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4He adsorbed outside a single carbon nanotube
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The phase diagrams of 4He adsorbed on the external surfaces of single armchair carbon nanotubes with radii
in the range 3.42–10.85 Å are calculated using the diffusion Monte Carlo method. For nanotubes narrower than a
(10,10) one, the ground state is an incommensurate solid similar to the one found for H2 on the same substrates.
For wider nanotubes, the phase with the minimum energy per particle is a liquid layer. Curved

√
3 × √

3 registered
solids similar to the ones found on graphene and graphite were unstable for all the tubes considered.
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I. INTRODUCTION

Until recently, the only experimental studies about the
adsorption of quantum gases (4He, H2, and Ne) on carbon nan-
otubes were performed in tube associations called bundles.1–7

In these structures, the only places available for adsorption
are their outer surfaces, in particular the grooves between two
adjacent tubes.8 Other possible locations are the triangular
interstices among three neighboring tubes in the bulk part of the
bundle. However, those places seem to be not populated.2,3,9

The other option is the adsorption on the inner surface of
nanotubes, but to do so one has to remove the caps that close
them at the ends. To our knowledge, there is no experimental
data on this possibility for quantum gases, the only studies
being up to now theoretical.11–15

A recent experimental work showed that it is possible to
isolate a single carbon nanotube and adsorb Ar and Kr on its
outer surface.10 The experimental phase diagrams for these
classical noble gases were qualitatively similar to those on
graphite. For instance, they include a

√
3 × √

3 phase for Ar
on tubes whose diameters are in the range 1–3 nm. However,
recent quantum Monte Carlo simulations16 of H2 adsorbed on
nanotubes with diameters between ∼7 and 22 Å indicate that
this structure was formed only on the widest tube considered,
a (16,16) one in the standard nomenclature.17 In opposition to
what happens on flat surfaces, mainly graphite, in which the
phase diagrams of quantum gases are quite well known from
both theory and experiment, adsorption on curved surfaces
is much less studied. Apart from studies related to wetting
transitions of classical gases on cylinders and spheres,18,19 the
possible new phases that curvature can produce in quantum
gases are still rather unknown20 and it is plausible to imagine
that experiments on isolated nanotubes exposed to quantum
gases in the near future.

In this work, we have used the diffusion Monte Carlo
(DMC) method to obtain the phase diagrams of 4He adsorbed
on isolated carbon nanotubes with radii ranging between 3.42
and 10.85 Å. These correspond to armchair nanotubes between
(5,5) and (16,16) in the standard nomenclature. Our main aim
is to compare our results with both the ones for H2 on the same
surface16 and those for 4He on graphene,21 a flat surface that
can be considered a tube of infinite radius.

The rest of the paper is structured as follows. In the next
section, we describe the DMC algorithm used to solve the
corresponding Schrödinger equations from which we inferred
the corresponding phase diagrams. The phase diagrams them-
selves will be shown in Sec. III, and the paper will close by
summarizing our main conclusions in Sec. IV.

II. METHOD

The diffusion Monte Carlo method allows for solving the
many-body Schrödinger equation exactly if the constituents of
the system are bosons,22 as it is the case of 4He atoms. Since
it is a stochastic method, the results are always produced with
some statistical uncertainties. The different carbon nanotubes
were considered as rigid cylinders in which the individual
carbon positions were kept constant throughout the simulation.
The interaction between any of those carbons and each helium
atom was of the Lennard-Jones type with parameters taken
from Ref. 23, i.e., the carbon-helium interactions act as an
external potential to be included in the Schrödinger equation
to solve. The helium-helium interparticle interaction was
taken to be a standard Aziz potential.24

DMC solves the N -body Schrödinger equation in imaginary
time. The walkers (sets of 3N coordinates) representing the
system evolve in time through a diffusion process and an
energy selection rule named branching. In order to reduce the
statistical variance, the free diffusion movement is corrected
by a drift term that enhances the sampling in regions where
the exact wave function is expected to be reasonably large.
Technically, this importance sampling is implemented by in-
troducing a guiding wave function which avoids the sampling
inside the cores of the interaction and fixes the phase of the
system under study. In particular, for an adsorbed liquid layer,
we use

