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Abstract—Rewarded homogeneous continuous-time Markov chain (CTMC) models can be used to analyze performance,

dependability and performability attributes of computer and telecommunication systems. In this paper, we consider rewarded CTMC

models with a reward structure including reward rates associated with states and two measures summarizing the behavior in time of

the resulting reward rate random variable: the expected transient reward rate at time t and the expected averaged reward rate in the

time interval ½0; t�. Computation of those measures can be performed using the randomization method, which is numerically stable and

has good error control. However, for large stiff models, the method is very expensive. Exploiting the existence of a quasistationary

distribution in the subset of transient states of discrete-time Markov chains with a certain structure, we develop a new variant of the

(standard) randomization method, randomization with quasistationarity detection, covering finite CTMC models with state space

S [ ff1; f2; . . . ; fAg, A � 1, where all states in S are transient and reachable among them and the states fi are absorbing. The method

has the same good properties as the standard randomization method and can be much more efficient. We also compare the

performance of the method with that of regenerative randomization.

Index Terms—Rewarded continuous-time Markov chains, transient analysis, randomization, quasistationary distribution.
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1 INTRODUCTION

REWARDED homogeneous continuous-time Markov chain
(CTMC) models can be used to analyze performance,

dependability, and performability attributes of computer

and telecommunication systems. A rewarded CTMC model

is a CTMC X ¼ fXðtÞ; t � 0g with a reward structure

imposed over it. The reward structure may, in general,

include reward rates ri associated with states and impulse

rewards ri;j associated with transitions, where ri has the

meaning of “rate” at which reward is earned while X is in

state i and ri;j has the meaning of reward which is earned
each time X makes a transition from state i to state j. In this

paper, we will formally restrict our attention to finite

rewarded CTMC models including only nonnegative

reward rates and will consider two measures summarizing

the behavior in time of the reward rate random

variable rXðtÞ: the expected transient reward rate at time t,

ETRRðtÞ ¼ E½rXðtÞ�, and the expected averaged reward rate

in the time interval ½0; t�, EARRðtÞ ¼ E½
R t
0 rXð�Þ d�=t�. As

examples of instances of the ETRRðtÞ and EARRðtÞ
measures, consider a CTMC modeling a fault-tolerant

system which can be up or down and assume that a reward

rate 0 is assigned to the states in which the system is up and

a reward rate 1 is assigned to the states in which the system

is down. Then, ETRRðtÞ would be the unavailability of the

system at time t (i.e., the probability that the system is down

at time t) and EARRðtÞ would be the expected interval

unavailability at time t (i.e., the expected value of the

fraction of time that the system is down in the interval ½0; t�).
The assumption that all reward rates are nonnegative is
taken to guarantee the stability of all randomization-based

numerical methods we will consider. The assumption can,

however, be easily circumvented by shifting in case some

reward rate ri is < 0, all reward rates by any positive

quantity d so that all new reward rates r0i ¼ ri þ d are � 0:

The ETRRðtÞ and EARRðtÞ measures of the original model

are related to the corresponding measures, ETRR0ðtÞ and

EARR0ðtÞ, of the model with shifted reward rates by
ETRRðtÞ ¼ ETRR0ðtÞ � d and EARRðtÞ ¼ EARR0ðtÞ � d.

Also, by generalizing the definitions of ETRRðtÞ and

EARRðtÞ as:

ETRRðtÞ ¼ lim
�t!0

E½reward accumulated in ½t; tþ�t��
�t

;

EARRðtÞ ¼ E
reward accumulated in ½0; t�

t

� �
;

impulse rewards can be accomodated in the assumed
framework by translating each nonnull impulse reward ri;j
into a contribution �i;jri;j to the reward rate associated with
state i, �i;j being the transition rate of X from i to j.

Computation of the ETRRðtÞ and EARRðtÞ measures
requires the transient analysis of the CTMC. Commonly
used methods to perform such analysis are ODE (ordinary
differential equation) solvers and randomization. Good
recent reviews of these methods with new results can be
found in [16], [17], [23], [24]. The randomization method
(also called uniformization) is attractive because of its
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excellent numerical stability and the fact that the computa-

tion error is well-controlled. It was first proposed by

Grassman [11] and has been further developed by Gross

and Miller [13] and Melamed and Yadin [18], [19]. The

method is also offered by well-known performance,

dependability, and performability modeling packages [2],

[8], [10], [26]. The randomization method is based on the

following result [14, Theorem 4.19]: LetX ¼ fXðtÞ; t � 0g be
a CTMC with finite state space �; let �i;j, i; j 2 �, i 6¼ j, be

the transition rate of X from state i to state j, and let

�i ¼
P

j2��fig �i;j, i 2 � be the output rate of X from state i.

Consider any � � maxi2� �i and define the homogeneous

discrete time Markov chain (DTMC) bXX ¼ f bXXk; k ¼
0; 1; 2; . . .g with the same state space and initial probability

distribution as X and transition probabilities

P ½ bXXnþ1 ¼ jj bXXn ¼ i� ¼ Pi;j ¼ �i;j=�;

i; j 2 �, i 6¼ j, P ½ bXXnþ1 ¼ ij bXXn ¼ i� ¼ Pi;i ¼ 1� �i=�, i 2 �.

Let Q ¼ fQðtÞ; t � 0g be a Poisson process with arrival rate

� independent of bXX. Then, X ¼ fXðtÞ; t � 0g is probabil-

istically identical to f bXXQðtÞ; t � 0g. Next, we will review

typical implementations of the randomization method for

the computation of the ETRRðtÞ and EARRðtÞ measures.
We will start with the ETRRðtÞ measure. Using the facts

that X ¼ fXðtÞ; t � 0g and f bXXQðtÞ; t � 0g are probabilisti-

cally identical and that Q and bXX are independent, we can

express ETRRðtÞ in terms of the transient regime of bXX as

ETRRðtÞ ¼
X
i2�

riP ½XðtÞ ¼ i� ¼
X
i2�

riP ½ bXXQðtÞ ¼ i�

¼
X
i2�

ri
X1
n¼0

P ½ bXXn ¼ ijQðtÞ ¼ n�P ½QðtÞ ¼ n�

¼
X
i2�

ri
X1
n¼0

P ½ bXXn ¼ i�P ½QðtÞ ¼ n�

¼
X
i2�

ri
X1
n¼0

P ½ bXXn ¼ i� e��t ð�tÞ
n

n!

¼
X1
n¼0

dðnÞ e��t ð�tÞ
n

n!
;

ð1Þ

with dðnÞ ¼
P

i2� riP ½ bXXn ¼ i�. Denoting by qðnÞ ¼ ðP ½ bXXn ¼
i�Þi2� the probability distribution (column) vector of bXX at

step n, qðnÞ, n > 0 can be obtained from qð0Þ using

qðnþ 1ÞT ¼ qðnÞTP; ð2Þ

where P ¼ ðPi;jÞi;j2� is the transition probability matrix ofbXX and xT denotes the transpose of vector x. In a typical

implementation of the randomization method, an approx-

imate value for ETRRðtÞ, ETRRa
NðtÞ, is obtained by

truncating the infinite summation in (1) so that N steps

have to be given to bXX:

ETRRa
NðtÞ ¼

XN
n¼0

dðnÞe��t ð�tÞ
n

n!
;

using 0 � dðnÞ � rmax ¼ maxi2� ri, the truncation error is

bounded as

0 � ETRRðtÞ � ETRRa
NðtÞ � rmax

X1
n¼Nþ1

e��t ð�tÞ
n

n!
;

and, being " the requested absolute error, N is chosen using

N ¼ min m � 0 : rmax

X1
n¼mþ1

e��t ð�tÞ
n

n!
� "

( )
:

We consider next the EARRðtÞ measure. Noting that

EARRðtÞ ¼ E

Z t

0

rXð�Þ d�=t

� �
¼ 1

t

Z t

0

E½rXð�Þ�d�

¼ 1

t

Z t

0

ETRRð�Þ d�

and using (1) andZ t

0

e���ð��Þn=n! d� ¼ 1

�

X1
m¼nþ1

e��tð�tÞm=m!;

we can express EARRðtÞ in terms of the transient regime ofbXX as

EARRðtÞ ¼ 1

t

X1
n¼0

dðnÞ
Z t

0

e��� ð��Þ
n

n!
d�

¼ 1

�t

X1
n¼0

dðnÞ
X1

m¼nþ1

e��t ð�tÞ
m

m!
:

In a typical implementation of the randomization method,

an approximate value for EARRðtÞ, EARRa
NðtÞ, is obtained

by truncating both summatories in the following way,

which implies giving N steps to bXX:

EARRa
NðtÞ ¼

1

�t

XN
n¼0

dðnÞ
XNþ1

m¼nþ1

e��t ð�tÞ
m

m!

