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Abstract The ground-state properties of spin polarized hydrogen H↓ in two dimen-
sions (2D) are obtained by means of diffusion Monte Carlo calculations. Using the
most accurate to date ab initio H↓–H↓ interatomic potential we have studied hydro-
gen gas phase, from the very dilute regime until densities above its freezing point.
For very low densities, the equation of state of the gas can be described in terms of
the gas parameter na2, where a is the s-wave scattering length in 2D. The solid phase
in 2D has also been studied up to high pressures and the gas-solid phase transition
determined using the double-tangent Maxwell construction.

Keywords Spin-polarized hydrogen · Quantum gas · Gas–solid transition

1 Introduction

Spin-polarized hydrogen (H↓) is the only system that remains in the gas phase down
to the limit of zero temperature. This extreme quantum behavior is due to its low mass
and extremely weak attractive part of its interatomic potential. Although it was ex-
pected to be an ideal candidate [1] for achieving the Bose-Einstein condensate (BEC)
state many experimental obstacles needed to be overcome before it was finally real-
ized in 1998 by Fried et al. [2]. Even before the realization in three dimensions (3D),
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the same year, Safonov et al. [3] observed a quasicondensate in two-dimensional (2D)
H↓ adsorbed on liquid 4He. Following experiments have been reviewed by Järvinen
and Vasilyev [4], demonstrating that further work is needed to observe signals of the
Berezinskii-Kosterlitz-Thouless (BKT) transition. On the other hand, the BKT tran-
sition has been observed in trapped gases of Rb atoms harmonically confined to move
within a plane [5].

Two-dimensional Bose systems are also subject of intense theoretical interest and
the study of H↓ offers the additional advantage of the accurate knowledge of the
hydrogen interatomic interaction. Recently, the static fluctuation approximation was
used to study finite 2D H↓ in a very low-density regime [6]. The results on the con-
densate fraction and specific heat capacity show that the BEC occurs in the system.

In the present work, we report accurate microscopic results for energetic and struc-
tural properties of bulk H↓ in 2D. Such a study has already been completed in 3D [7]
demonstrating universal behavior at low densities. At large densities, we observe that
the 2D gas experiments a quantum phase transition to a triangular crystal.

2 Method

We use the diffusion Monte Carlo (DMC) method, a fully microscopic approach that
solves stochastically the Schrödinger equation in imaginary time,

−�
∂Ψ (R, t)

∂t
= (H − Et)Ψ (R, t). (1)

In Eq. (1), Et is a constant acting as a reference energy, while R ≡ (r1, . . . , rN)

collectively denotes particle positions. The N -particle Hamiltonian is given by

H = − �
2

2m

N∑

i=1

∇2
i +

N∑

i<j

V (rij ). (2)

V (r) is the interaction potential, that has been constructed combining highly accu-
rate ab initio data for short distances [9–11] with the analytical expression for the
long-range behavior, in the same way as in previous work in 3D [7]. We introduce
the importance sampling wave function to guide the random walk. For the gas phase,
the Jastrow model is used, ψJ(R) = ∏N

i<j f (rij ), where f (r) is the two-body cor-
relation function. For most densities, we have chosen the functional form that was
found to be optimal in 3D [7], f (r) = exp[−b1 exp(−b2r)], where b1 and b2 are
variational parameters. At the lowest densities, the better form of the trial wave func-
tion was a numerical solution of the two-body problem. In the simulations of the solid
phase we have used a Nosanow-Jastrow model, ψNJ(R) = ψJ(R)

∏N
i g(riI ), where

g(r) = exp(−αr2/2) is a Gaussian linking every particle i to its corresponding point
rI of the lattice, and α is a variational parameter. The variational parameters have
been obtained by optimizing the variational energy. Typical values are b1 = 30 and
b2 = 0.9 Å−1 for the liquid phase, while the optimal values in the solid phase near
the melting density are b1 = 50, b2 = 1.1 Å−1 and α = 0.2 Å−2. The most relevant
parameter in the solid phase α increases up to α = 0.95 Å−2 for the largest density
studied. The influence of the time step �t in the DMC results is reduced by working
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Fig. 1 Equation of state of the gas H↓ as a function of the gas parameter na2 in units �
2/(2ma2) (solid

circles and full line). The empty circles correspond to the HS gas [12] and the line to the mean-field results
(Eq. (4)) (Color figure online)

with an algorithm accurate to second order in �t [8]. On the other hand, the size de-
pendence due to the finite number of particles in the simulation is carefully corrected
by the proper addition of asymptotic contributions. The calculations in the gas phase
have been performed with 64 to 128 particles and in the solid phase with 90 to 168
particles.

3 Results

In Fig. 1, we plot the present DMC results for the equation of state of the gas. Our
results are well parameterized by the analytical function (e ≡ E/N )

e(ρ) = e1n/ ln(e2/n) + (e3n)3 + (e4n)5, (3)

shown as a solid line on top of the DMC results in Fig. 1. The best set of pa-
rameters is: e1 = 261.6(1.6) K Å2, e2 = 0.193(7) Å−2, e3 = 48.7(4) K−3 Å2, and
e4 = 28.7(2) K−5 Å2, the figures in parenthesis being the statistical uncertainties.
On the same plot, we compare our results to hard disk energies per particle in 2D
calculated by Pilati et al. [12] and the mean-field results given by

EMF

N
= 2π�

2

m

n

ln(1/na2)
. (4)