�(r1,r2, . . . ,rN ) =
∏
i<j

exp

[
− 1

2

(
bHe−He

rij

)5] ∏
i

�(ri),

(1)

where r1,r2, . . . ,rN are the 4He positions. The first part of
the product in Eq. (1) is the Jastrow function that depends
on the distances rij between the atoms. There, bHe−He, is a
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TABLE I. The set of armchair carbon nanotubes considered in
this work and their tube radii (rt ) together with the helium adsorption
energy (e0) in the infinite dilution limit. Also included for comparison
is the same value for graphene, taken from Ref. 21. r0 is the most
probable distance of a single 4He atom to the center of the tube.

Tube rt (Å) r0 (Å) e0 (K)

(5,5) 3.42 6.26 − 94.76 ± 0.06
(6,6) 4.10 6.93 − 97.4 ± 0.2
(8,8) 5.45 8.26 − 100.94 ± 0.09
(10,10) 6.80 9.65 − 103.29 ± 0.08
(12,12) 8.14 11.01 − 104.72 ± 0.04
(14,14) 9.49 12.37 − 105.22 ± 0.07
(16,16) 10.85 13.70 − 104.98 ± 0.06
graphene (Ref. 21) ∞ . . . − 141.64 ± 0.01

variational parameter fixed at 3.07 Å.21 �(ri) is the same
one-body function than the one used in Ref. 21, whose role is
to radially confine the moving particles around the minimum
of the collective sum of all C-He interactions. To do so, it has
a maximum at a distance of ∼2.87 Å from the surface of the
different tubes and decreases monotonously both for larger
and smaller separations.

When the cylinder is coated with a solid layer, we introduce
in the trial wave function a factor,∏

i

exp{−c[(xi − xsite)2 + (yi − ysite)2 + (zi − zsite)2]} ,

(2)

that multiplies the Jastrow part [see Eq. (1)]. With this
approach, each helium atom is mainly sampled in the vicinity
of its associated crystallographic position xsite,ysite,zsite. The
value of the c parameter for the different solid phases were
the same as the ones used for the same phases in a previous
simulation on graphene.21

III. RESULTS

The nanotubes considered in this work, together with their
respective radii (distance from the center of the tube to the
carbon surface) and the energy per particle in the infinite
dilution limit, e0, are shown in Table I. Those energy values
were obtained from simulations including a single helium atom
on a tube 70-Å long. What we observe is that, in general, e0

increases with the tube radius, but it is far from the value
of a flat surface. In Table I, r0 is the most probable radial
distance of a single helium atom to the center of each tube.
In the remaining of the paper, all the adsorbate densities will
be calculated using that distance as the radius of the helium
cylinder that coats the carbon nanotube.

There is no simple explanation for the evolution of e0 as a
function of the tube radius beyond the general increase when
it grows. For instance, e0 is slightly lower for the (14,14) tube
than for the (16,16) one. To try to understand this effect and
its connection with the curvature of the adsorbing surface,
we calculated the difference in the potential energy felt by
a helium particle located 2.87 Å above the center of one
of the hexagons that conform the tube (c) and for an atom
located above the center of a C-C bond (s) at the same