¼ 1

�t

XNþ1

n¼1

e��t ð�tÞ
n

n!

Xn�1

m¼0

dðmÞ;

using 0 � dðnÞ � rmax, the error is bounded as

0 � EARRðtÞ � EARRa
NðtÞ ¼

1

�t

X1
n¼Nþ2

e��t ð�tÞ
n

n!

Xn�1

m¼0

dðmÞ

� rmax

�t

X1
n¼Nþ2

ne��t ð�tÞ
n

n!
¼ rmax

X1
n¼Nþ1

e��t ð�tÞ
n

n!
;

and, " being the requested absolute error, N is chosen using

N ¼ min m � 0 : rmax

X1
n¼mþ1

e��t ð�tÞ
n

n!
� "

( )
:

Alternative implementations with slightly different trunca-

tions have also been proposed [12].
Stable and efficient computation of the Poisson prob-

abilities e���n=n! is a delicate issue and several approaches

have been proposed [3], [9], [15], [22]. Our implementations

of all randomization-based methods use the approach

described in [15, pp. 1028-1029] (see also [1]).
For large models, the computational cost of the rando-

mization method is roughly due to the N vector-matrix

multiplications (2). The truncation parameter N increases
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with �t and, for that reason, � is usually taken equal to
maxi2� �i. Using the well-known result (see, for instance,
[25, Theorem 3.3.5]) that QðtÞ has, for �t ! 1, an
asymptotic normal distribution with mean and variance
�t, it is easy to realize that, for large �t and " � 1, the
required N will be � �t and, if the model is large and stiff
(maxi2� �it is a practical measure of stiffness), the rando-
mization method will be expensive.

Several variants of the (standard) randomization method
have been proposed to improve its efficiency. Miller has
used selective randomization to solve reliability models
with detailed representation of error handling activities
[20]. The idea behind selective randomization [18] is to
randomize the model only in a subset of the state space.
Reibman and Trivedi [23] have proposed an approach
based on the multistep concept. The idea is to compute PM

explicitly, where M is the length of the multistep, and use
the recurrence qðnþMÞT ¼ qðnÞTPM to advance bXX faster
for steps which have negligible contributions to the
transient solution of X. Since, for large �t, the number of
qðnÞs with significant contributions is on the order of

ffiffiffiffiffiffi
�t

p
,

the multistep concept allows a significant reduction of the
required number of vector-matrix multiplications when �t
is large. However, when computing PM , significant fill-in
can occur if P is sparse. Adaptive uniformization [21] is a
method in which the randomization rate is adapted
depending on the states in which the randomized DTMC
can be at a given step. Numerical experiments have shown
that adaptive uniformization can be significantly faster than
standard randomization for short to medium mission times.
In addition, it can be used to solve models with infinite state
spaces and not uniformly bounded output rates. More
recently, the combination of adaptive and standard rando-
mization to obtain a method which outperforms both for
most models has been proposed [22]. A proposal to speed
up the randomization method for irreducible models is
steady-state detection [16]. A method based on steady-state
detection with error bounds has been developed [27].
Regenerative randomization [4], [5] is another recently
proposed randomization-based method. The method covers
models with a certain structure and requires the selection of
the so-called regenerative state. The performance of the
method depends on that selection. For a class of models,
class C’, including typical failure/repair models with
exponential failure and repair time distributions and repair
in every state with failed components, a natural selection for
the regenerative state exists and theoretical results are
available, assessing the performance of the method for that
natural selection in terms of visible model characteristics.
Bounding regenerative randomization [6] is a variant of
regenerative randomization which obtains bounds for
reliability-like measures. For a class of models, class C’’,
including typical reliability-like failure/repair models with
exponential failure and repair time distributions and repair
in every state with failed components, the method is
inexpensive and seems to provide tight bounds.

In this paper, we develop a new variant of the standard
randomization method for the computation of the ETRRðtÞ
and EARRðtÞ measures called randomization with quasista-
tionarity detection. The method exploits the existence of a

quasistationary distribution in the subset of transient states
of DTMCs with a certain structure, has the same good
properties as standard randomization (numerical stability
and well-controlled computation error), and can be much
more efficient. The rest of the paper is organized as follows:
Section2describes the classofmodels coveredby themethod,
reviews the theoretical results on which the method is based,
and gives a first approximation to the method for the
computation of the ETRRðtÞ meaasure without well-con-
trolled computation error. Section 3 develops and describes
the method in detail. Section 4 analyzes the performance of
themethod.We compare numerically the performance of the
method with that of standard randomization and regenera-
tive randomization for class C’ models and with that of
standard randomization for a model outside class C’ for
which regenerative randomization performs poorly. Finally,
Section 5 presents the conclusions. The supplement (which
can be found on the Computer Society Digital Library at
http://computer.org/tc/archives.htm) includes some
proofs and technical details.

2 PRELIMINARIES

Randomization with quasistationarity detection covers
finite CTMC models X ¼ fXðtÞ; t � 0g with state space
� ¼ S [ ff1; f2; . . . ; fAg, A � 1, where all states in S are
transient and reachable among them and the states fi are
absorbing. We also assume P ½Xð0Þ 2 S� > 0 and that all
states fi are reachable from S. The assumed class of CTMC
models have important applications. Thus, S could include
the operational states of a fault-tolerant system and entry
into the single absorbing state f1 could model system
failure; then, with a reward rate structure ri ¼ 0, i 2 S, and
rf1 ¼ 1, the ETRRðtÞ measure would be the unreliability of
the system at time t. Bounding models are also covered.
Those models are useful when an exact model would have
an unmanageable size. A lower bounding unreliability
model would have two absorbing states, f1, f2, S would
include a strict subset of the operational states, entry into f1
would model system failure from a state in S, and entry into
f2 would model entry from S into an operational state
outside S; the model would have an initial probability
distribution with same initial probabilities in S as the
“exact” model, an initial probability in f1 equal to the
probability that initially the system has failed, and an initial
probability in f2 equal to the probability that initially the
system is in an operational state outside S; then, with a
reward rate structure ri ¼ 0, i 2 S, rf1 ¼ 1, and rf2 ¼ 0, the
ETRRðtÞ measure would be a lower bound for the
unreliability of the system at time t. An upper bounding
unreliability model would have a single absorbing state, f1,
S would include a strict subset of the operational states, and
entry into f1 would model either system failure from a state
in S or entry from S into an operational state outside S; the
model would have an initial probability distribution with
initial probabilities in S as the “exact” model and initial
probability in f1 equal to the probability that, initially, the
system either has failed or is in an operational state outside
S; then, with a reward rate structure ri ¼ 0, i 2 S, rf1 ¼ 1,
the ETRRðtÞ measure would be an upper bound for the
unreliability of the system at time t. Bounding models with
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more general reward rate structures allow the computation
of bounds for the expected transient reward rate and the
expected averaged reward rate measures of models of
unmanageable size. In a lower bounding model of that type,
S would include a strict subset of the state space of the exact
model and entry into a single absorbing state f1 would
model exit from S; the model would have an initial
probability distribution with initial probabilities in S as
the “exact” model and an initial probability in f1 equal to
the probability that, initially, the system is in a state outside
S; then, assigning to the states in S the same reward rates as
in the exact model and assigning to f1 a lower bound for the
reward rate of any state of the exact model, the ETRRðtÞ
and EARRðtÞ measures of the bounding model would
lower bound the corresponding measures of the exact
model. In an upper bounding model, the only difference
would be that the reward rate assigned to f1 would have to
upper bound the reward rate of any state of the exact model
and the ETRRðtÞ and EARRðtÞ measures of the bounding
model would upper bound the corresponding measures of
the exact model.

As an illustration of the CTMC models covered by
randomization with quasistationarity detection, Fig. 1 gives
a small unreliability model corresponding to a repairable
fault-tolerant system using the NMR redundancy technique
with five processing modules and an imperfect voter in
which processing modules fail in “hard” mode with rate �H

and in “soft” mode with rate �S and the voter fails with rate
�V. It is assumed that the system fails when either the voter
fails or a processing module fails when only three
processing modules are unfailed and that, initially, no
component is failed. Processing modules in hard failure are
repaired by a single repairman with rate �H and processing
modules in soft failure are repaired by an unlimited number
of repairmen with rate �S. With a reward rate structure
ri ¼ 0, i 2 f1; 2; 3; 4; 5; 6g and rf1 ¼ 1, the ETRRðtÞ measure
is the unreliability of the fault-tolerant system at time t. The
model belongs to the class covered by randomization with
quasistationarity detection with S ¼ f1; 2; 3; 4; 5; 6g.

The randomization with quasistationarity detection
method exploits the following result (see, for instance, [14,
Section 2.8]).

