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Implementation of a spatial two-dimensional quantum random walk with tunable decoherence
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We put forward a versatile and highly scalable experimental setup for the realization of discrete two-dimensional
quantum random walks with a single-qubit coin and tunable degree of decoherence. The proposed scheme makes
use of a small number of simple optical components arranged in a multipath Mach-Zehnder-like configuration,
where a weak coherent state is injected. Environmental effects (decoherence) are generated by a spatial light
modulator, which introduces pure dephasing in the transverse spatial plane perpendicular to the direction of
propagation of the light beam. By controlling the characteristics of this dephasing, one can explore a great variety
of scenarios of quantum random walks: pure quantum evolution (ballistic spread), fast fluctuating environment
leading to a diffusive classical random walk, and static disorder resulting in the observation of Anderson
localization.
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I. INTRODUCTION

The underlying principles of many quantum information
protocols can be traced back to the concept of quantum random
walk (QRW), which since its first description has become a
fundamental paradigm in quantum science [1,2]. The idea of
QRWs was originally conceived by Aharonov et al. [3] as an
extension of the well-known classical random walk (CRW) [4].
The main distinguishing feature of a QRW, compared to a
CRW, is the possibility of interference between the multiple
paths that can be simultaneously traversed by a quantum
walker, thus enabling a faster spreading of the uncertainty of
location of the walker than in the classical case [5,6].

The temporal evolution of a quantum system, such as a
QRW, depends on the presence and specific characteristics of
the environmental effects (decoherence) which can modify
it [7]. In most cases, the influence of decoherence during
the evolution of a quantum walker transforms an originally
pure state into a mixed state, lowering the uncertainty about
the location of the walker as it propagates. In the limiting case,
when all cross-interference terms between different lattice sites
are completely erased, the state of pure diffusive classical
propagation is reached [6].

QRWs have been theoretically explored for the case of one-
dimensional lattices [5,8] and experimentally implemented by
means of different physical platforms, such as photon-based
systems [9–14], optical lattices [15], and waveguide arrays
[16]. Also, QRWs have been implemented using trapped ions
[17] and nuclear magnetic resonance systems [18].

Although the implementation of one-dimensional QRWs
has been useful when describing several quantum information
systems, there is a great interest in expanding the concept to
multidimensional lattices. Along these lines, two-dimensional
QRWs provide a powerful tool for modeling complex quantum
information and energy transport systems [19,20]. Their
realization presents a challenge because of the need for
four-level coin operation [21–23]. One way to overcome this
drawback is to make use of different degrees of freedom of
photons, such as polarization and orbital angular momentum,
as has been shown in Ref. [20]. Another approach is to

mimic the two-dimensional QRW evolution by performing
two subsequent one-dimensional QRWs [24,25].

Here, we make use of the latter approach to put forward
an experimental setup for the realization of two-dimensional
QRWs. We include the environmental effects (decoherence)
as pure dephasing by means of the introduction of random
phase patterns, generated by a spatial light modulator (SLM),
which can be different from site to site (spatial disorder). By
controlling the degree of decoherence, we study the transition
from the quantum ballistic spreading to the diffusive classical
walk. Also, by adding static disorder, we show the possibility
of observing Anderson localization [26].

Importantly, our proposal provides a versatile, highly
scalable experimental setup, which may be used as a tool for
understanding quantum processes whose underlying physics
can be somehow traced to the concept of random walks,
such as energy transport in photosynthetic light-harvesting
complexes [27,28] and material band-gap structures [29].

The structure of the article is as follows. In Sec. II,
we introduce the QRW model system, including dephasing,
considered here. The proposed experimental setup is described
in Sec. III. Numerical results are discussed in Sec. IV. Finally,
we summarize our results in the conclusion.

II. A TWO-DIMENSIONAL QUANTUM RANDOM WALK
WITH DEPHASING

A typical discrete quantum random walk comprises two
operations: a coin-tossing operation and a shift operation.
Here, the coin-tossing operation is performed in the Hilbert
space Hp spanned by vectors {|H 〉,|V 〉}, corresponding to
the photon polarization. The random walk is performed in the
Hilbert space HX ⊗ HY , corresponding to the position of the
photon in the transverse plane, spanned by vectors {|i,j 〉} (i,j
integers), which indicate sites (i,j ) in the transverse plane
(i,j = . . . ,−2,−1,0,1,2, . . .). The global quantum system
thus evolves in the Hilbert space

H = HX ⊗ HY ⊗ Hp. (1)
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The state of the system is described by the density matrix
ρ̂(n), which is transformed to a new density matrix each step n

via the map

ρ̂(n+1) = P̂ (n)ŜY Ĥ ŜXĤ ρ̂(n)Ĥ †Ŝ†
XĤ †Ŝ†

Y P̂ (n)†. (2)