height. This difference is an estimation of the corrugation
of the potential surface. In graphene, a flat structure, those
values are Vc = −175.02 and Vs = −167.49 K. This means a
difference of 7.53 K. That is a measure of the energy barrier
that 4He atoms have to jump in order to explore the graphene
surface. The corresponding average potential energy from a
full DMC calculation of a single helium on that structure is
−151.43 ± 0.05 K, what indicates that the particle explores
also less favorable positions. The respective pairs of potential
energies for the tubes under consideration are Vc = −154.35
and Vs = −147.57 K (a difference of 6.79 K) for the (14,14)
tube, to be compared to Vc = −156.32 and Vs = −148.19 K
(8.13 K) for the (16,16) one. The DMC potential energy
averages are −125.7 ± 0.1 and −125.6 ± 0.1 K, respectively,
i.e., virtually identical. This means that simply summing up
the He-carbon interactions in a reduced number of positions is
not a precise guide neither for e0 nor for the average potential
interaction. The corrugation effect in a single carbon hexagon
is similar for a planar and for a curved environment but the
potential energy and e0 are smaller (in absolute value) than in
planar graphene because the curved adsorbent is globally less
attractive.

To study the possible helium phases on each carbon
cylinder, we follow closely a previous study of H2 adsorbed
on the same systems (see Ref. 16). Liquid phases, i.e., helium
arrangements described by Eq. (1), and curved counterparts
of the registered

√
3 × √

3 phases have been considered.10

Structures with helium atoms regularly distributed on circum-
ferences (or rows) whose defining planes were perpendicular
to the main axis (z) of the cylinders were also studied. Those
solids are defined by the number of absorbed atoms on each
circle and are named accordingly. For instance, if we have
ten atoms on the outside of the circle, the phase is termed
a ten-in-a-row solid. The densities were determined by the
distances between neighboring circumferences along the z

axis. Those rows were rotated half the distance between helium
atoms with respect to each other to maximize the number of
closest neighbors for each helium atom. For completeness,
the wrapped up equivalents to the 3/7 and 2/5 registered
structures proposed by Greywall25 for graphite were also taken
into account.

Figure 1 shows the phase diagram of 4He adsorbed on the
surface of a (5,5) tube. We observe that, as in the case of H2

adsorbed on the same cylinder,16 the ground state is not a liquid
(open squares), but a structure corresponding to a five-in-a-row
solid (full squares). The minimum energy per particle is
−96.10 ± 0.03 K with a density ρ = 0.0620 ± 0.0002 Å−2, as
can be seen in Table II. These results, as the ones corresponding
to incommensurate solids on other tubes, were extracted from
a third-order polynomial fit to the simulation results around
the point of the minimum energy; in this particular case, to
the six points corresponding to the lowest densities of the
set of full squares in Fig. 1. The error bars in Table II were
also obtained from the least-squares fit. ρ = 0.0620 Å−2 is
the lowest density for which a solid is stable; below it, the
system will form a patch of that solid and leave the rest of
surface of the tube empty. On the other hand, when the amount
of adsorbed helium increases, the energy per particle of this
five-in-a-row structure is above the corresponding to a six-in-
a-row incommensurate solid (full circles in Fig. 1). This means
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FIG. 1. (Color online) Energy per helium atom for different
phases adsorbed on a (5,5) tube. Open squares, liquid phase; full
squares, a five-in-a-row atom solid incommensurate phase; full
circles, six-in-a-row arrangement; open up triangles, incommensurate
solid with seven atoms per row; up full triangles, solid of the same
type with four atoms per circumference. The open down triangle
indicates the result for a curved

√
3 × √

3 structure.

that the system should undergo a first-order phase transition
between those arrangements. By means of a double-tangent
Maxwell construction considering both the full squares and full
circles in Fig. 1, we found that the transition region is between
0.0752 ± 0.0002 Å−2 (upper density limit for a five-in-a-row
structure) and 0.0845 ± 0.0002 Å−2 (lower density for which
a six-in-a-row structure is stable). Their respective energies
per particle are −93.67 ± 0.01 and −90.63 ± 0.01 K. To
estimate these energies and densities, we used the simulation
results and interpolated between them a set of third-order
polynomial splines. This means that no particular polynomial
fit for any of the equations of state (represented here by the
complete set of simulation points) was used. None of the other
arrangements considered (liquid, registered

√
3 × √

3 solid, or
other commensurate structures) are stable, since their energies
per particle are larger than the corresponding to any of the
above mentioned structures (see Fig. 1 and Table II). For the
registered solids whose data are given in Table II, the densities
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FIG. 2. (Color online) Same that in the previous figure, but using
as a C-He potential the anisotropic expression of Carlos and Cole
(see Ref. 27).

are given as exact values, since a pure commensurate structure
forms only at a characteristic density. The error bars of the
energies per particle are the statistical uncertainties derived
from their respective diffusion Monte Carlo calculations.