Theorem 1. LetQ be the restriction toB�B, whereB is the finite
subset of transient states of aDTMC Y ¼ fYn;n ¼ 0; 1; 2; . . .g,
of the transition probability matrix of Y , assume that Q is
regular,1 let �� be the (nonnull) initial probability distribution
vector of Y restricted to B, and let 1 be a jBj-vector with all its
components equal to 1. Then,

lim
n!1

��TQn

��TQn1
¼ uT ;

where u is the normalized (uT1 ¼ 1) Perron-Frobenius left
eigenvector of Q.

Theorem 1 has a probabilistic interpretation: ��TQn is the
probability distribution row vector of Y in the subset of
transient states B and, then, ��TQn=ð��TQn1Þ is the condi-
tional probability distribution row vector of Y at step n in
the subset of transient states B. The theorem states that that
conditional probability distribution has a limit which is
independent of the initial probability distribution of Y in B

and is equal to the normalized Perron-Frobenius left
eigenvector, with all its components strictly positive, of
the restriction of the transition probability matrix of Y to
B�B. The limit is called quasistationary distribution
because, as is easy to prove from uTQ ¼ �uT and
uT1 ¼ 1, � being the spectral radius of Q (eigenvalue
associated with u),

uTQ

uTQ1
¼ uT ;

which implies that, if Y has, at some step, a conditional
probability distribution in B equal to u, it will have that
conditional probability distribution in B at successive steps.
An immediate consequence of Theorem 1 is the following
result:

Corollary 1. LetQ be the restriction toB�B, whereB is the finite
subset of transient states of aDTMC Y ¼ fYn;n ¼ 0; 1; 2; . . .g,
of the transition probability matrix of Y , assume that Q is
regular, let �� be the (nonnull) initial probability distribution
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Fig. 1. Small unreliability model corresponding to a repairable fault-tolerant system using the NMR redundancy technique and having an imperfect

voter.

1. A nonnegative square matrix A is said to be regular (primitive)
if all elements of Ak are > 0 for some positive integer k (and, therefore,
for all sufficiently large k).



vector of Y restricted to B, let 1 be a jBj-vector with all its

components equal to 1, and let z ¼ ðziÞi2B be an arbitrary

jBj-vector. Then,

lim
n!1

��TQnz

��TQn1
¼ uTz;

where u is the normalized (uT1 ¼ 1) Perron-Frobenius left

eigenvector of Q.

Corollary 1 also has a probabilistic interpretation:
��TQnz=ð��TQn1Þ is the expected value of zYn conditioned
to Yn 2 B and, then, Corollary 1 states that that expected
value has a limit which is independent of the initial
probability distribution of Y in B. Corollary 1 is the basis
of the randomization with quasistationarity detection
method. We will give, in the remainder of this section, a
first approximation to the method for the ETRRðtÞmeasure
in which the error is not well-controlled.

Let �i;j, i 2 �, j 2 �� fig, and �i denote, respectively, the

transition rates and output rates of X and let

�i ¼ P ½Xð0Þ ¼ i�, i 2 �. Let bXX be the randomized DTMC of

Xunder a randomization rate� slightly larger thanmaxi2S �i,

s ay � ¼ ð1þ �Þmaxi2S �i, � ¼ 10�4. Le t P ¼ ðPi;jÞi;j2�,
Pi;j ¼ �i;j=�, i; j 2 �, i 6¼ j, Pi;i ¼ 1� �i=�, i 2 �, be the

transition probability matrix of bXX. Let PS;S ¼ ðPi;jÞi;j2S and

let ��S ¼ ð�iÞi2S . Also, given B � �, let Pi;B ¼
P

j2B Pi;j and

�B ¼
P

i2B �i. Since the states in S are reachable among

them in bXX (because they are reachable among them in X),

PS;S is irreducible. This, together with Pi;i > 0, i 2 S,

implies that PS;S is regular. Then, letting 1 be an

jSj-vector with all its components equal to 1, since S is the

subset of transient states of bXX, according to Corollary 1, for

any jSj-vector z ¼ ðzjÞj2S ,

zðnÞ ¼ E½zbXXn

j bXXn 2 S� ¼
��T
SP

n
S;Sz

��T
SP

n
S;S1

has limit for n ! 1. Let

r ¼ ðrjÞj2S;
w ¼ ðwjÞj2S ¼ ðPj;SÞj2S;
vi ¼ ðvijÞj2S ¼ ðPj;fiÞj2S; 1 � i � A;

qjðnÞ ¼ P ½ bXXn ¼ j�; j 2 �;

and let

rðnÞ ¼ E½rbXXn

j bXXn 2 S� ¼
��T
SP

n
S;Sr

��T
SP

n
S;S1

¼
P

j2S qjðnÞrjP
j2S qjðnÞ

; ð3Þ

wðnÞ ¼ E½wbXXn

j bXXn 2 S� ¼
��T
SP

n
S;Sw

��T
SP

n
S;S1

¼
P

j2S qjðnÞPj;SP
j2S qjðnÞ

; ð4Þ

viðnÞ ¼ E½vibXXn

j bXXn 2 S� ¼
��T
SP

n
S;Sv

i

��T
SP

n
S;S1

¼
P

j2S qjðnÞPj;fiP
j2S qjðnÞ

;

1 � i � A:

ð5Þ

Then, the sequences rðnÞ, wðnÞ, and viðnÞ, 1 � i � A are

convergent. The following proposition gives a formulation

of the sequence dðnÞ ¼
P

j2� qjðnÞrj, n ¼ 0; 1; 2; . . . in terms

of the sequences rðnÞ, wðnÞ, and viðnÞ, 1 � i � A,

n ¼ 0; 1; 2; . . . .

Proposition 1. For n � 0,

dðnÞ ¼ �ðnÞrðnÞ þ
XA
i¼1

�firfi þ
Xn�1

m¼0

�ðmÞ
XA
i¼1

viðmÞrfi

with

�ðnÞ ¼ �S

Yn�1

m¼0

wðmÞ:

Proof. Let bXXl:mc denote the predicate which is true when bXXk

satisfies condition c for all k, l � k � m. Since fi is

absorbing and, form � 0, bXXm 2 S if and only if bXX0:m 2 S:

qfiðnÞ ¼ P ½ bXXn ¼ fi� ¼ P ½ bXX0 ¼ fi�

þ
Xn�1

m¼0

P ½ bXX0:m 2 S ^ bXXmþ1 ¼ fi�

¼ P ½ bXX0 ¼ fi� þ
Xn�1

m¼0

P ½ bXXm 2 S ^ bXXmþ1 ¼ fi�

¼ �fi þ
Xn�1

m¼0

X
j2S

qjðmÞPj;fi :

ð6Þ

Define �ðnÞ ¼
P

j2S qjðnÞ. From (6),

qfiðnÞ ¼ �fi þ
Xn�1

m¼0

X
k2S

qkðmÞ
P

j2S qjðmÞPj;fiP
j2S qjðmÞ

¼ �fi þ
Xn�1

m¼0

�ðmÞviðmÞ:

Then,

dðnÞ ¼
X
j2S

qjðnÞrj þ
XA
i¼1

qfiðnÞrfi

¼
X
k2S

qkðnÞ
P

j2S qjðnÞrjP
j2S qjðnÞ

þ
XA
i¼1

�firfi þ
Xn�1

m¼0

�ðmÞ
XA
i¼1

viðmÞrfi

¼ �ðnÞrðnÞ þ
XA
i¼1

�firfi þ
Xn�1

m¼0

�ðmÞ
XA
i¼1

viðmÞrfi :

On the other hand, since bXXn 2 S if and only if bXX0:n 2 S:

�ðnÞ ¼
X
j2S

qjðnÞ ¼ P ½ bXXn 2 S� ¼ P ½ bXX0:n 2 S�

¼ P ½ bXX0 2 S�
Yn�1

m¼0

P ½ bXXmþ1 2 Sj bXX0:m 2 S�

¼ P ½ bXX0 2 S�
Yn�1

m¼0

P ½ bXXmþ1 2 Sj bXXm 2 S�
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¼ �S

Yn�1

m¼0

P ½ bXXm 2 S ^ bXXmþ1 2 S�
P ½ bXXm 2 S�

¼ �S

Yn�1

m¼0

P
j2S qjðmÞPj;SP

j2S qjðmÞ

¼ �S

Yn�1

m¼0

wðmÞ:

ut

The formulation of the sequence dðnÞ, n ¼ 0; 1; 2; . . . , in

terms of the sequences rðnÞ, wðnÞ, and viðnÞ, 1 � i � A,

n ¼ 0; 1; 2; . . . , given by Proposition 1, together with

ETRRðtÞ ¼
P1

n¼0 dðnÞe��tð�tÞn=n! (see Section 1) gives

the formulation of ETRRðtÞ in terms of the sequences

rðnÞ, wðnÞ, and viðnÞ, 1 � i � A, n ¼ 0; 1; 2; . . . , on which

the randomization with quasistationarity detection method

for the ETRRðtÞ measure is based. Using the fact that

those sequences are convergent, we could obtain an

approximate value for ETRRðtÞ by computing the

sequences up to a value K of n for which the sequences

“stabilize” with high accuracy and using the formulation

with the values of the convergent sequences for n > K

substituted by the last computed element of the sequences.

