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By considering three different spin models belonging to the generalized voter class for ordering dynamics in
two dimensions [Dornic et al., Phys. Rev. Lett. 87, 045701 (2001)], we show that they behave differently from
the linear voter model when the initial configuration is an unbalanced mixture of up and down spins. In particular,
we show that for nonlinear voter models the exit probability (probability to end with all spins up when starting
with an initial fraction x of them) assumes a nontrivial shape. This is the first time a nontrivial exit probability
is observed in two-dimensional systems. The change is traced back to the strong nonconservation of the average
magnetization during the early stages of dynamics. Also the time needed to reach the final consensus state TN (x)
has an anomalous nonuniversal dependence on x.
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I. INTRODUCTION

The voter model (VM) [1,2] is a paradigm of coarsening
phenomena [3] that stands as one of the most interesting
models in nonequilibrium statistical mechanics [4]. The nature
of its interest is twofold. On the one hand, it represents one of
the few nontrivial nonequilibrium statistical processes that can
be exactly solved in any number of dimensions [5,6]. On the
other hand, it has a natural application in social dynamics [7]
as a model for the formation of opinion consensus in a society
initially divided in two different standpoints. The appeal of the
VM is further enhanced by its connection with neutral models
in genetics, ecology, and linguistics [8–10]. Its definition is
very simple: On a regular lattice or graph, each site is endowed
with a binary variable si = ±1. At each time step, a randomly
chosen site copies the state of one of its nearest neighbors,
chosen in its turn at random. This parameter-free dynamics
can be succinctly encoded in the flipping probability f (xi),
measuring the probability that spin i will flip if surrounded
by a fraction xi of spins in the opposite state, which takes the
simple linear form f (xi) = xi . For this reason we will refer to
it in the following as the linear voter model. Voter dynamics
is thus characterized by the presence of two absorbing states
(all spins either +1 or −1, the consensus states) with a Z2 spin
reversal symmetry. Moreover, since the rate of the creation of
+1 and −1 spins is equal, the magnetization is conserved on
average.

The way in which consensus is reached in the VM can be
characterized from different perspectives. From the point of
view of nonequilibrium statistical mechanics, the coarsening
process in the VM is marked by the absence of surface tension
[11] causing an anomalous logarithmic decay of the density
of interfaces in d = 2, namely ρ(t) ∼ 1/ ln(t), in opposition
to curvature-driven dynamics [3], which leads to an algebraic
decay ρ(t) ∼ t−1/2. In the social dynamics context, on the
other hand, interest is focused on the exit probability E(x) [7]
(defined as the probability that the final state corresponds to all
sites in state +1) and the consensus time TN (x) (the average
time needed to reach consensus in a system of size N ) when
starting from fully random initial conditions with a fraction

x of sites in state +1. The conservation of magnetization
implies a characteristic linear exit probability E(x) = x in
any dimension d [4], while the consensus time takes the form,
for d > 1, [12]

TN (x) = −Neff[x ln(x) + (1 − x) ln(1 − x)], (1)

where Neff is an effective factor depending on the number of
sites N and dimensionality d [4].

A detailed analysis revealed that VM actually lies at
the transition point between a ferromagnetic (ordered) and
a paramagnetic (disordered) phase, such that infinitesimally
small perturbations are able to drastically change its behavior
[13–15]. The parameter-free nature of the VM thus led
naturally to the question as to whether it represents a peculiar
and isolated point, or rather belongs to a more general
(universal) class of models, sharing the same properties.
This issue has been answered by Dornic and coworkers
[11,16] (see also Refs. [17,18]), who have pointed out the
existence of a genuine generalized voter (GV) universality
class, encompassing systems at an order-disorder transition
driven only by interfacial noise, between two “dynamically
equivalent” absorbing states. The dynamical equivalence
between states can be enforced either by Z2-symmetric local
rules, or by the global conservation of the magnetization. The
linear voter model possesses both properties, but each of them
separately is sufficient to ensure GV behavior. The GV class is
characterized in d = 2 by the logarithmic decay of the density
of interfaces1 as well as by other critical exponents [11]. In this
generalized perspective, the GV transition for Z2-symmetric
models can be theoretically rationalized as the superposition
of two independent transitions [16,19], an Ising transition
and a directed percolation [20] transition, whose respective

1The behavior of the VM in d = 1 coincides with the zero
temperature Glauber dynamics [4], while it is described by mean-field
theory for d > 2, its upper critical dimension. The interest of its
definition and properties is thus essentially given by the behavior in
d = 2.
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symmetries are broken in unison at the GV manifold. These
Z2-symmetric models are also called nonlinear voter models
because at the transition the flipping probability f (xi) assumes
a nonlinear form.

