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ABSTRACT 
A second-order LuGre friction model is presented which 
can be viewed as an extension of the well known LuGre 
friction model. This model is based on a dynamic 
extension, which can be seen as an extra dynamic to 
capture some kind of periodic motion produced by the 
bristles in motion. The additional dynamic can be viewed 
as an internal disturbance due to the vibration associated 
with the use of motors. Our model can capture the friction 
phenomena of the original LuGre friction model and 
presents two new behaviors, one is the multi-loop 
behavior in the hysteresis curve when velocity is varied 
during unidirectional motion, and the other, in the pre-
sliding motion curve of friction force versus displacement 
in the spring regime, where two jumps appear. 
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1.Introduction 
 
Friction modeling is an important issue in control theory 
because, in most cases, the design of a control law is 
based on the model of the plant to be controlled. In this 
context, a congruent friction model that captures all the 
phenomena that the friction produces in a mechanical 
system, such as: stribeck effect, pre-sliding motion, 
hysteresis, etc., is highly important. So far, there exist 
three important friction models: 1) The Coulomb model, 
2) The Dahl model, and 3) The LuGre model. The first 
one is a static model whereas the others are dynamical. It 
is well know that dynamical models can produce most of 
the phenomena produced by friction [1]. There have been 
some techniques to compensate friction forces, see for 
example [2]-[4]. For instance, in [2] the Coulomb friction 
model is used for the compensator design; however, and 
as it is pointed out in [2], if this model differs from 
reality, this techniques is not effective. In [5] a chattering 
control design is presented to uncouple the effects of the 
friction forces on the mechanical system, but, it requires a 
control law that commutes very fast, which is hard to 
produce because of the high band required to drive the 
control-law’s signal. The demonstration of this important 
fact was possible using the LuGre friction model. In this 
work (in [5]), it is also shown that the chattering control 

law is robust against variation in the friction model used; 
in other words, in the simulation experiments shown in 
[5], with Dahl model or LuGre model, the chattering 
control law could uncouple the effects of the friction 
forces on the system.  
 
One important observation on friction model is that this is 
not unique, that is, there can exist other friction models 
that can captures most of the phenomenon produced by 
friction force. The main objective of the present paper is 
to show that there exists a modification of the LuGre 
friction model (a second order model) that can still 
capture the main effects of friction force; however two 
other effects appears, for instance, the Hysteresis effect 
which is produced when velocity is varied during 
unidirectional motion, in our model, presents multi-loop 
variation which is not captured by the LuGre model. Also, 
the pre-sliding motion curve of friction force versus 
displacement in the spring regime, presents a jump, which 
is not captured by LuGre model. This jump appears in 
experimental and simulations results shown in [6]. Other 
friction models have been reported recently (see [6], [7], 
and [8]), our model differs from them by the fact that we 
are using an extra nonlinear dynamic to capture some 
kind of periodic motion produced the average deflection 
of the moving elastic bristles, this additional dynamic can 
be attributed to an internal disturbance, such as the 
vibration generated by motors intended to produce 
motion. 
 
 
 
II. LuGre Friction Model 
 
The LuGre friction model is given by [1]: 
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where v is the relative velocity between the surfaces in 
contact that produce friction, z denotes the average 
deflection of the bristles, F  is the friction force, σ0  is the 
stiffness, σ1  is the damping coefficient, σ2  is the viscous 
coefficient, FC  is the Coulomb friction level, Fs  is the 
level of  the stiction force, and  vs  is the Stribeck velocity. 
 
The LuGre friction model is a first-order model and it 
depends on the internal state z(t). However, it is still 
possible to produce a new friction model that can capture 
the natural phenomena produced by friction. This model 
can be viewed as a second-order LuGre friction model: 
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where α and β are two constant parameters.  
 
The extra dynamic added was proposed to capture some 
kind of periodic motion produced by the bristles in 
movement, in fact, the nonlinear function f(w) is common 
in nonlinear oscillator and this is the special case for the 
Van der Pol oscillator (see [9] page 427). So, the 
constants α and β can be interpreted as the size of the 
active region (definition used in nonlinear oscillator) of 
f(w) (see section IV too) and amplitude gain, respectively. 
This last one is justified because it appears as a gain in the 
friction force F in (2). Obviously, these constants need 
some technical specifications that can be done with 
experimental correlation, which are not presented here. 
 
The physical justification for extending the friction model 
to a second order system is to account for internal 
vibration, an occurrence common in mechanical systems 
that rely on motors. When the motor is active, the 
microscopic gaps in the mechanical assembly generate 
vibration in addition to the intended motion; this can be 
viewed as an internal disturbance that alters the behavior 
of the system.  
 
The friction model given in (2) has the following 
property: 
Property 1: Assume that 0<g(v)≤ a then 
 z(t) ≤ a for all t>0 and w(t)∈ L∞.. 
 