Those sequences could be computed from qðnÞ ¼ ðqjðnÞÞj2S
using rðnÞ ¼ qðnÞTr=ðqðnÞT1Þ, wðnÞ ¼ qðnÞTw=ðqðnÞT1Þ,
and viðnÞ ¼ qðnÞTvi=ðqðnÞT1Þ, 1 � i � A, where qðnÞ, 0 �
n � K could be computed recursively using qð0Þ ¼ ��S and

qðkþ 1ÞT ¼ qðkÞTPS;S , 0 � k � K � 1. However , that

approach would not upper bound the error and, therefore,

the resulting computational scheme would not have the

same quality as standard randomization.

3 THE METHOD

In this section, we develop and describe the randomiza-

tion with quasistationarity detection method for the

measures ETRRðtÞ and EARRðtÞ. We will assume t > 0

(for t ¼ 0, ETRRðtÞ ¼ EARRðtÞ ¼ E½rXð0Þ� ¼
P

i2� �iri). In

the method, the sequences rðnÞ, wðnÞ, and viðnÞ, 1 � i � A,

are computed up to some index n ¼ K and bounds for the

ETRRðtÞ and EARRðtÞ measures are computed which

become monotonically arbitrarily tight as K increases.

Then, by choosing a large enough K, the measures can be

computed with arbitrary accuracy, ignoring, of course,

roundoff errors, which should have a very small relative

value since the method has excellent numerical stability. We

start by deriving bounds for the elements of a sequence

zðnÞ ¼ ��T
SP

n
S;Sz=ð��T

SP
n
S;S1Þ with n greater than some index

K � 0, where z ¼ ðzjÞj2S is an arbitrary jSj-vector. We will

use the following lemma.

Lemma 1. Let a be an n-vector with nonnegative components

and some strictly positive component, let b be an arbitrary

n-vector, and let c be an n-vector with strictly positive

components. Then,

min
1�j�n

bj
cj

� aTb

aTc
� max

1�j�n

bj
cj
:

Proof. See the Supplement (which can be found on the
Computer Society Digital Library at http://computer.
org/tc/archives.htm). tu

Let

oðnÞ ¼ ðojðnÞÞj2S ¼ Pn
S;S1; ð7Þ

where 1 is an jSj-vector with all components equal to 1. The
bounds are given by the following theorem.

Theorem 2. Le t zðnÞ ¼ ðzjðnÞÞj2S ¼ Pn
S;Sz and l e t

zðnÞ ¼ ��T
SPS;Sz=ð��T

SP
n
S;S1Þ, where z ¼ ðzjÞj2S is an

arbitrary jSj-vector. Then, for n > K � 0,

min
j2S

zjðKÞ=ojðKÞ � zðnÞ � max
j2S

zjðKÞ=ojðKÞ:

Proof. For n > K,

zðnÞ ¼
��T
SP

n
S;Sz

��T
SP

n
S;S1

¼
��T
SP

n�K
S;S PK

S;Sz

��T
SP

n�K
S;S PK

S;S1
¼

��T
SP

n�K
S;S zðKÞ

��T
SP

n�K
S;S oðKÞ

:

But, since PS;S is irreducible, each row of PK
S;S has at least

some nonnull element and, therefore, every component
of oðKÞ ¼ PK

S;S1 is strictly positive. Also, since each row
of Pn�K

S;S has at least some nonnull element and at least
some �j, j 2 S is > 0, the row vector ��T

SP
n�K
S;S has at least

some strictly positive element and, then, the result
follows from Lemma 1 with aT ¼ ��T

SP
n�K
S;S , b ¼ zðKÞ,

and c ¼ oðKÞ. tu
The following theorem establishes that the bounds given

by Theorem 2 become monotonically arbitrarily tight as
K ! 1.

Theorem 3. Let u be the Perron-Frobenius left eigenvector of
PS;S . Let zðnÞ ¼ ðzjðnÞÞj2S ¼ Pn

S;Sz, where z ¼ ðzjÞj2S is an
arbitrary jSj-vector. Let K � 0. Then,

1.

lim
K!1

min
j2S

zjðKÞ
ojðKÞ ¼ lim

K!1
max
j2S

zjðKÞ
ojðKÞ ¼ uTz:

2. For K0 > K,

min
j2S

zjðKÞ
ojðKÞ � min

j2S

zjðK0Þ
ojðK0Þ

� max
j2S

zjðK0Þ
ojðK0Þ � max

j2S

zjðKÞ
ojðKÞ :

Proof. Part 1. Let ej denote an jSj-vector with component
associated with j 2 S equal to 1 and all other components
equal to 0.We have zjðKÞ ¼ eTj zðKÞ, ojðKÞ ¼ eTj oðKÞ, and

zjðKÞ
ojðKÞ ¼

eTj zðKÞ
eTj oðKÞ ¼

eTj P
K
S;Sz

eTj P
K
S;S1

:

Using Corollary 1 with �� ¼ ej and Q ¼ PS;S ,

lim
K!1

zjðKÞ
ojðKÞ ¼ uTz;

which implies the result.
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Part 2. Let i 2 S. Using the same notation as in the
proof of part 1, we have

ziðK0Þ
oiðK0Þ ¼

eTi zðK0Þ
eTi oðK0Þ ¼

eTi P
K0

S;Sz

eTi P
K0
S;S1

¼
eTi P

K0�K
S;S PK

S;Sz

eTi P
K0�K
S;S PK

S;S1
¼

eTi P
K0�K
S;S zðKÞ

eTi P
K0�K
S;S oðKÞ

;

which, every component of oðKÞ being strictly positive,

(see the proof of Theorem 2) and having the row vector

eTi P
K0�K
S;S at least some strictly positive element, which

can be argued as it was argued in the proof of Theorem 2

that result for the row vector ��T
SP

n�K
S;S , implies, by

Lemma 1,

min
j2S

zjðKÞ
ojðKÞ �

ziðK0Þ
oiðK0Þ � max

j2S

zjðKÞ
ojðKÞ ;

which implies the result. tu
Let

rðnÞ ¼ ðrjðnÞÞj2S ¼ Pn
S;Sr; ð8Þ

wðnÞ ¼ ðwjðnÞÞj2S ¼ Pn
S;Sw; ð9Þ

and

viðnÞ ¼ ðvijðnÞÞj2S ¼ Pn
S;Sv

i; 1 � i � A: ð10Þ

Using Theorem 2,

rlbðKÞ ¼ min
j2S

rjðKÞ
ojðKÞ � rðnÞ � max

j2S

rjðKÞ
ojðKÞ ¼ rubðKÞ;

n > K � 0;

ð11Þ

wlbðKÞ ¼ min
j2S

wjðKÞ
ojðKÞ � wðnÞ � max

j2S

wjðKÞ
ojðKÞ ¼ wubðKÞ;

n > K � 0;

ð12Þ

vilbðKÞ ¼ min
j2S

vijðKÞ
ojðKÞ � viðnÞ � max

j2S

vijðKÞ
ojðKÞ ¼ viubðKÞ;

n > K � 0; 1 � i � A:

ð13Þ

Let K � 0. Bounds for dðnÞ, n > K, can be obtained from

wðmÞ and viðmÞ, 1 � i � A, m ¼ 0; 1; 2; . . . ; K, and the

bounds rlbðKÞ, rubðKÞ, wlbðKÞ, wubðKÞ, vilbðKÞ, viubðKÞ, 1 �
i � A for the elements of the sequences rðnÞ, wðnÞ, and

viðnÞ, 1 � i � A, with n > K given by (11)-(13) using the

formulation for dðnÞ given by Proposition 1. The bounds are

given by the following proposition, where Ic denotes the

indicator function returning the value 1 if condition c is

satisfied and the value 0 otherwise. Note that Pi;i > 0, i 2 S

implies Pi;S > 0. In addition, since all states in S are

transient in bXX, Pi;S < 1 for some state i 2 S. Then, wð0Þ ¼
w ¼ ðPi;SÞi2S has all components > 0 and � 1 and some

component < 1. This implies 0 < wlbð0Þ < 1 and 0 <

wubð0Þ � 1 and, using Theorem 3, 0 < wlbðKÞ < 1 and 0 <

wubðKÞ � 1 for all K � 0.