By means of extensive numerical simulations performed
for three representative models, in this paper we show that,
while the GV class is well defined in two dimensions in terms
of the decay of the density of interfaces and the value of
a set of the critical exponents, it also exhibits nonuniversal
properties which depend on the microscopic details of the
respective models’ definitions. The nonuniversality of the GV
class is explicitly observed in the exit probability and the
consensus time, which deviate from the linear and entropic
form [Eq. (1)], respectively, observed in the linear voter model.
In this respect, it is worth noticing that nontrivial shapes of
the exit probability had previously been found for models in
d = 1 or at the mean-field level. Here we show that E(x)
can also be nontrivial in two-dimensional systems. We have
considered in particular three models representing the whole
spectrum of the GV class, namely the nonlinear voter model
(NLV) originally devised to explore the GV manifold [11];
the recently proposed nonlinear q-voter model (qV) [21]; and
the Kaya, Kabakçioǧlu, and Erzan (KKE) model [22]. The first
two models are Z2-symmetric, while in the third the dynamical
equivalence between the absorbing states is enforced by the
global conservation of magnetization. Numerical simulations
in the vicinity of the critical point confirm the existence
of the GV universality class. In particular, measuring the
exponents related to the fluctuations of the magnetization
and the correlation length when approaching the critical point
from the disordered and ordered phases, respectively, suggest
non-mean-field exponents, at odds with the claim made by
the authors of Ref. [11]. However, when probing the behavior
of the models for unbalanced initial conditions (x �= 1/2) by
means of the dependence of the exit probability and of the
consensus time on x, we observe that the originally defined
GV class exhibits strong nonuniversal features, represented
by an exit probability and a consensus time that can depend
on further microscopic details of the models undergoing the
GV transition. In particular, we observe that models in which
the conservation of average magnetization is strictly enforced,
such as the KKE model, have indeed a linear E(x) as the VM,
but they exhibit a consensus time TN (x) different from the
entropic form Eq. (1). On the other hand, models which exhibit
Z2 symmetry, such as the NLV and the qV models, display
E(x) and TN (x) both departing from the linear VM behavior.
The nonlinearity of the exit probability can be rationalized
by inspecting the behavior of the average magnetization over
time. Here we can see that magnetization is not conserved over
short time scales, but it increases initially in the NLV model,
while it decreases in the qV model. This transient behavior can
be traced back to the presence of strong nonzero drift in the
initial dynamical evolution starting from x �= 1/2. After this
initial drift has vanished, the average magnetization remains
constant and the ensuing evolution is well described by a linear
voter dynamics.

The paper is organized as follows. In Sec. II we present the
results of numerical simulations for the class of nonlinear voter
models, determining the values of the critical exponents and
showing the nontrivial x dependence of the exit probability

and of the consensus time. In Sec. III we do the same for the
q-voter model, while Sec. IV is devoted to the KKE model.
The final section summarizes the results and discusses their
relevance.

II. NONLINEAR VOTER MODEL

The characteristics of the GV class were exposed by the
authors of Ref. [11] by the numerical examination of a
Z2-symmetric nonlinear voter model (NLV) defined it terms
of a kinetic Ising model as follows: We consider a binary spin
system in d = 2, in which the probability rs,h that a spin s flips
depends on its value and the value of the local field h it feels.
The Z2 symmetry imposes r−s,h = rs,−h; therefore all flipping
probabilities can be encoded in the flipping probability for a
s = +1 spin, rh ≡ r+1,h. The absence of bulk noise imposes
r4 = 0. The standard linear VM is given by rh = 1/2 − h/8.
In the general case, the NLV model depends on four free
parameters, r−4, r−2, r0, and r2. In the following, we adopt
the arbitrary parametrization used in Ref. [11], imposing
r−2 = 0.275, r0 = 1/2, r2 = r−4/4, and taking r−4 ≡ ε as a
free tuning parameter. With this parametrization, the GV point
corresponds to a critical value εc separating a paramagnetic
phase for ε > εc from a ferromagnetic phase at ε < εc.