The energies per particle are plotted as a function of the gas parameter na2, where a

is the 2D scattering length, which we have calculated as 1.06 Å. We can see that the
energies per particle of H↓ start to deviate from the mean-field results sooner than in
the case of hard spheres. In addition, the corrections to the mean-field results can not
be well fitted with the functional form appropriate for the hard sphere gas [12].
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Fig. 2 Condensate fraction as a function of the gas parameter (circles). Dashed line is the result from the
Bogoliubov theory (Color figure online)

The condensate fraction N0/N , which is obtained from the long-range behavior
of the one-body density matrix N0/N = limr→∞ ρ(r), presents also a universal be-
havior in terms of the gas parameter na2 at very low densities. The results, presented
in Fig. 2, are compared to the Bogoliubov formula [13]

N0

N
= 1 + 1

ln(na2)
. (5)

For small values of the gas parameter, the results for H↓ agree with Eq. (5), while
for larger na2 values the Bogoliubov result overestimates the condensate fraction,
feature which was already observed in hard disks [12]. In accordance with results
for hard disks, the condensate depletion is larger in 2D than in 3D. Using the equa-
tion of state (3), the pressure is easily derived from its thermodynamic definition
P(n) = n2(∂e/∂n) and from it, the corresponding speed of sound as a function of the
density, c2(n) = 1

m
(∂P

∂n
). The pressure P(n) and speed of sound c(n) are shown in

Fig. 3. The pressure at first rises slowly as a function of the density and then begins a
rapid increase when approaching the solidification density. The speed of sound rises
more slowly than in 3D. DMC also provides information on the spatial structure of
the system. The results for the pair distribution function g(r), obtained using pure es-
timators [14], are shown in Fig. 4 for five values of the gas parameter. The shell-like
structure is visible for densities higher than 0.01 Å−2.

We have also studied the solid phase of H↓ by using the Nosanow-Jastrow guiding
wave function. The position of lattice sites has been selected according to a commen-
surate triangular phase. The results for the energy per particle are presented in Fig. 5,
along with the numerical fit obtained using the function

e(n) = s2n
2 + s3n

3 + s4n
4. (6)

The optimal parameters in Eq. (6) are: s2 = 12470(100) K Å4, s3 = −2.23(4) ×
105 K Å6, and s4 = 4.08(4) × 106 K Å8. This expression is used to obtain the de-
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Fig. 3 Pressure and speed of sound of gas H↓ as a function of the density. Left-(right-) hand scale corre-
sponds to pressure (speed of sound) (Color figure online)

Fig. 4 Pair distribution function of H↓ for different densities, from left to right, n = 2 × 10−4 Å−2,
0.002 Å−2, 0.01 Å−2, 0.02 Å−2, 0.04 Å−2 (Color figure online)

pendence of the pressure and the speed of sound on the density, using the same ther-
modynamic expressions as in the case of the gas phase. Results are presented in
Fig. 5. A relevant prediction that can be drawn from the present DMC results on the
energies of the gas and solid phases of H↓ in 2D is the location of the gas-solid phase
transition. From the double-tangent Maxwell construction, we obtain the freezing

nf = 0.0407 Å
−2

and melting nm = 0.0417 Å
−2

densities (Fig. 6). They corresponds
to a common pressure at the transition of P = 1.84 K Å−2. Although the freezing and
melting densities are very close, the spatial structure of both phases at the transition
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Fig. 5 Left: Energy per particle of solid H↓ as a function of the density. Right: Pressure and speed of
sound of solid H↓ as a function of the density. Left-(right-) hand scale corresponds to pressure (speed of
sound) (Color figure online)

Fig. 6 Maxwell construction based on plotting the energy per particle, E/N as a function of 1/n. The
densities at which the first-order transition occurs are identified by finding the common tangent (dotted
line) to both the solid (dashed line) and gas curve (full line). The inset shows the construction in a narrower
range of 1/n (Color figure online)

point is rather different. The difference is most visible in the static structure function
shown in Fig. 7 for both phases at the transition point. High intensity Bragg peaks
located at the reciprocal lattice sites provide clear signature of the solid order, which
is absent in the S(k) of the gas.
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Fig. 7 Static structure factor at the gas-solid phase transition. The results correspond to the gas at nf and
to the solid at nm (Color figure online)

4 Conclusions

We have carried out a study of the gas and solid phases of H↓ in 2D using the DMC
method. The ground-state properties have been accurately determined using a very
well-known and extremely accurate interatomic potential. In the very dilute limit, the
equation of state of the gas can be described using a mean-field result for a weakly
interacting Bose gas, that depends only on the gas parameter na2. Upon sufficient
increase of the density, the system freezes. We have determined for the first time the
gas-solid transition point from the equations of state of the two phases.
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7. L. Vranješ Markić, J. Boronat, J. Casulleras, Phys. Rev. B 75, 064506 (2007)
8. J. Boronat, J. Casulleras, Phys. Rev. B 49, 8920 (1994)



692 J Low Temp Phys (2013) 171:685–692

9. W. Kolos, L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
10. W. Kolos, L. Wolniewicz, Chem. Phys. Lett. 24, 457 (1974).
11. M.J. Jamieson, A. Dalgarno, L. Wolniewicz, Phys. Rev. A 61, 042705 (2000)
12. S. Pilati, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. A 71, 023605 (2005)
13. M. Schick, Phys. Rev. A 3, 1067 (1971)
14. J. Casulleras, J. Boronat, Phys. Rev. B 52, 3654 (1995)


	Two-Dimensional Spin-Polarized Hydrogen at Zero Temperature
	Abstract
	Introduction
	Method
	Results
	Conclusions
	Acknowledgements
	References