Proposition 2. For n > K � 0, dKlbðnÞ � dðnÞ � dKubðnÞ, where

dKlbðnÞ ¼
XA
i¼1

�firfi þ
XK
m¼0

�ðmÞ
XA
i¼1

viðmÞrfi

þ �ðK þ 1ÞrlbðKÞwlbðKÞn�K�1

þ �ðK þ 1Þ
XA
i¼1

vilbðKÞrfi

 !
1� wlbðKÞn�K�1

1� wlbðKÞ ;

dKubðnÞ ¼
XA
i¼1

�firfi þ
XK
m¼0

�ðmÞ
XA
i¼1

viðmÞrfi

þ �ðK þ 1ÞrubðKÞwubðKÞn�K�1

þ �ðK þ 1Þ
XA
i¼1

viubðKÞrfi

 !

IwubðKÞ< 1
1� wubðKÞn�K�1

1� wubðKÞ þ IwubðKÞ¼1ðn�K � 1Þ
 !

;

�ðmÞ ¼ �S

Ym�1

l¼0

wðlÞ;

and rlbðKÞ, rubðKÞ, wlbðKÞ, wubðKÞ and vilbðKÞ, viubðKÞ,
1 � i � A, are given by (11)-(13).

Proof. dðnÞ (see Proposition 1) is increasing with rðnÞ, wðmÞ,
0 � m � n� 1, and viðmÞ, 0 � m � n� 1, 1 � i � A.

Then, if, for n > K � 0, we replace rðnÞ, wðmÞ,
K þ 1 � m � n� 1, a n d viðmÞ, K þ 1 � m � n� 1,

1 � i � A, by, respectively, rubðKÞ, wubðKÞ, and viubðKÞ,
1 � i � A, we obtain an upper bound for dðnÞ. Therefore,
for n > K � 0, assuming wubðKÞ < 1:

dðnÞ � �S

YK
m¼0

wðmÞ
 !

wubðKÞn�K�1rubðKÞ þ
XA
i¼1

�firfi

þ
XK
m¼0

�S

Ym�1

l¼0

wðlÞ
 !XA

i¼1

viðmÞrfi

þ
Xn�1

m¼Kþ1

�S

YK
l¼0

wðlÞ
 !

wubðKÞm�K�1
XA
i¼1

viubðKÞrfi

¼ �ðK þ 1ÞwubðKÞn�K�1rubðKÞ þ
XA
i¼1

�firfi

þ
XK
m¼0

�ðmÞ
XA
i¼1

viðmÞrfi

þ
Xn�1

m¼Kþ1

�ðK þ 1ÞwubðKÞm�K�1
XA
i¼1

viubðKÞrfi

¼
XA
i¼1

�firfi þ
XK
m¼0

�ðmÞ
XA
i¼1

viðmÞrfi

þ �ðK þ 1ÞrubðKÞwubðKÞn�K�1

þ �ðK þ 1Þ
XA
i¼1

viubðKÞrfi

 !
1� wubðKÞn�K�1

1� wubðKÞ ¼ dKubðnÞ:

The result dðnÞ � dKlbðnÞ for n > K � 0 can be proven

similarly (note that wlbðkÞ < 1). It remains to find the

upper bound for dðnÞ, n > K � 0, for the case

wubðKÞ ¼ 1. The only difference in that case is that the

last term of the expression of the upper bound has to be

replaced by
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�ðK þ 1Þ
XA
i¼1

viubðKÞrfi

 !
ðn�K � 1Þ:

ut

Bounds for ETRRðtÞ ¼
P1

n¼0 dðnÞe��tð�tÞn=n! can be

obtained using:

ETRRK
lb ¼

XK
n¼0

dðnÞ e��t ð�tÞ
n

n!
þ
X1

n¼Kþ1

dKlbðnÞ e��t ð�tÞ
n

n!

and

ETRRK
ub ¼

XK
n¼0

dðnÞ e��t ð�tÞ
n

n!
þ
X1

n¼Kþ1

dKubðnÞ e��t ð�tÞ
n

n!

and the bounds for dðnÞ, n > K � 0, given by Proposition 2.

The result is given by the following theorem.

Theorem 4. For K � 0,

ETRRK
lbðtÞ � ETRRðtÞ � ETRRK

ubðtÞ;

where

ETRRK
lbðtÞ ¼

XK
n¼0

dðnÞe��t ð�tÞ
n

n!
þBðKÞ

X1
n¼Kþ1

e��t ð�tÞ
n

n!

þ ClbðKÞ e�ð1�wlbðKÞÞ�t
X1

n¼Kþ1

e�wlbðKÞ�t ðwlbðKÞ�tÞn

n!

þDlbðKÞ
X1

n¼Kþ2

1� wlbðKÞn�K�1
� �

e��t ð�tÞ
n

n!
;

ETRRK
ubðtÞ ¼

XK
n¼0

dðnÞe��t ð�tÞ
n

n!
þBðKÞ

X1
n¼Kþ1

e��t ð�tÞ
n

n!

þ CubðKÞ e�ð1�wubðKÞÞ�t
X1

n¼Kþ1

e�wubðKÞ�t ðwubðKÞ�tÞn

n!

þ IwubðKÞ< 1DubðKÞ
X1

n¼Kþ2

1� wubðKÞn�K�1
� �

e��t ð�tÞ
n

n!

þ IwubðKÞ¼1EubðKÞ
X1

n¼Kþ2

ðn�K � 1Þe��t ð�tÞ
n

n!
;

dðnÞ ¼ �ðnÞrðnÞ þ
XA
i¼1

�firfi þ
Xn�1

m¼0

�ðmÞ
XA
i¼1

viðmÞrfi ;

BðKÞ ¼
XA
i¼1

�firfi þ
XK
m¼0

�ðmÞ
XA
i¼1

viðmÞrfi ;

ClbðKÞ ¼ �ðK þ 1ÞrlbðKÞ
wlbðKÞKþ1

;

CubðKÞ ¼ �ðK þ 1ÞrubðKÞ
wubðKÞKþ1

;

DlbðKÞ ¼ �ðK þ 1Þ
PA

i¼1 v
i
lbðKÞrfi

1� wlbðKÞ ;

DubðKÞ ¼ �ðK þ 1Þ
PA

i¼1 v
i
ubðKÞrfi

1� wubðKÞ ;

EubðKÞ ¼ �ðK þ 1Þ
XA
i¼1

viubðKÞrfi ;

�ðnÞ ¼ �S

Yn�1

m¼0

wðmÞ;

and rlbðKÞ, rubðKÞ, wlbðKÞ, wubðKÞ, and vilbðKÞ, viubðKÞ,

1 � i � A, are given by (11)-(13).

Proof. See the Supplement (which can be found on the

Computer Society Digital Library at http://computer.

org/tc/archives.htm). tu

Bounds for EARRðtÞ ¼ ð1=tÞ
R t
0 ETRRð�Þ d� can be ob-

tained using

EARRK
lbðtÞ ¼

1

t

Z t

0

ETRRK
lbð�Þ d�

and

EARRK
ubðtÞ ¼

1

t

Z t

0

ETRRK
ubð�Þ d�

and the bounds for ETRRðtÞ given by Theorem 4. The

result is given by the following theorem.

Theorem 5. For K � 0,

EARRK
lbðtÞ � EARRðtÞ � EARRK

ubðtÞ;

where

EARRK
lbðtÞ ¼

1

�t

XKþ1

n¼1

Xn�1

m¼0

dðmÞ
 !

e��t ð�tÞ
n

n!

þ 1

�t

XK
n¼0

dðnÞ
 ! X1

n¼Kþ2

e��t ð�tÞ
n

n!

þBðKÞ
�t

X1
n¼Kþ2

ðn�K � 1Þe��t ð�tÞ
n

n!

þ ClbðKÞ
�t

wlbðKÞKþ1

1� wlbðKÞ
X1

n¼Kþ2

1� wlbðKÞn�K�1
� �

e��t ð�tÞ
n

n!

þDlbðKÞ
�t

X1
n¼Kþ3

Xn�1

m¼Kþ2

1� wlbðKÞm�K�1
� � !

e��t ð�tÞ
n

n!
;
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EARRK
ubðtÞ ¼

1

�t

XKþ1

n¼1

Xn�1

m¼0

dðmÞ
 !

e��t ð�tÞ
n

n!

þ 1

�t

XK
n¼0

dðnÞ
 ! X1

n¼Kþ2

e��t ð�tÞ
n

n!

þBðKÞ
�t

X1
n¼Kþ2

ðn�K � 1Þe��t ð�tÞ
n

n!

þ IwubðKÞ<1
CubðKÞ

�t

wubðKÞKþ1

1� wubðKÞ
X1

n¼Kþ2

1� wubðKÞn�K�1
� �
e��t ð�tÞ

n

n!