Ĥ denotes the Hadamard operator

Ĥ = 1√
2

(
1 1
1 −1

)
, (3)

which acts on the polarization degree of freedom. The
operators ŜX and ŜY , which describe the walker’s shift in the
transverse dimensions X and Y , independently, read as

ŜX =
∑
i,j

|i − 1,j,H 〉〈i,j,H | + |i + 1,j,V 〉〈i,j,V | (4)

and

ŜY =
∑
i,j

|i,j − 1,H 〉〈i,j,H | + |i,j + 1,V 〉〈i,j,V |. (5)

The coupling of the quantum walker with the environment
is described by pure dephasing [30,31]. The form of the unitary
dephasing operator considered here can be written as

P̂ (n) =
∑
i,j

e− i
2 φ

(n)
ij σ̂z |i,j 〉〈i,j |, (6)

where φ
(n)
ij is a random phase matrix and σ̂z is the Pauli

operator. Inspection of Eq. (6) shows that φ
(n)
ij represents a

newly introduced phase difference between the horizontal and
vertical polarizations at each site. We consider three physically
relevant scenarios that can be easily implemented in the setup
proposed here (see Sec. III). In the general case, the phase
differences φ

(n)
ij are independent random variables, but with

the same probability distribution. Moreover, the ensemble of
phase differences φ

(n)
ij can change from step n to step n + 1.

In the following, we refer to this case as a QRW influenced by
dynamical spatial disorder.

The easiest probability distribution that we can consider is
an uniform probability distribution. If phases can be chosen
arbitrarily between the extreme values −ζ and ζ , there is a
constant probability 1/(2ζ ) of obtaining any phase in this
interval. ζ = π is the maximal phase which we can have
between the two orthogonal polarizations. ζ = 0 corresponds
to the absence of any spatial disorder. If phases do not change
during propagation, even though they might differ from site to
site (i.e., φ

(n)
ij = φ

(n+1)
ij ), then we have static spatial disorder.

Finally, if all phase differences are the same for all sites, but
they can still change from one step to the following, we have
dynamical dephasing without spatial disorder.

The probability of detecting a photon in the site (i,j ) is

p(n)(i,j ) = 〈i,j |Trp[ρ̂(n)]|i,j 〉, (7)

where the density matrix that describes the whole system is
traced out over the polarization degree of freedom (Trp).

The spreading of the uncertainty of photon location is
characterized by dependence of the variance on the step
index n

V (n) =
∑
i,j

p(n)(i,j )|rij − μ|2, (8)

where rij = (i,j ) represents the lattice site with indexes (i,j )
and μ is the mean position; that is, μ = ∑

i,j p(n)(i,j )rij .

III. EXPERIMENTAL SETUP

The main building block of the QRW setup is the multipath
Mach-Zehnder-like configuration shown in Fig. 1. It allows
us to make several runs of the QRW without the necessity
of using a large amount of optical components, as it is the
case, for instance, of the experiment described in Ref. [10].
A similar scheme, based on a single-path Mach-Zehnder-like
configuration, has been used [11,14]. However, in these cases,
the walker moves in time, whereas in our proposal the walker
moves in the two-dimensional transverse plane, offering a
way to simplify the experimental implementation of the
two-dimensional QRW.

As source of photons one can use a highly attenuated short
coherent pulse, prepared by the combination of a photon source
and attenuator (AT), generating the initial state

|�(0)〉 = |0,0〉 ⊗ 1√
2

(|H 〉 + i|V 〉), (9)

where (0,0) is the central site. The duration of the pulse has to
be sufficiently smaller than the time of flight through the setup
in one cycle. The transverse size of the Gaussian beam profile
of the pulse has to be carefully chosen, so that two adjacent sites
are not overlapping in the space due to diffraction. For instance,
by making use of a Gaussian beam of 2-mm beam waist,
corresponding to a Rayleigh range of 23.6 m (for a wavelength
λ = 532 nm), along with typical-sized optical components, we
could in principle perform a QRW of approximately more
than 20 steps. The number of steps can be further improved
by applying smaller beams together with a refocusing system
placed along the walker’s path. Alternatively, a spontaneous
parametric down-conversion source can be used, provided each
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FIG. 1. (Color online) General scheme for the implementation of
a two-dimensional random walk with decoherence. AT, attenuator;
BS, beam splitter; HWP1 and HWP2, half-wave plates that act
as coins in the random walk; HBD and VBD, horizontal and
vertical beam displacers; M1, M2, and M3, mirrors; SLM, spatial
light modulator; and CCD, spatial light sensor with single-photon
sensitivity.

052327-2



IMPLEMENTATION OF A SPATIAL TWO-DIMENSIONAL . . . PHYSICAL REVIEW A 86, 052327 (2012)

down-converted photon is generated in a pure state. Then, the
photon is transmitted via the beam splitter (BS) to the system.