A. Critical point and critical exponents

As a first step in our analysis of the NLV model, we first
check the results of the authors of Ref. [11] by numerically
evaluating its critical GV point and estimating the value of
the corresponding critical exponents. The critical point can be
estimated by monitoring the density of interfaces ρ(t) and
identifying εc as the value leading to a logarithmic decay
ρ(t) ∼ 1/ ln(t), separating a constant behavior (ε > εc) from
an algebraic decay (ε < εc) [11]. Here we propose a different
approach to determine with high precision the critical point
εc, based on the behavior of the exit probability E(x). Indeed,
ε > εc corresponds to a disordered paramagnetic phase with,
for asymptotically large systems, E(x) = 1/2, while ε < εc

corresponds to an ordered ferromagnetic phase, where E(x) =
�(x), the Heaviside theta function. Therefore, focusing on an
initial density x < 1/2, we should observe E(x) → 1/2 for
ε > εc, E(x) → 0 for ε < εc, and E(x) → const < 1/2 for
ε = εc when increasing the system size L.

In Fig. 1 (main plot) we report the exit probability for x =
0.25 and different values of ε as a function of the lattice size
L. A plateau is obtained for ε � 0.3996, while larger (smaller)
values of ε lead to an increase (decrease) of E(x = 0.25) with
L. We conclude that the critical point of the GV transition
in d = 2 for the NLV model is located at εc = 0.3996(4),
in good agreement with the result inferred from Fig. 3(a) in
Ref. [11], where a behavior for the density of interfaces with
the logarithmic VM form was found.

The properties of the GV universality class can be further
explored by considering several critical exponents, measured
in the vicinity of the critical point εc. These exponents are
usually defined in terms of the susceptibility, measured as the
fluctuations of the magnetization φ = ∑

i si/N , that is,

χ = L2[〈φ2〉 − 〈|φ|〉2], (2)
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FIG. 1. (Color online) Main: Finite-size scaling of the exit
probability at x = 0.25 as a function of system size in the NLV model
in d = 2, computed over at least 5 × 105 independent realizations
of the dynamics for each system size. Inset: Susceptibility and
correlation length as a function of � = |εc − ε| on lattices of size
L = 100 and L = 5000, respectively.

when approaching the transition from the paramagnetic,
disordered phase, and the correlation length ξ which, when
approaching the GV manifold from the ferromagnetic, ordered
phase, can be measured from the relation [11]

ρ(t) ∼ ξ t−1/2. (3)

Close to the critical point, these two quantities depend on
� = |εc − ε|, defining the critical exponents

χ (�) ∼ �−γ , ξ (�) ∼ �−ν . (4)

In Fig. 1 (inset) we present the results of numerical
simulations of the quantities ξ and χ as a function of �. While
the determination of γ is straightforward, the measurement
of ν is hindered by extremely long pre-asymptotic effects in
the curvature-driven regime, leading to a decay of ρ(t) with
an effective numerical exponent smaller than 1/2 [23]. Here,
to obtain information about ξ , we proceed by performing a
linear regression of 1/ρ2(t) as a function of t , and assigning
to ξ the value of the slope thus obtained. Data obtained in this
way [Fig. 1 (inset)] provide the exponent values ν � 0.60,
γ � 1.26. The value of γ is in excellent agreement with
early numerical values [11,13], while ν is rather different
from the estimate of Dornic et al. [11] and compatible with
the result from Ref. [13]. Both exponents are also quite
compatible with the scaling relation γ = 2ν. With respect
to the mean-field values (ν = 1/2, γ = 1, with logarithmic
corrections) proposed by the authors of Ref. [11], from our
data it is difficult to make a definite discrimination for the
exponent ν since the plot of ξ as a function of � can be equally
well fitted to a pure power law with non-mean-field exponent
or to a mean-field value with logarithmic corrections. On the
other hand, the exponent γ seems apparently better fitted with
a non-mean-field power-law exponent.