þ IwubðKÞ¼1
CubðKÞ

�t

X1
n¼Kþ2

ðn�K � 1Þe��t ð�tÞ
n

n!

þ IwubðKÞ<1
DubðKÞ

�t

X1
n¼Kþ3

Xn�1

m¼Kþ2

1� wubðKÞm�K�1
� � !

e��t ð�tÞ
n

n!

þ IwubðKÞ¼1
EubðKÞ

�t

X1
n¼Kþ3

ðn�K � 1Þðn�K � 2Þ
2

e��t ð�tÞ
n

n!
;

dðnÞ, BðKÞ, ClbðKÞ, CubðKÞ, DlbðKÞ, DubðKÞ, and EubðKÞ
being those defined in Theorem 4.

Proof. See the Supplement (which can be found on the
Computer Society Digital Library at http://computer.
org/tc/archives.htm). tu

The randomization with quasistationarity detection
method uses the bounds for ETRRðtÞ and EARRðtÞ given
by, respectively, Theorems 4 and 5. Combining (3)-(5) with
(7)-(10), it follows that rðnÞ, wðnÞ, viðnÞ, 1 � i � A,
0 � n � K, can be computed from the vectors oðnÞ, rðnÞ,
wðnÞ, viðnÞ, 1 � i � A, 0 � n � K, using:

rðnÞ ¼ ��T
SrðnÞ

��T
SoðnÞ

;

wðnÞ ¼ ��T
SwðnÞ

��T
SoðnÞ

;

viðnÞ ¼ ��T
Sv

iðnÞ
��T
SoðnÞ

; 1 � i � A;

rlbðKÞ, rubðKÞ, wlbðKÞ, wubðKÞ, vilbðKÞ, viubðKÞ, 1 � i � A,
can be computed from the vectors oðKÞ, rðKÞ, wðKÞ, viðKÞ,
1 � i � A, using (11)-(13); finally, the vectors oðnÞ, rðnÞ,
wðnÞ, viðnÞ, 1 � i � A, 0 � n � K, can be computed
recursively making matrix-vector multiplications, e.g.,
oðnÞ, 0 � n � K, can be computed using oð0Þ ¼ 1 and
oðkþ 1Þ ¼ PS;SoðkÞ, 0 � k � K � 1. The following theorem
ensures that, by choosing a large enoughK, the method will
be able to compute the measure with arbitrary accuracy,
ignoring, of course, roundoff errors. Consider, for instance,
the ETRRðtÞ measure. Then, " being an error control
parameter, K can be selected using

K ¼ min m � 0 : ETRRm
ubðtÞ � ETRRm

lbðtÞ � 2"
� �

;

and ETRRðtÞ can be estimated with absolute error � " by
ðETRRK

lbðtÞ þ ETRRK
ubðtÞÞ=2.

Theorem 6. The bounds ETRRK
lbðtÞ and ETRRK

ubðtÞ given by

Theorem 4 become monotonically arbitrarily tight as K ! 1
and the bounds EARRK

lbðtÞ and EARRK
ubðtÞ given by

Theorem 5 become monotonically arbitrarily tight as K ! 1.

Proof. From Theorem 3, part 2, rlbðKÞ, wlbðKÞ and vilbðKÞ,
1 � i � A, increase monotonically with K and rubðKÞ,
wubðKÞ, and viubðKÞ, 1 � i � A, decrease monotonically

with K. For n > K, we can write (see the proof of

Proposition 2):

dKubðnÞ ¼ �S

YK
m¼0

wðmÞ
 !

wubðKÞn�K�1rubðKÞ þ
XA
i¼1

�firfi

þ
XK
m¼0

�S

Ym�1

l¼0

wðlÞ
 !XA

i¼1

viðmÞrfi

þ
Xn�1

m¼Kþ1

�S

YK
l¼0

wðlÞ
 !

wubðKÞm�K�1
XA
i¼1

viubðKÞrfi :

Similarly, for n > K þ 1,

dKþ1
ub ðnÞ ¼ �S

YKþ1

m¼0

wðmÞ
 !

wubðK þ 1Þn�K�2rubðK þ 1Þ

þ
XA
i¼1

�firfi þ
XKþ1

m¼0

�S

Ym�1

l¼0

wðlÞ
 !XA

i¼1

viðmÞrfi

þ
Xn�1

m¼Kþ2

�S

YKþ1

l¼0

wðlÞ
 !

wubðK þ 1Þm�K�2
XA
i¼1

viubðK þ 1Þrfi

¼ �S

YKþ1

m¼0

wðmÞ
 !

wubðK þ 1Þn�K�2rubðK þ 1Þ þ
XA
i¼1

�firfi

þ
XK
m¼0

�S

Ym�1

l¼0

wðlÞ
 !XA

i¼1

viðmÞrfi

þ �S

YK
l¼0

wðlÞ
 !XA

i¼1

viðK þ 1Þrfi

þ
Xn�1

m¼Kþ2

�S

YKþ1

l¼0

wðlÞ
 !

wubðK þ 1Þm�K�2
XA
i¼1

viubðK þ 1Þrfi :

For n > K þ 1, wðK þ 1Þ � wubðKÞ,

wubðK þ 1Þ � wubðKÞ;

and rubðK þ 1Þ � rubðKÞ imply

�S

YKþ1

m¼0

wðmÞ
 !

wubðK þ 1Þn�K�2rubðK þ 1Þ

� �S

YK
m¼0

wðmÞ
 !

wubðKÞn�K�1rubðKÞ

and wðK þ 1Þ � wubðKÞ, wubðK þ 1Þ � wubðKÞ,

viðK þ 1Þ � viubðKÞ;

1 � i � A, and viubðK þ 1Þ � viubðKÞ, 1 � i � A, imply
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�S

YK
l¼0

wðlÞ
 !XA

i¼1

viðK þ 1Þrfi

þ
Xn�1

m¼Kþ2

�S

YKþ1

l¼0

wðlÞ
 !

wubðK þ 1Þm�K�2
XA
i¼1

viubðK þ 1Þrfi

�
Xn�1

m¼Kþ1

�S

YK
l¼0

wðlÞ
 !

wubðKÞm�K�1
XA
i¼1

viubðKÞrfi ;

and both inequalities imply, for n > K þ 1,

dKþ1
ub ðnÞ � dKubðnÞ:

Then, for n > K, dKubðnÞ decreases monotonically with K.
That, for n > K, dKlbðnÞ increases monotonically with K
can be proven similarly.

Since

ETRRK
ubðtÞ ¼

XK
n¼0

dðnÞ e��t ð�tÞ
n

n!
þ
X1

n¼Kþ1

dKubðnÞ e��t ð�tÞ
n

n!
;

ð14Þ

ETRRK
ubðtÞ � ETRRKþ1

ub ðtÞ

¼ ðdKubðK þ 1Þ � dðK þ 1ÞÞ e��t ð�tÞ
Kþ1

ðK þ 1Þ!

þ
X1

n¼Kþ2

ðdKubðnÞ � dKþ1
ub ðnÞÞ e��t ð�tÞ

n

n!
;

which, together with dKubðK þ 1Þ � dðK þ 1Þ and
dKþ1
ub ðnÞ � dKubðnÞ, implies that ETRRK

ubðtÞ decreases
monotonically with K. That ETRRK

lbðtÞ increases mono-
tonicallywithK canbeprovensimilarly.UsingTheorem3,
part 1, limK!1 wlbðKÞ ¼ limK!1 wubðKÞ ¼ uTw, u being
thePerron-Frobenius left eigenvector ofPS;S ,whichhas all
its components strictly positive. But, since the states in S
are transient in bXX,Pj;S < 1 for at least some j 2 S and, then,
uTw < uT1 ¼ 1. This implies that, for large enough K,
wlbðKÞ,wubðKÞwill be< 1.Using, then, the expressions for
dKlbðnÞ and dKubðnÞ given by Proposition 2, for large enough
K, dKlbðnÞ and dKubðnÞwill be uniformly bounded for n > K.
Using ETRRðtÞ ¼

P1
n¼0 dðnÞe��tð�tÞn=n! and (14) to-

gether with limK!1
P1

n¼Kþ1 e
��tð�tÞn=n! ¼ 0 and that

dKubðnÞ is, for large enough K, uniformly bounded, it is
easy to prove that limK!1 ETRRK

ubðtÞ ¼ ETRRðtÞ. That
limK!1 ETRRK

lbðtÞ ¼ ETRRðtÞ can be proven similarly,
completing the proof that ETRRK

lbðtÞ and ETRRK
ubðtÞ

become monotonically arbitrarily tight as K ! 1.
That EARRK

ubðtÞ decreases monotonically with K
follows from EARRK

ubðtÞ ¼ ð
R t
0 ETRRK

ubð�Þ d�Þ=t and
the fact that ETRRK

ubðtÞ decreases monotonically
with K. That EARRK

lbðtÞ increases monotonically
with K can be proven similarly. From (14) and
EARRK

ubðtÞ ¼ ð
R t
0 ETRRK

ubð�Þ d�Þ=t, we obtain

EARRK
ubðtÞ ¼

XK
n¼0

dðnÞ 1
t

Z t

0

e��� ð��Þ
n

n!
d�

þ
X1

n¼Kþ1

dKubðnÞ
1

t

Z t

0

e��� ð��Þ
n

n!
d�:

Using, then,

EARRðtÞ ¼
Z t

0

ETRRð�Þ d�
� 	

=t

¼
X1
n¼0

dðnÞ
Z t

0

e���ð��Þn=n!
� 	

=t

together with

lim
K!1

X1
n¼Kþ1

Z t

0

e��� ð��Þn=n! d�
� 	

=t

¼ lim
K!1

ð1=�Þ
X1

n¼Kþ1

X1
m¼nþ1

e��tð�tÞm=m!