Proof: The first part of the property is proved in [1]. 
Because the proof given in [1] is trough a Lyapunov 
function that depends on v(t), then v(t)∈ L∞.. Using the 
fact that there exist a positive constant b such that   v(t) 

≤ b for all t>0, and using V=w2/2, the time derivative of V 
evaluated along of the solution of w(t) is  
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when w≠0, V& is negative semi-definite if 
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The above equation says that the solution w(t) can not 
leave a compact set. If w(0) is beyond to this set, then 
trajectory w(t) converges asymptotically to this set, and 
after that, this trajectory can no leave this set, which 
means that w(t)∈ L∞.. 
 
 
III. Dynamical Behavior 
 
In this section we produced numerical experiments to 
show that the friction model (2) captures most of the 
phenomenon that friction force produces in a given 
system. In all our simulations, we used the parameters 
given in Table I ([1]). 
 
A. Limit Cycles Produced by Friction 
To illustrate that friction can produce limit cycles in a 
mechanical system, we consider the same experiment 
used in [1]; i.e., we consider a mass m in contact with a 
horizontal surface (see Fig. 1): 
 

Fu
dt

xd
m −=

2

2

                                                          (3) 

 
where x(t) is the position, )()( tvtx =&  is the velocity, F 
is the friction force and u is the control input. Consider 
the following PID controller [1]: 
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where xd is the desired position or set-point. Using kp=3, 
ki=4, kv=6, m=1, and xd=1, the simulation results are 
shown in Fig. 2.  
 
B. Stick-Slip Motion  
Employing the same experiment presented in [1], we used 
the experimental set up shown in Fig. 3 with unit mass. 
The experiment consists of attaching a spring with 
stiffness k=2N/m to the block and the end of the spring 
was pulled with constant velocity; i.e, dy/dt=0.1m/s. Fig. 



4 shows the simulation results. This experiment 
reproduced the stick-slip motion caused by friction. 
 

TABLE I  
PARAMETERS VALUES USED. 

 
Parameter Value Unit 

σ0 105 N/m 
σ1 √105 Ns/m 
σ2 0.4 Ns/m 
FC 1 N 
FS 1.5 N 
vs 0.001 m/s 
∝  3  
β 1  

 
 
 

        
Fig. 1 Experimental system. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Simulation of the PID control law: 
a) Using model (1), b) Using model (2). 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3 Experimental sep-up. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Simulation of the stick-slip motion:  
a) Using model (1), b) Using model (2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Simulation of the Hysteresis effect when 2π 
f=1rad/s:  

a) Using model (1),  
b) Using model (2). 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Simulation of the Hysteresis effect when 2π f 
=25rad/s: a) Using model (1), b) Using model (2). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Simulation of the Pre-sliding effect: 
a) Using model (1), b) Using model (2). 

 
C. Frictional Lag 
The effect of frictional lag can be viewed by applying a 
sinusoidal velocity to the input of the friction model. This 
sinusoidal variation is around an equilibrium or DC 
component. Simulation results are shown in Figure 5 and 
Figure 6 for 1 rad/s and 25 rad/s respectively. Observe 
the multi-loop behavior in our model.  
 
D. Pre-sling Displacement 
The pre-sliding displacement can be captured by applying 
a force that varies slowly ramped up to 1.425 N, and after 
kept constant for a while, and later ramped down to 
-1.425 N, where, again, it is kept constant for a while and 
then again ramped up to 1.425 and so on (see [1]). 
Simulation results are shown in Fig. 7. Figure 7 b) shows 
a constant force while displacement is zero (the vertical 
lines). This behavior is not captured by model (1). In Fig 
7 b), the displacement is bigger that in Fig. 7 a); however, 
this can be manipulated by changing the parameters β and 
α. Observe the presences of two jumps in our model. 
These jumps were observed in [8] too. 
 

 
IV. Remark 
 
In model (2), f(w) has the following properties: 
 
1) f(0)=0 
2) f’(0)<0 
3) f(w) tends to +∝   as w tends to +∝   
4) f(w) tends to -∝  as w tends to -∝   
 
The above means that it is possible to replace f(w) by 
other non-linear function that satisfies these properties. 
The contribution of parameter α can be viewed as the 
boundary of the active region that satisfies wf(w)<0 and 
f’(w)≤ 0 (see Fig. 8). 
 

 
Fig. 8 Nonlinear function f(w). 
 
In model (2), w(t) can be interpreted as a complement of 
the average dynamic z(t). For instance, consider that v is 
constant and for simplicity assume that v=0. Then 

)(wfw −=&  has its origin a repulsive system being the 
region of repulsion the active region. This repulsion is 
translated into force in (2) and it can be the reposition 
force of the bristles in motion. 
 
An additional discussion about Figure 4 b) with respect to 
the “stick-slip” behavior during the 15 seconds of the 
simulation experiments can be stated as follows. This 
“stick-slip” motion can be interpreted as an induced 
dynamic “Stribeck” effect on the system.  
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