To check these results we consider the linear VM in the GV
manifold, which in the NLV model introduced by the authors of
Ref. [11] can be approached by setting r−4 = 1, r0 = 1/2 and
taking r−2 ≡ ε → εc = 3/4. Here the state is paramagnetic for

ε < εc, while it is ferromagnetic for ε > εc. In this case, see
Fig. 1 (inset), we obtain γVM � 1.29 and νVM � 0.62, which
confirm the universality of the GV class.

B. Exit probability and consensus time

The analysis presented above confirms the results of previ-
ous studies. However, it also points out a new and surprising
feature, which is only evident in simulations performed out
of the initial symmetric state (x = 1/2). As we can see
from Fig. 1 (main plot), the exit probability of the NLV
model at criticality (on the GV manifold) computed at the
nonsymmetric homogeneous initial state x = 0.25, takes a
value E(x = 0.25) = 0.32 ± 0.02 (i.e., larger than 0.25, well
beyond error bars). This observation hints towards a nonlinear
form of the exit probability, which is confirmed in Fig. 2(a).
In this plot we can see that the exit probability E(x) deviates
from linearity for the whole range of values of x. This deviation
from linear VM behavior extends also to the consensus time
as a function of x, as we can also see in Fig. 2(b).

This departure of the NLV model from linear VM behavior
can be understood by looking in detail at the time evolution
of the magnetization φ(t) in the system, starting from x(0) =
0.25, corresponding to φ(0) = 2x(0) − 1 = −0.5, see Fig. 3.
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FIG. 2. (Color online) (a) Exit probability as a function of the
initial density for different system sizes in the NLV model and the
q = 4 qV model at the respective GV critical points. (b) Normalized
consensus time as a function of x for the same models.
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FIG. 3. (Color online) Average magnetization φ(t) as a function
of time for different system sizes in the NLV model and the q = 4 qV
model at the respective GV critical points, for initial conditions with
magnetization φ(0) = −0.5, corresponding to x = 0.25.

The data show that magnetization is strongly not conserved
at short times, but in fact it experiences a sharp increase until
it stabilizes, for times t � 100, at a plateau with approximate
value φ∞ ≈ −0.37. The peculiar time evolution of the average
magnetization (already noticed by the authors of Ref. [11])
can be related to the drift v(φ) in a Langevin representation
[16], in the form ∂t 〈φ〉 = 〈v(φ)〉 [24]. We estimate the average
drift 〈v(φ)〉 by computing −2/N

∑
i sif (xi) (where xi is the

fraction of neighbors of i in opposite state) and we average
all values of drift with the same magnetization value φ =
1/N

∑
i si . In Fig. 4 we plot 〈v(φ)〉 versus φ for different

system sizes in two distinct temporal regimes. For short times
(t < 100) a sharp rise is present in the vicinity of the initial
magnetization. This is responsible for the initial increase of
magnetization until it reaches the steady state and its conserved
(in average) value. For larger values of time t > 100 this rise
is absent, and the drift takes a flat, almost vanishing form, thus
ensuring conservation of magnetization.
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FIG. 4. (Color online) Average drift as a function of the mag-
netization for different system sizes in the NLV model in d = 2
at the critical point, for system starting at an initial magnetization
φ(0) = −0.5 (x = 0.25). Top: t < 100. Bottom: t > 100.