¼ lim
K!1

ð1=�Þ
X1

n¼Kþ2

ðn�K � 1Þe��tð�tÞn=n! ¼ 0

and that dKubðnÞ is, for large enough K, uniformly

bounded, it is easy to prove that

lim
K!1

EARRK
ubðtÞ ¼ EARRðtÞ:

That limK!1 EARRK
lbðtÞ ¼ EARRðtÞ can be proven

similarly, completing the proof that EARRK
lbðtÞ and

EARRK
ubðtÞ become monotonically arbitrarily tight as

K ! 1. tu
Computing the factors 1� wlbðKÞ, 1� wubðKÞ,

1� wlbðKÞn, and 1� wubðKÞn, n > 1 involved in the expres-

sions for the bounds for ETRRðtÞ and EARRðtÞ given by,

respectively, Theorems 4 and 5 in the trivial way will be

numerically unstable when wlbðKÞ and wubðKÞ are very

close to 1. The problem can be solved as follows: From

wþ
PA

i¼1 v
i ¼ ðPj;S þ

PA
i¼1 Pj;fiÞj2S ¼ 1,

Pn
S;Swþ

XA
i¼1

Pn
S;Sv

i ¼ Pn
S;S1

and (7), (9), (10)

wðnÞ þ
XA
i¼1

viðnÞ ¼ oðnÞ: ð15Þ

Using (15), the following numerically stable expressions for

1� wlbðkÞ and 1� wubðKÞ can be obtained:

1� wlbðKÞ ¼ 1�min
j2S

wjðKÞ
ojðKÞ ¼ max

j2S

ojðKÞ � wjðKÞ
ojðKÞ

¼ max
j2S

PA
i¼1 v

i
jðKÞ

ojðKÞ ;

ð16Þ

1� wubðKÞ ¼ 1�max
j2S

wjðKÞ
ojðKÞ ¼ min

j2S

ojðKÞ � wjðKÞ
ojðKÞ

¼ min
j2S

PA
i¼1 v

i
jðKÞ

ojðKÞ :

ð17Þ

The factors 1� wlbðKÞn and 1� wubðKÞn, n > 1, can then be

computed with numerical stability from, respectively,

wlbðKÞ, 1� wlbðKÞ and wubðKÞ, 1� wubðKÞ using the follow-

ing proposition and 1� wubðKÞn ¼ 0 for 1� wubðKÞ ¼ 0.

Proposition 3. Let fðxÞ ¼ 1� xn, n > 1. Then, assuming

that both x and 1� x are known with high accuracy,
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fðxÞ, 0 < x < 1 can be computed with high accuracy in the

following way:

1. for nð1� xÞ < 0:1, using as many terms as required of
the alternating decreasing series

fðxÞ ¼
Xn
k¼1

ð�1Þkþ1 n

k

� �
ð1� xÞk;

2. for nð1� xÞ � 0:1, using fðxÞ ¼ 1� xn.

Proof. See the Supplement (which can be found on the

Computer Society Digital Library at http://computer.

org/tc/archives.htm). tu

Vectors oðnÞ and wðnÞ are related. Using

PS;S1 ¼ ðPj;SÞj2S ¼ w, for n � 0, we obtain (7), (9):

oðnþ 1Þ ¼ Pnþ1
S;S 1 ¼ Pn

S;SPS;S1 ¼ Pn
S;Sw ¼ wðnÞ: ð18Þ

Equation (18) can be used to avoid the computation of oðnÞ,
1 � n � K.

Efficient and stable computation of the infinite summa-

tories of the form
P1

n¼M !ðnÞe���n=n! involved in the

expressions for the bounds for ETRRðtÞ and EARRðtÞ
given by, respectively, Theorems 4 and 5 is a delicate issue.

The method uses the procedures described in the Supple-

ment, with implicit use of the previously described

numerically stable ways of computing 1� wlbðKÞ,
1� wubðKÞ, 1� wlbðKÞn, and 1� wubðKÞn, n > 1. The

procedures compute, in a numerically stable way, the

summatories with relative error < 	, 	 being the “epsilon”

constant of the computer (smallest floating-point number

x > 0 such that 1þ x yields a result different from 1) and

exploit the fact that, for large � and M < �, only the terms

!ðnÞe���n=n! within a few
ffiffiffi
�

p
apart from � can have

significant contributions to the summatory. However, even

using those procedures, computation of the expressions

which give the bounds for ETRRðtÞ and EARRðtÞ for K ¼
0; 1; 2; . . . until they become tight enough introduces an

overhead which can be relatively substantial when the

model is not very large. To reduce that overhead, the

method uses a lookahead approach based on the assump-

tion that, for large K, the band bðKÞ defined by the bounds

is � A
K , A > 0, 0 < 
 < 1.2 With the “K” parameter equal

to K þ 1, the attenuation parameter 
 can be estimated from

bðKÞ and bðK þ 1Þ by 
Kþ1 ¼ bðK þ 1Þ=bðKÞ. From 
Kþ1

and bðK þ 1Þ the value by which the “K” parameter will

have to be increased beyond K þ 1 to have an error � " can

be estimated by

�KKþ1 ¼
logð2"Þ � logðbðK þ 1ÞÞ

logð
Kþ1Þ
:

The same estimation can be made for the “K” parameter

one unit greater, yielding an estimate for the value by which

the “K” parameter will have to be increased beyond K þ 2

�KKþ2 ¼
logð2"Þ � logðbðK þ 2ÞÞ

logð
Kþ2Þ
:

The lookahead approach consists of, if �KKþ1 � 1 and
�KKþ2 are sufficiently close, increasing the “K” parameter
beyond K þ 2 up to K0 ¼ K þ 2þminfb�KKþ2=2c; 100g
before computing the bounds for the measure again, where
the constant 100 limits the extent of the lookahead.

To clarify, Fig. 2 gives a C-like algorithmic description of
the randomization with quasistationarity detection method
for the measure ETRRðtÞ. The algorithmic description has,
as inputs, the CTMC X, the subset of transient states S, the
number of absorbing states A, the absorbing states fi,
1 � i � A, the reward rate structure ri, i 2 �, the initial
probability distribution vector �� ¼ ð�iÞi2�, the error control
parameter ", the number of time points n at which the
measure has to be computed, and the time points
t1; t2; . . . ; tn > 0, and, as outputs, estimates gETRRETRRðtiÞ, 1 �
i � n for the measure at the required time points ti, 1 � i �
n with absolute error � ". It is assumed that the rewarded
CTMC has the required properties, which are easy to check.
In the description, 1 denotes an jSj-vector with all its
components equal to 1. The description makes explicit the
use of (18) to avoid the computation of the vectors oðnÞ,
1 � n � K, and the numerically stable computation of 1�
wlbðKÞ and 1� wubðKÞ, called, respectively, wlbðKÞc and
wubðKÞc, using (16) and (17). The particular case ri ¼ 0, i 2
S receives a special treatment by exploiting the fact that, in
that case, rðnÞ ¼ 0, 0 � n � K and rlbðKÞ ¼ rubðKÞ ¼ 0. The
randomization with quasistationarity detection method for
the measure EARRðtÞ can be described similarly. The
method has, for both measures, the same excellent numer-
ical stability as the standard randomization method.

4 ANALYSIS

In this section, we will analyze the performance of randomi-
zation with quasistationarity detection and will compare it
with those of standard randomization and regenerative
randomization. We will consider a class C’ model and a
model outside class C’ for which there is no natural selection
for the regenerative state and regenerative randomization for
a reasonable selection for the regenerative state performs
poorly. All CPU times are measured in a workstation with a
Sun-Blade-1000 processor and 4 GB of memory.