The phase diagram for a (6,6) tube is similar to the already
described for the (5,5) one: the ground state is a six-in-a-row
structure whose minimum density obtained from the same
type of third-order polynomial fit to the simulation results
around the minimum of energy, is 0.0658 ± 0.0005 Å−2. Upon
a density increase, this solid structure suffers a first-order
phase transition at ρ = 0.0836 ± 0.0002 Å−2 (energy per
particle, −95.68 ± 0.03 K) to a seven-in-a-row solid with ρ =
0.0843 ± 0.0003 Å−2 (energy per particle, −91.78 ± 0.02 K).
That none of the other commensurate or liquid phases are
stable can be checked in Table II: all of them have energies per
particle greater that the one for the ground state.

To obtain the data displayed in Fig. 1, we have used the
isotropic C-He interaction of Stan and Cole (see Ref. 23). This
was the interaction used in previous studies of helium adsorbed
on carbon nanotubes (see, for instance, Refs. 11,12,15, and 26).
However, there is another possibility: an anisotropic form of
the same interaction proposed by Carlos and Cole.27 The DMC
results with this latter interaction are displayed in Fig. 2 and

TABLE II. Energies per particle (eb) and equilibrium helium densities (ρ) for nanotubes in which the ground state is an incommensurate
solid. The error bars are given in parenthesis and affect to the last figure shown. The commensurate solid arrangements are represented by a
single density without error bars. The results labeled with a ∗ were obtained using the anisotropic potential of Ref. 27 instead of the isotropic
interaction employed in the other cases.

Phase liquid 2/5 3/7
√

3 × √
3 incommensurate solid

Tube ρ (Å−2) eb (K) ρ (Å−2) eb (K) ρ (Å−2) eb (K) ρ (Å−2) eb (K) ρ (Å−2) eb (K)

(5,5) 0.0364(7) − 95.66(3) 0.0410 − 95.07(8) 0.0439 − 94.63(8) 0.0341 − 94.74(3) 0.0620(2) − 96.10(3)
(5,5)∗ 0.0364(5) − 86.94(2) 0.0410 − 86.70(8) 0.0439 − 85.93(7) 0.0341 − 85.81(3) 0.0598(2) − 87.76(5)
(6,6) 0.0356(2) − 98.65(6) 0.0444 − 97.81(6) 0.0475 − 97.07(7) 0.0369 − 97.01(4) 0.0658(5) − 99.05(4)
(8,8) 0.0358(1) − 102.02(2) 0.0495 − 101.49(4) 0.0529 − 100.56(4) 0.0412 − 101.00(4) 0.0744(9) − 102.50(2)
(10,10) 0.0323(9) − 104.20(2) 0.0534 − 103.74(5) 0.0573 − 102.78(3) 0.0445 − 103.36(3) 0.0730(7) − 104.15(4)
(10,10)∗ 0.0373(1) − 98.31(2) 0.0534 − 98.12(5) 0.0573 − 96.65(5) 0.0445 − 97.93(5) 0.0783(4) − 98.88(4)
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FIG. 3. (Color online) Energy per particle as a function of density
for liquid (open squares), incommensurate (full squares),

√
3 × √

3
(full circle), 3/7 (full triangles), and 2/5 (open diamonds) phases.
The upper set of symbols corresponds to a (8,8) tube, the middle set
to a (10,10) tube and the lowest to a (12,12) cylinder.