Given the flipping probability f (x), the origin of the rise
for short times can be understood by considering the initial
uncorrelated condition. In that case the average drift is given
by

〈v(φ)〉t=0 = − 2

N

∑
s

∑
h

sf

(
4 − sh

8

)
Prob(s,h), (5)

where h is the local field (assuming even values between −4

and 4), Prob(−1,h) = (1 − x)( 4
k

)xk(1 − x)4−k , Prob(+1,h) =
x( 4

k
)xk(1 − x)4−k , and k = (4 + h)/2. In the case of the NLV

model defined in Ref. [11], the flipping probability of a +1
spin takes the form f+(1) = r−4, f+(3/4) = r−2, f+(1/2) =
r0, f+(1/4) = r2, and f+(0) = 0. Performing the summations
in Eq. (5) we obtain the drift as a function of magnetization

N〈v(φ)〉t=0 = 1
8φ(1 − φ2)F (φ), (6)

where

F (φ) = 2(1 − φ2)(2r−2 − 3r0) + (3 + φ2)(r−4 − 4r2). (7)

Depending on whether F (φ) is positive or negative, the drift
will have the same sign of φ or the opposite. For the NLV
model, we have r2 = r−4/4; therefore, in this case F (φ) =
2(1 − φ2)(2r−2 − 3r0) and it is negative for r−2 < 3r0/2. For
the values chosen for the NLV model, this inequality is indeed
satisfied, and therefore the initial drift is positive for φ < 0
(x < 1/2), negative for φ > 0 (x > 1/2), and vanishes for
φ = 0 (x = 1/2).

These results clarify the origin of the nonlinear exit
probability E(x) in Z2-symmetric models. Initial conditions
x �= 1/2 imply a strong nonzero drift, which rapidly brings the
fraction of initial spins from its initial value x to a different
value x ′. After this short transient the buildup of spatial
correlations cancels the drift, magnetization is conserved, and
the dynamics becomes identical to that of linear VM. As a
consequence ENLV(x) = EVM(x ′) = x ′ as witnessed in Fig. 3,
where the density of +1 spins, starting from initial conditions
x = 0.25, reaches a plateau x ′ = (1 + φ∞)/2 � 0.315, in
good agreement with the estimate of the exit probability [i.e.,
E(0.25) � 0.32]. A similar mechanism is at the origin of
nonlinear exit probabilities for some opinion dynamics models
in d = 1 [25]. The same argument allows also to estimate the
deviation of the consensus time from the entropic form Eq. (1).
In the short initial transient the fraction of +1 spins quickly
converges to x ′ = E(x). The consensus time is essentially set
by the subsequent slow ordering, which occurs as in the linear
VM, hence we can write [12,26,27]

TNLV(x) = TVM[E(x)]. (8)

Figure 2(b) confirms the correctness of this theoretical es-
timate, and hints towards the relevance of the microscopic
details of the model, which induce a strong drift at short time
scales and lead in this way to nonuniversal features such as a
nonlinear exit probability and anomalous consensus time.

III. q-VOTER MODEL

To confirm the departure of the exit probability and of
the consensus time from the linear voter behavior for Z2-
symmetric models in the GV class, we consider the recently
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introduced nonlinear q-voter (qV) spin model, which is defined
as follows [21]: At each time step t , a random site i is chosen;
additionally q nearest neighbor sites of i are also randomly
selected (allowing for repetition to simplify the analysis), and
their spins examined. If all the q neighbors are in the same
state, the spin at site i takes their common value. Otherwise,
the spin at i flips its state with probability ε. In any case,
time is updated t → t + 1/N . With this definition the flipping
probability in the qV model takes the form f (xi,q,ε) =
x

q

i + ε[1 − x
q

i − (1 − xi)q], where we remind that xi is the
fraction of neighbors of site i in the opposite state. Following
simple mean-field arguments [16,17,21], one can show the
existence of a critical point ε = εc(q), corresponding to GV
behavior, separating a paramagnetic (disordered) phase for
ε > εc from a ferromagnetic (ordered) phase at ε < εc. In a
d = 1 lattice, the qV model can be exactly mapped to the
model of nonconservative voters proposed by the authors of
Ref. [28]. From here, one observes voter behavior at εc = 1/2
for any value of q, while values of ε �= 1/2 lead to ordering
dynamics with a nontrivial, nonlinear exit probability. In the
more interesting case d = 2, numerical evidence presented
in Ref. [21] for the case q = 4 indicated the presence of a
critical point at εc � 1/4. For this value of ε, evidence of voter
behavior was found in terms of the decay of the density of
interfaces and the scaling of the correlation function, both of
which are fully compatible with the VM results.