To get a clearer picture of the working of the quantum
random walk, let us consider in detail the quantum state of
the photon in its first passage through the system. First, the
polarization state of the photon is changed by the half-wave
plate (HWP1) to 1

2 |0,0〉 ⊗ [(1 + i)|H 〉 + (1 − i)|V 〉]; that
is, the Hadamard (Ĥ ) operation is applied. After this
transformation, the photon is displaced by the horizontal
beam displacer (HBD) along the X axis according to its
polarization, as described by the shift operator ŜX. The photon
is now in the state 1

2 [(1 + i)|−1,0,H 〉 + (1 − i)|1,0,V 〉].
A second half-wave plate (HWP2) implements a new
Hadamard transformation, which transforms the quantum state
to 1√

8
{(1 + i)(|−1,0,H 〉 + |−1,0,V 〉) + (1 − i)(|1,0,H 〉 −

|1,0,V 〉)}. The vertical beam displacer (VBD) shifts the
position of the photon along the Y axis. After this, the
quantum state of the photon reads

|�(1)〉 = 1√
8

[(1 + i)(|−1,−1,H 〉 + |−1,1,V 〉)
+ (1 − i)(|1,−1,H 〉 − |1,1,V 〉)]. (10)

The spatial light modulator (SLM) is used to introduce random
phases, given by the phase-matrix φ

(n)
ij . After the photon

passes through the SLM, the whole cycle is repeated with
high probability. If not, the photon escapes through the other
output port of the beam splitter, which directs it towards a
single-photon sensitive charge-coupled device (CCD) camera
with an integrated electron multiplier, which allows us to
spatially resolve a weak signal with a high efficiency (∼90%)
[32]. Moreover, losses in the setup can be compensated by an
increase of the amplitude of pulse. The size of whole array
of beams can be reduced by an auxiliary imaging system in
order to fit on the limited size of the sensitive area of the
CCD.

A. Fast exchange of phase matrices

A typical SLM has a response time in the order of tens of
milliseconds, which means that it is too slow for a fast phase-
mask exchange. For this reason, the transmission SLM shown
in Fig. 1 has to be supplemented by additional components as
shown in Fig. 2, which allows us to effectively generate the
dynamical spatial disorder and dynamical dephasing without
spatial disorder for a limited amount of steps. The time of

M3 EOD2

FL FL

SLM

EOD1 BS

IS1 IS2

FIG. 2. (Color online) Detail of the SLM part of the setup
allowing generation of dynamical spatial disorder. M3, mirror; EOD1
and EOD2, electro-optic deflectors; FL, Fourier lens; SLM, spatial
light modulator; BS, beam splitter; and IS1 and IS2, imaging systems

exchange of phase matrices can be done now in tens of picosec-
onds [33,34], which is three orders faster than necessary in our
experimental proposal, with a typical time of flight of the pulse
in the order of nanoseconds. The scheme in Fig. 2 operates in
the following manner. At the beginning, the size of the whole
array of beams is reduced by an imaging system (IS1) to fit
into the electro-optical deflector (EOD1). The EOD1, together
with a Fourier lens (FL), serves to address different regions
of the SLM along either the vertical or horizontal directions,
which realize then the random-phase matrices φ

(n)
ij in all steps.

By changing the directions of deflection of the array, both
types of dynamical disorders can be simulated. The EOD2
(and another FL) then serve to return all beams back to the
original direction of propagation, so that all beams remain in
the same position in the traverse plane at all time.

IV. NUMERICAL RESULTS

A. Quantum random walk

Let us consider first the case when the SLM does not
introduce any phase shift [φ(n)

ij = 0 for all (i,j )]. This cor-
responds to the case ζ = 0. Figure 3 shows the probability
distribution function p(n)(i,j ) for (a) n = 10 and (b) n = 20
steps. In both cases, the distribution shows a symmetrical
shape around the lines X = 0 and Y = 0, with four groups of
peaks located along the X and Y axes. The resulting symmetry
comes from the specific initial quantum state chosen in Eq. (9).
When the number of steps is increased, the peaks move
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FIG. 3. (Color online) Probability distribution function p(n)(i,j ),
corresponding to the position of the photon for a two-dimensional
quantum random walk with no dephasing after (a) 10 steps and
(b) 20 steps.
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FIG. 4. (Color online) Spreading of the position of the photon
(V (n)) as a function of the number of steps for several values of ζ

and different types of dephasing. (a) Dynamical spatial disorder.
(b) Dynamic dephasing without spatial disorder. The results are
obtained by averaging over 500 different realizations of the
matrix φ

(n)
ij .

further away from the central site (0,0). The shapes obtained
in Fig. 3 correspond to the probability distributions of a
two-dimensional Grover walk [19,25]. The walker propagates
with ballistic speed, characterized by a quadratic dependence
of the variance V (n) with the step index, that is, V (n)≈ n2. This
case is shown in Figs. 4(a) and 4(b), corresponding to the case
with ζ = 0.