4.1 Class C’ model

The model is a parametric unreliability model of a fault-
tolerant storage system made up of NSS 5-level RAID
subsystems, each one comprised of eight disks, two
redundant disk controllers, and two redundant power
supplies. The power supplies work in cold standby
redundancy. The system is operational if all RAID
subsystems are up. The availability of an unlimited number
of repairmen to repair failed components is assumed. The
failure rate of a disk in an up RAID subsystem not under
reconstruction is 2� 10�6 h�1, the failure rate of a disk in an
up RAID subsystem with one disk under reconstruction is
3� 10�6 h�1, the failure rate of a controller in an up RAID
subsystem with two unfailed controllers is 5� 10�6 h�1, the
failure rate of a controller in an up RAID subsystem with
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2. We have not been able to prove that limK!1 bðKÞ=ðA
KÞ ¼ 1 for some
A > 0 and some 
, 0 < 
 < 1. However, the lookahead approach based on
that assumption has worked well in practice in all examples we have tried,
i.e., the K obtained using the technique is the one strictly required.



only one unfailed controller is 8� 10�6 h�1, the failure rate

of the active power supply in an up RAID subsystem is

6� 10�6 h�1, the coverage to controller failures is 0:99, the

coverage to power supply failures is 0:995, the disk

reconstruction rate is 0:4 h�1, and the repair rate of failed

components in up RAID subsystems is 0:125 h�1. The

CTMC X has a state space S [ ff1g, where S includes the

operational states and entry into the absorbing state f1
models system failure. The generic ETRRðtÞ measure

considered in this paper with ri ¼ 0, i 2 S and rf1 ¼ 1 gives

the unreliability of the fault-tolerant storage system at time

t, urðtÞ. To reduce its size, the model is generated from a
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high-level description which exploits the fact that the RAID
subsystems are identical. A more detailed description of the
model can be found in [7], where the NSS parameter is
called N . It is assumed that, initially, the system is in the
state in which all RAID subsystems are in their fully
operational state, i.e., without any failed component and
with no disk under reconstruction.

The model belongs to class C0, the state o being the state
in which all RAID subsystems are in their fully operational
state, and that state is the natural selection for the
regenerative state in the regenerative randomization meth-
od. The performance of regenerative randomization relative
to standard randomization is affected by the size of the
model. This is because, in the second phase of that method,
a truncated transformed model, with almost the same
maximum output rate as the original model and with a size
which is mainly determined by the ratio R between the
maximum and the minimum output rates from states in
S � fog, has to be solved by standard randomization and
the relative cost of that phase depends on the size of the
original model. To take that into account, we consider two
instances of the parametric model. The first instance is

obtained by making NSS ¼ 3 and yields a CTMC with

365 states and 3,484 transitions. The second instance is

obtained by makingNSS ¼ 8 and yields a CTMCwith 75,583

states and 1,384,542 transitions. Fig. 3 plots urðtÞ for both

instances. All methods are run with a single target time t

and a required error " ¼ 10�10. For the regenerative

randomization method, the state o is taken as regenerative

state. Table 1 gives the values of the truncation parameterK

in randomization with quasistationarity detection (RQD),

the truncation parameter K in regenerative randomization

(RR), and the truncation parameter N in standard rando-

mization (SR) for both instances of the model. The CPU

times consumed by the methods are given in, respectively,

Figs. 4 and 5.
The value of the truncation parameter K in randomiza-

tion with quasistationarity detection is similar to the value

of the truncation parameter K in regenerative randomiza-

tion and, for large t, much smaller than the value of the

truncation parameter N in standard randomization, which,

for large t, increases approximately linearly with t. This

makes both randomization with quasistationarity detection

and regenerative randomization significantly less costly
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Fig. 3. Unreliability as a function of t for both instances of the example in

class C’.

TABLE 1
Value of the Truncation Parameter K in Randomization with

Quasistationarity Detection (RQD) and
Regenerative Randomization (RR) and Value of the

Truncation Parameter N in Standard Randomization (SR)
for Both Instances of the Model in Class C’

Fig. 4. CPU times consumed by the methods in seconds for the small

instance of the example in class C’ as a function of t.

Fig. 5. CPU times consumed by the methods in seconds for the large

instance of the example in class C’ as a function of t.



than standard randomization for large models and large t.
For small models, the cost of computing the infinite
summatories in randomization with quasistationarity de-
tection and the cost of solving the truncated transformed
model in regenerative randomization are relatively impor-
tant and the methods are not much faster than standard
randomization. Randomization with quasistationarity de-
tection is always more expensive than regenerative rando-
mization. This is because the cost of that method per step
(increment of K) is larger than the cost per step of
regenerative randomization. The computational cost of
regenerative randomization would be higher when the
initial probability distribution of the model is not concen-
trated in the state o, but would not double the cost of the
case considered in the numerical experiments (initial
probability distribution concentrated in state o) [4], [5].
Furthermore, the example has A ¼ 1 and null reward rates
in S and, then, covers the most favorable case for
randomization with quasistationarity detection. Therefore,
we can conclude that, for class C’ models, regenerative
randomization seems to outperform randomization with
quasistationarity detection.

4.2 Model Outside Class C’

The model corresponds to a fault-tolerant multiserver
system including 20 servers of type 1 and 20 servers of
type 2. The system is operational if there are at least
16 servers of each type unfailed and there has not been any
coverage failure. Servers have hypoexponential lifetime
distributions with parameters q ¼ 0:1, �F ¼ 0:01 h�1, and
�S ¼ 2� 10�3 h�1, i.e., with probability q, they fail with rate
�F and, with probability 1� q, they fail with rate �S. A
server fault is covered with probability 0:9998. There are
three repairmen which repair failed servers at rate 1 h�1. In
case the number of failed servers is greater than three, failed
servers are selected at random by the repairmen. The
measure of interest is the unreliability at time t, urðtÞ. That
measure can be formalized as the ETRRðtÞ measure for a
CTMC X with state space S [ ff1g, where S includes the
states in which the system is operational and X enters the
absorbing state f1 when the system fails. The states in S of
the CTMC can be specified in terms of the number of
unfailed servers of each type failing with each rate. The

resulting CTMC has 9,026 states and 65,265 transitions. It is
assumed that, initially, the system has all servers unfailed.
Then, denoting by si;j the state in which all servers are
unfailed, i servers of type 1 are failing with rate �F and
j servers of type 2 are failing with rate �S, the initial
probability distribution of X is

�si;j ¼
20

i

� 	
qið1� qÞ20�i 20

j

� 	
qjð1� qÞ20�j; 0 � i; j � 20;

�k ¼ 0; k 2 ðS � fsi;j; 0 � i; j � 20gÞ [ ff1g:

Fig. 6 plots urðtÞ.
The CTMC X has no good “regenerative” state. A

reasonable selection for the regenerative state would be the
state si;j which has the largest initial probability. Such a
state turns out to be state s2;2. Taking that state as the
regenerative state made regenerative randomization sig-
nificantly more costly than standard randomization. There-
fore, only results regarding the relative performance of
randomization with quasistationarity detection and stan-
dard randomization will be given, with a single target time t
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Fig. 6. Unreliability as a function of t for the example outside class C’.

TABLE 2
Truncation Parameter K in Randomization with

Quasistationarity Detection (RQD) and Truncation Parameter N
in Standard Randomization (SR) for the Model Outside Class C’

Fig. 7. CPU times in seconds consumed by the methods in seconds for

the example outside class C’ as a function of t.



and a required error " ¼ 10�10 for both methods. Table 2
gives the value of the truncation parameter K in randomi-
zation with quasistationarity detection (RQD) and the value
of the truncation parameter N in standard randomization
(SR) as a function of the time t. Fig. 7 gives the
corresponding CPU times. We can note that, for large t,
the truncation parameter K of randomization with quasis-
tationarity detection increases smoothly with t while the
truncation parameter N of standard randomization in-
creases approximately linearly with t. For large t, rando-
mization with quasistationarity detection is significantly
faster than standard randomization. Thus, for the largest t
considered (t ¼ 100; 000 h) randomization with quasistatio-
narity detection consumes 67.6s, whereas standard rando-
mization consumes 930s, making randomization with
quasistationarity detection about 14 times faster than
standard randomization.

5 CONCLUSIONS

Exploiting the existence of a quasistationary distribution in
the subset of transient states of DTMCs with a certain
structure, we have developed a new method, randomiza-
tion with quasistationarity detection, for the computation of
the ETRRðtÞ and EARRðtÞ measures for a wide class of
rewarded CTMCs. The method has the same good proper-
ties as the standard randomization method (numerical
stability and well-controlled computation error) and, for
large stiff models, can be much faster than standard
randomization, making possible the analysis of some of
these models in affordable CPU times. For class C’ models,
the method seems to perform slightly worse than regen-
erative randomization. However, as we have illustrated, the
method performs well for models not in class C’, for which
regenerative randomization performs poorly.
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