A. Critical point and critical exponents

Following the lines of the analysis carried out for the NLV
model in Sec. II A, we first determine precisely the critical
point of the q = 4 qV model by performing a finite size scaling
analysis of the exit probability at x = 0.25. In Fig. 5 (main plot)
we report the exit probability for this value of x and different
values of ε as a function of the lattice size L. A plateau is
obtained for ε � 0.249 85, while larger (smaller) values of
ε lead to an increase (decrease) of E(x = 0.25) with L. We

10
1

10
2

L

0.205

0.210

0.215

0.220

0.225

0.230

E
(x

=
0.

25
)

ε=0.24990
ε=0.24985
ε=0.24980

10
-2

10
-1

Δ = |ε
c
 - ε|

10
0

10
1

10
2

10
3

ξ
χ

FIG. 5. (Color online) Main: Finite-size scaling of the exit
probability at x = 0.25 as a function of system size in the q =
4 qV model in d = 2, computed over at least 5 × 105 independent
realizations of the dynamics for each system size. Inset: Susceptibility
and correlation length as a function of � = |εc − ε| for the q = 4 qV
model on lattices of size L = 100 and L = 5000, respectively.

conclude that the critical point of the GV transition in d = 2
for the q = 4 qV model is located at εc = 0.249 85(5), in good
agreement with the previous estimate in Ref. [21]. We further
confirm the fact that the critical q = 4 qV model belongs to the
GV class by computing the exponents ν and γ , Fig. 5 (inset).
We obtain the values ν � 0.57 and γ � 1.28, in reasonable
agreement with our estimates for the NLV model.

B. Exit probability and consensus time

As in the case of the NLV model, the exit probability at x =
0.25 indicates the presence of a nonlinear form, taking a value
E(x = 0.25) = 0.222 ± 0.007, smaller than 0.25 beyond the
estimated error bars. The nonlinearity of E(x) is further
confirmed in Fig. 2(a), where we compare the function E(x)
for x < 0.5 with the linear form valid for linear VM. E(x) is
nonlinear in the whole range of x values, being independent of
L at this critical point εc. The deviation of the qV model from
linear VM behavior extends, similarly to the NLV model, to
the functional dependence with x of the consensus time TN (x)
at the critical point εc, as shown in Fig. 2(b).

Noticeably, in the case of the qV model, the exit probability
is smaller than x, in opposition to the NLV model, where
we observed values E(x) > x. This smaller value of the exit
probability is reflected in the evolution of the magnetization
φ(t), see Fig. 3, which is again strongly not conserved at short
times, exhibiting a sharp drop until it stabilizes, for times t �
50, at a plateau with approximate value φ∞ ≈ −0.55. The time
evolution of the average magnetization is again related with
the drift v(φ). In Fig. 6 we plot 〈v(φ)〉 versus φ for different
system sizes in two distinct temporal regimes. For short times
(t < 50) a sharp dip is present in the vicinity of the initial
magnetization. This is responsible for the initial decrease of
magnetization until it reaches the steady state and its conserved
(on average) value. For larger values of time (t > 50) this dip
is absent, and the drift takes a flat, almost vanishing form, thus
ensuring the conservation of magnetization.

The dip in the drift a short time can also be understood
by computing the drift in the initial uncorrelated condition.
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FIG. 6. (Color online) Average drift as a function of the magne-
tization for different system sizes in the q = 4 voter model in d = 2
at the critical point, for a system starting at an initial magnetization
φ(0) = −0.5 (x = 0.25). Top: t < 50. Bottom: t > 50.
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From Eqs. (6) and (7), and considering that for the qV model
the flipping rates ri can be written as r−4 = 1, r−2 = 3(27 +
58ε)/256, r0 = (1 + 14ε)/16, r2 = (1 + 174ε)/256, and r4 =
1, we obtain

F (φ) = 3
32 [(1 − 2ε)φ2 + 41 − 114ε], (9)

which is a positive function for all φ for ε < 41/114. Thus,
for ε = εc, we find that the initial drift is negative for φ < 0
(x < 1/2), positive for φ > 0 (x > 1/2) and vanishes for
φ = 0 (x = 1/2). Again, for the qV model the nonlinear
exit probability and the anomalous consensus time can be
related through the argument leading to Eq. (8). Indeed,
for x = 0.25, from Fig. 3 we read a stationary large time
magnetization φ∞ ≈ −0.55, corresponding to x ′ � 0.225, is
in good agreement with the estimate of the exit probability
[i.e., E(0.25) � 0.222]. Equation (8) is again valid for the
whole range of values of x, as shown in Fig. 2.