B. Quantum random walk affected by dephasing

The dephasing effect introduced by the SLM allows us to
induce a transition from the quantum to the classical random
walk via two mechanisms. The first, as shown in Fig. 4(a), is
by means of dynamical spatial disorder. The phase matrix φ

(n)
ij

shows independent and randomly chosen values for each site,
and it is refreshed each step. The case ζ = 0 corresponds to the
QRW with no dephasing. Increasing the amount of disorder,
characterized by a corresponding increase of the parameter ζ ,
reduces the spreading of V (n) as can be seen in Fig. 4(a). In
the limiting case, which is reached for ζ = π , the observed
dependence (∼n) of variance V (n) is a direct indication of the
transition to the classical regime of random walks.

The classical limit can also be reached by means of
dynamical dephasing without spatial disorder, as shown in
Fig. 4(b). The reduction of the uncertainty of the photon
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FIG. 5. (Color online) Observation of the spatial Anderson
localization. (a) Example of a matrix φ

(n)
ij for ζ = π that leads to

the Anderson localization. (b) Corresponding probability distribution
p(n)(i,j ) after 20 steps. (c) Averaged probability distribution over 500
realizations. (d) Cuts of the data shown in Fig. 5(c) along the X and
Y axes passing the site (0,0).
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position is less dramatic than in the case with dynamical spatial
disorder. For the dynamical spatial disorder, V (n) ∼ 51.25 for
ζ = π after 20 steps. On the contrary, for dynamical dephasing
without spatial disorder, we have V (n) ∼ 98.45 under the same
conditions. Indeed, the n dependence of the typical deviation,
characteristic of the classical regime, it is not yet reached after
20 steps, as is readily observed in Fig. 4(b).

C. Anderson localization

In the context of our discussion, the Anderson localization
is the reduction of spreading of the uncertainty of the photon
position [26]. We demonstrate that this effect can also be
observed in the setup considered here. In Ref. [35], Anderson
localization was observed in the transverse plane of a light
beam passing through a crystal with random static fluctuations
of the index of refraction. Since the randomness in the index of
refraction is affecting only the phase of the propagating beam,
it is possible to imitate these phase fluctuations with a SLM, un-
der the consideration of static spatial disorder, since Anderson
localization does not appear with dynamical spatial disorder.

In Fig. 5(a) we present a typical profile of the phase matrix
φ

(n)
ij , independent of n, which leads to beam localization.

Figure 5(b) shows the corresponding probability distribution
of the photon position for this specific phase profile. Notice
that it contains a strong peak located in the middle of the
lattice. The presence of Anderson localization is confirmed in
Fig. 5(c), where we show the averaged probability distribution
function for ζ = π , exhibiting an exponential suppression of
probabilities for sites distant from the center. For the sake of
clarity, we also plotted in Fig. 5(d) two cuts of the averaged
probability distribution along the X and Y axes, to highlight
this feature.

V. CONCLUSION

We have put forward a new, highly scalable, and easily
implemented experimental configuration to observe spatial
two-dimensional random walks under a great variety of
circumstances by means of the implementation of two con-
secutive one-dimensional random walks. The proposal makes
use of only a small amount of simple optics components
and allows us to simulate many different quantum systems
and protocols based on the quantum random walk concept.
Additionally, by carefully controlling the amount and type
of disorder present in the system, we have shown the effects
of different environmental effects: dynamical spatial disorder,
dynamical dephasing without spatial disorder, and static
spatial disorder. The last case drove us to the observation of
Anderson localization. The control of environmental effects
is of paramount importance in nearly all quantum systems. In
some cases, it is even crucial to understanding the dynamics
experimentally observed. For instance, in light-harvesting
complexes [36], the interplay between coherent evolution and
noise is a critical ingredient, which allows high-efficiency
energy transport.
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Mosley, E. Andersson, I. Jex, and Ch. Silberhorn, Phys. Rev.
Lett. 104, 050502 (2010).

[12] D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran,
Phys. Rev. A 84, 042322 (2011).

[13] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R.
Ramponi, and R. Osellame, Phys. Rev. Lett. 108, 010502 (2012).

[14] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gabris, I. Jex,
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[15] R. Côté, A. Russell, E. E. Eyler, and P. L. Gould, New J. Phys.
8, 156 (2006).

[16] H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and
Y. Silberberg, Phys. Rev. Lett. 100, 170506 (2008).

[17] F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt,
and C. F. Roos, Phys. Rev. Lett. 104, 100503 (2010).

[18] J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Phys.
Rev. A 67, 042316 (2003).

[19] A. C. Oliveira, R. Portugal, and R. Donangelo, Phys. Rev. A 74,
012312 (2006).
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