Table II. From them, one can see that the ground state is still
a five-in-a-row solid whose minimum stable density is ∼3.5%
lower than the one for the isotropic potential. The energies per
particle in the anisotropic case are ∼8.7 K larger due to a slight
decrease of its potential well depth with respect to the isotropic
model. However, there is no way to discriminate between the
two sets of parameters since, to our knowledge, there is not
available experimental information to compare our simulations
to. Our results show that with the anisotropic interaction
there is also a first-order phase transition at ρ = 0.0787 ±
0.0001 Å−2 (energy per particle, −83.77 ± 0.01 K) to a
six-in-row solid whose lowest density is 0.0883 ± 0.0001 Å−2

and the energy per particle is −80.07 ± 0.02 K. This means
that the transition region is shifted to larger densities. We can
also see in Table II that the anisotropic interaction favors the
incommensurate solid with respect to the liquid: the energy
per particle difference between the ground state and the liquid
minimum is 0.44 ± 0.04 K for the isotropic potential and
0.82 ± 0.05 K for the anisotropic one.

The phase diagram of the (8,8) tube is qualitatively similar
to those of the thinner tubes already described. Its ground state
is an incommensurate solid of the type n-in-a-row, were n is
the nanotube index (n = 8). The main difference is that in the
density range considered (up to ∼0.10 Å−2), there is only one
stable incommensurate structure, i.e., there is no first-order

transition between two incommensurate solids. Both in the
upper part of Fig. 3 and in Table II, it can be seen that neither
the liquid phase nor any of the registered solids are stable
with respect to the incommensurate structure. For the rest
of nanotubes explored in this work, all the incommensurate
solids considered will be of the type n-in-a-row, where n is the
nanotube index.

In Fig. 3, we examine how the phase diagrams evolved
when the tube radii increased. There, from top to bottom,
we show the energy per particle of the different adsorbed
phases on the (8,8), (10,10), and (12,12) tubes. As indicated
above, for the (8,8) nanotube the ground state corresponds to
an incommensurate solid. By increasing even more the tube
radius we observe a progressive tendency towards stability of
the liquid phase. In particular, our results reported in Table II
indicate that the liquid phase absorbed on a (10,10) tube
is essentially as stable as a ten-in-a-row solid, since their
energies per particle are similar within their respective error
bars. This is not true for the (12,12) cylinder, in which the
ground state is clearly a liquid. A third-order polynomial fit
to the liquid energies indicates that its equilibrium density
is 0.0241 ± 0.0009 Å−2 and its energy per helium atom at
this density −105.40 ± 0.02 K. A double-tangent Maxwell
construction allows us to say that upon a density increase, a
liquid at density ρ = 0.0396 ± 0.002 Å−2 undergoes a first-
order transition to a twelve-in-a-row solid whose lowest stable
density is 0.0667 ± 0.003 Å−2. The energies corresponding to
the 2/5 and 3/7 commensurate structures, displayed as open
diamonds and full triangles in Fig. 3, are bigger than those
of the liquids with the same density, and therefore, unstable
structures. We can also see that the curved equivalents to
the

√
3 × √

3 registered solid, whose energies per particle
are displayed as full circles, are not stable either. The use
of an anisotropic C-He potential in the (10,10) nanotube has
basically the same effect than in the (5,5) one: it favors the
stability of the incommensurate solid over the liquid, that now
it is 0.57 ± 0.04 K less stable than a ten-in-a-row structure.

The other two cylinders considered, [(14,14) and (16,16)],
have phase diagrams similar to that of the (12,12) tube.
Their respective ground states are liquids with equilibrium
densities and energies at equilibrium reported in Table III. The
double-tangent Maxwell construction used in the (14,14) tube
to obtain the limits of the transition zone between the liquid and
the corresponding fourteen-in-a-row solid is shown in Fig. 4.
The energy and density limits of the transition zones for those
three tubes are given in Table III. All the commensurate solids
(2/5,3/7, and

√
3 × √

3) are unstable with respect both to
the liquid and to the incommensurate solids in all the cylinders
considered. This can be seen in Fig. 4 for the (14,14) nanotube,
were their energies per particle are represented as an open

TABLE III. Energies per particle (eg) and equilibrium 4He densities (ρg) for tubes in which the ground state is a liquid. As before, the error
bars are given in parenthesis and affect to the last figure shown. The upper stability limits for the liquids (ρu) and the lower densities for which
the incommensurate solids are stable (ρl) are also given, together with their corresponding energies per particle.