IV. CONSERVED MAGNETIZATION:
KAYA, KABAKÇIOĞLU, AND ERZAN MODEL

From the analysis of the results obtained for the NLV and qV
models, we expect that any Z2-symmetric model belonging to
the GV class and endowed with a nonlinear flipping probability
f (xi) will exhibit a strictly nonlinear exit probability and a
“nonentropic” form of the consensus time TN (x). By the same
token, it is clear that in other type of models belonging to
the GV class, the conservation of the average magnetization
will guarantee a linear exit probability [4] as for linear VM.
The question naturally arises about the form of the consensus
times in those models in the GV class in which conservation
of magnetization is enforced.

To answer this question we have considered the KKE
interface model at the delocalization transition [22], which can
be formulated in terms of a spin systems as follows: At each
time step a spin si,j and one of its neighbors are randomly
selected; if they are equal nothing happens, otherwise the
number n+ of positive neighbors of the negative spin is
computed and, with probability 1/n+, si,j and the neighbor
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FIG. 7. (Color online) Main plot: Consensus time as a function
of x for different system sizes in the KKE model at the delocalization
transition in d = 2. Inset: Evolution of TN (x)/TN (0.5) for x = 0.25
as a function of the system size L.

are made equal. This model belongs to the GV class, as has
been shown in Ref. [11], where a logarithmic decay of the
density of interfaces was observed. In Fig. 7 we plot the
rescaled consensus time as a function of x for different system
sizes. These results indicate that again the consensus time
deviates from the form expected in linear VM. The deviation
from the behavior given by Eq. (1) should be attributed again
to relevant microscopic details of the model. However, the
mechanism inducing the deviation is here necessarily different
from the one responsible for the deviation for the NLV and
qV models (i.e., initial short time-scale nonconservation of
magnetization). Its investigation constitutes an interesting line
for future research.

V. CONCLUSION

In summary, in this paper we have shown, using large-
scale numerical simulations of three different spin models,
that different subclasses of the generalized voter class for
ordering dynamics actually exhibit different behaviors when
unbalanced initial conditions are considered. All elements of
the GV class are broadly characterized by a lack of surface
tension and a logarithmic decay of the density of interfaces in
d = 2. However, when looking at the exit probability and the
consensus time, two types of behavior occur. In one subclass,
encompassing systems, such as KKE, with no Z2 symmetry
but magnetization conserved on average, the consensus time
differs from the entropic form characterizing the VM, while
the exit probability is linear. In the other subclass, composed by
systems with Z2 symmetry and a nonlinear form of the flipping
probability f (x), both the exit probability and the consensus
time differ from the VM. This variation is essentially due
to a nonconservation of magnetization during a short initial
transient. The buildup of spatial correlations rapidly leads to
an effective cancellation of the drift, so that the subsequent
evolution is the same as for the linear VM, but starting from
x ′ �= x so that E(x) and T (x) are modified. The results for
the NLV and qV models reported here constitute an example
of a dynamics in d = 2 with an exit probability different (in
the large system size limit) from the step-function (typical of
dynamics driven by surface tension) or the linear shape of VM.
Nontrivial shapes were previously found only in d = 1 [28,29]
and in the mean field, but not in d = 2. Finally, our numerical
estimates of the critical exponents associated with the GV
transition suggest a value of the γ exponent possibly different
from the mean-field value previously supposed to hold. Further
research is needed to fully clarify this issue, based on numerical
simulations on systems sizes beyond those used in the present
work, which are at the boundary of our computational limits.
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