.97 231.60 176.19 61.88

asym-40-40-5-5 1.54 45.69 83.46 256.60 210.91 81.92

asym-40-40-5-10 1.22 30.79 92.28 287.60 256.81 91.06

asym-40-40-10-2 4.32 74.20 65.99 368.20 294.00 61.67

asym-40-40-10-5 1.91 49.43 87.95 467.80 418.37 86.04

asym-40-40-10-10 1.49 44.00 97.45 734.60 690.6 95.96

asym-40-50-5-2 4.49 91.41 72.74 313.20 221.79 68.24

asym-40-50-5-5 1.29 73.07 82.17 350.80 277.73 80.88

asym-40-50-5-10 1.17 51.59 94.78 473.00 421.41 93.61

asym-40-50-10-2 4.94 119.35 70.02 497.00 377.65 65.08

asym- 40-50-10-5 3.22 88.87 82.56 546.00 457.13 79.34

asym-40-50-10-10 0.90 68.91 92.80 718.00 649.09 91.89

sym-30-40-5 5.28 139.06 45.57 150.6 11.54 40.29

sym-30-40-10 8.94 224.51 44.57 189.2 −35.31 35.63

sym-30-50-5 7.6 202.66 58.52 216.6 13.94 50.92

sym-30-50-10 6.75 426.43 65.02 353.2 −73.23 58.27

sym-40-40-5 5.38 206.97 60.7 218.6 11.63 55.32

sym-40-40-10 5.57 909.91 55.12 366.8 −543.11 49.55

sym-40-50-5 7.49 291.8 52.6 305.6 13.8 45.12

sym-40-50-10 5.55 976.78 52.45 458.6 −518.18 46.9

Table 5: Comparison between fix-and-relax and feasibility pump heuristic for symmetric and asymmetric random 1H2D

instances.

burden by pruning portions of the search space. However, the results were not satisfactory, but

rather disapointing. In fact, we found reported similar experiences. In http://www2.isye.gatech.edu/~rcarvajal3/2012/2012-

the author presents an experiment with instances from MIPLIB 2010 [17] where providing the

optimal solution as a warm start can actually be harmful for the performance of the solver.

As a last experiment, we compared fix-and-relax with feasibility pump [12], both seen as

efficient heuristics for the fast computation of hopefully good initial feasible solutions to MILPs.

We used the “objective feasibility pump” variant [1], which is more efficient in terms of quality

of the solution. Table 5 reports the primal gap of the fix-and-relax and feasibility pump solutions

(columns “GAPFR%” and “GAPFP%”, respectively), the CPU time required by fix-and-relax

and feasibility pump to compute the feasible solution (columns “TFR” and “TFP”, respectively),

and the difference between feasibility pump and fix-and-relax CPU times and gaps (columns

“∆(TFP,TFR)” and “∆(FP, FR)”, respectively). It is clearly seen that fix-and-relax outperformed

feasibility pump for CTA, both in terms of efficiency and quality of the solution. Fix-and-relax

always provided a better gap than feasibility pump, and in most cases by a big difference. More-

over, fix-and-relax was also much more efficient than feasibility pump for all the asymmetric

instances, and for all but four symmetric cases. In this four cases, however, the gap provided by

fix-and-relax was much smaller. It can be concluded that, for the CTA problem, fix-and-relax

instead of feasibility pump should be used for fast and good feasible solutions.
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5. Conclusions

Fix-and-relax has shown to be an efficient heuristic for the difficult MILP CTA problem.

Initially developed for scheduling problems that can be partitioned into stages, fix-and-relax has

also been successfully applied to a class of hierarchical tables named 1H2D. For these tables,

it was competitive against both plain CPLEX branch-and-cut and the feasibility pump heuristic.

For general tables, fix-and-relax also outperformed the other approaches in half of the cases.

Quick tools to provide fast solutions to CTA are a necessity because of the increasing ability

of NSAs to create more complex and huge tables from collected data. Fix-and-relax is thus an

step in this direction. Combining fix-and-relax with other heuristics, such as block-coordinate-

descent, or embedding fix-and-relax in exact approaches, like Benders reformulation, is part of

the further work to be done in this field.
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