Tube ρg (Å−2) eg (K) ρu (Å−2) eu (K) ρl (Å−2) el (K)

(12,12) 0.0241(9) −105.40(2) 0.040(1) −105.28(1) 0.067(1) −105.05(2)
(14,14) 0.0189(9) −106.01(2) 0.043(1) −105.70(2) 0.060(1) −105.42(5)
(16,16) 0.0260(1) −105.85(2) 0.054(1) −105.44(5) 0.066(1) −105.15(4)
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FIG. 4. (Color online) Double-tangent Maxwell construction
solid line) used to obtain the limits of the transition zone between
a liquid structure (dotted line, full squares), and an incommensurate
one (dashed line, open squares). The meaning of the other symbols
is the same as in Fig. 3.

diamond, a full triangle and a full circle, respectively. From
Table III, we are also able to deduce that the equilibrium
densities for the liquid phases (whose average density is
∼0.023 Å−2) are much lower than their metastable counterpart
in graphene21 (0.044 Å−2) and the same happens to the lowest
stability limit of an incommensurate phase: an average of
∼0.064 Å−2 instead of the value 0.08 Å−2 of Ref. 21.

IV. CONCLUSIONS

Diffusion Monte Carlo calculations has allowed us to study
the phase diagrams of 4He adsorbed on carbon nanotubes of
different radius. In principle, the ground state of this system
should be a curved counterpart of the

√
3 × √

3 structure
found in graphite and graphene. This is what have been
experimentally observed for heavier noble gases10 adsorbed
on wider tubes. In fact, any armchair nanotube (n,n) fulfills
the necessary prescription for the formation of a seamless
registered solid on it, i.e., its indexes (n,m) follow the

restriction (n − m)/3 = k, k being an integer. However, as
it can be inferred from the results of Table II, the ground state
of 4He on those tubes is either a liquid or an incommensurate
solid, not a

√
3 × √

3 arrangement. A comparison to the case
of H2 on the same substrates,16 in which the

√
3 × √

3 solid is
the ground state for a (16,16) tube, indicates that, at least for the
widest tubes considered, the weakness of the helium-helium
and helium-carbon interactions are responsible for the lack of
stability of that (or any other) commensurate structure.

Another relevant feature we have found is that for tubes
whose radius is lower than ∼7 Å, the ground state is an
incommensurate solid, whereas from the (12,12) tube up, the
minimum energy structure corresponds to a liquid. This is
probably a consequence of the above mentioned weakness
in the helium interactions combined with the lower density
of the curved

√
3 × √

3 phase in comparison to planar
graphene. Our results for the 4He phase diagrams show a
significant dependence on the curvature of the different tubes.
As Table I shows, the energy in the infinite dilution limit
for a (5,5) tube is ∼10 K larger than the same property
for a (12,12) cylinder. This means that to obtain an energy
per particle closer to the corresponding to a flat structure,
one would have to increase more the number of helium
neighbors of each adsorbed atom for a thinner tube than for
a wider one. This leads to high densities and the formation
of curved solids. These structures are incommensurate rather
than registered because the necessary helium densities are
higher than the corresponding to a

√
3 × √

3 (or any other,
see Table II) commensurate structure. For instance, in the
(8,8) tube, the density of a

√
3 × √

3 curved structure is
0.0412 Å−2 (see Table II), to be compared to 0.0636 Å−2 for
the same arrangement on graphite and to 0.0744 Å−2 of the
incommensurate solid on the same cylinder. However, when
the diameter of the tube grows the curvature of the substrate
is reduced and arrangements with lower densities, i.e., liquids,
become stable.
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