Hybrid tables for speeding-up data accesses in
hybrid database management systems

Joan Guisado-Gémez®, Antoni Wolski?, Calisto Zuzarte®, Josep-Lluis
Larriba-Pey!, and Victor Muntés-Mulero®

! DAMA-UPC, Departament d’Arquitectura de Computadors, Universitat
Politecnica de Catalunya, Campus Nord-UPC, 08034 Barcelona
{joan, larri, vmuntes}@ac.upc.edu
2 IBM Helsinki Laboratory, Finland
antoni.wolski@fi.ibm.com
3 IBM Toronto Laboratory, Markham, Ontario, Canada L6G 1C7
calisto@ca.ibm.com

With the introduction of unexpensive memory, new techniques for reducing
the access time to data stored in databases have been proposed. On the one hand,
buffer pool techniques have been proposed. On the other hand, main memory
database management systems (MMDBMS) have been developed. While buffer
pool techniques are based on speeding up the performance by copying the most
accessed pages in memory, MMDBMSs propose a new paradigm consisting in
designing the internal structures to store the whole amount of data into the
main memory of the system. Although MMDBMSs are fast on the retrieval of
information, they limit the total amount of data to the total amount of memory
available. This restriction may be too strict for many databases whose sizes are
often hundreds or even thousands of gigabytes. As a reaction, dual database
management systems (DDBMS) appeared as a type of database developed with
two different engines. One engine is in charge of providing access to those tuples
that are stored in disk, while there is another engine in charge of providing access
to those tuples that are stored in memory. Note that DDBMSs force tables to
be either in-memory or on-disk. Thus, large tables that do not fit in memory
must be classified as on-disk preventing them from benefiting from main memory
techniques.

In our work [1], we presented TwinS, a hybrid database management system
that aims to exploit the main memory techniques even for those tables that
do not fit completely in memory. The main goal of this proposal is to take
advantage of both the speed of the in-memory engine and the capacity of the
disk. TwinS introduces the new concept of hybrid tables. Thus, one logical table
is split into two physical tables kept on disk and in memory, respectively.
Hence, for one single relation, tuples are partially managed by an in-memory
engine and partially managed by an on-disk engine. This poses a challenge when
it comes to decide the existence and location of a specific row, when performing
an access by using the value of a unique attribute. Accessing the wrong physical
table when locating the tuple will reduce the performance achieved by the in-
memory engine. In order to manage the accesses into the physical tables that
make up a hybrid table, TwinS has the access path mediator (APM). The access



path mediator is implemented using two different approaches: latency priority
(LP) and predictor based (PB). In the first case, the APM takes the latency as
the only information to decide the first physical table to be accessed, i.e. the
table that is in memory. Only if the information is not found, the APM accesses
the table that is stored on disk. In case of applying PB, the APM incorporates
a new kind of structure that is called predictor. The predictor keeps information
at the tuple level and it foresees if a tuple is in the physical table that is stored
in memory or in the physical table that is stored on disk. Predictors must fulfill
three restrictions: i) the access time has to be as fast as possible, ii) they have to
be an accurate structure and iii) they may return false hits but no false misses.
Due to this restriction we decided to base the predictors in a bloom-filter based
structure: Partition Dynamic Count Filters (PDCF). It is a set of counters that
are designed for being memory and CPU efficient. This structure may return
false positives, because different keys can collapse into the same counter, but it
never returns false negatives. The ratio of false positives can be configured by
increasing or decreasing the number of counters that make up the PDCF.

We have compared TwinS with IBM®SolidDB® which is a DDBMS. Our
experiments consists in accessing randomly the tuples of a table with different
assumption of memory available, moreover, we run a set of experiments that
contains a certain amount of queries on data that do not exist in the database. We
compare the results obtained with a hybrid table of TwinS with those obtained
when the table is classified as in-memory and as on-disk in IBM®SolidDB®.
Our results are useful in order to see that TwinS clearly outperform buffer pool
techniques. This is shown through a set of experiments that divide the available
memory between the buffer pool and the space that the in-memory part of the
hybrid table uses. We can also conclude that, in general, as the available memory
increases, the results obtained by TwinS become similar to those obtained by
using in-memory tables of IBM®SolidDB®. This is particularly true in case
that the system has to deal with a certain amount of queries on data that do not
exist in the database. In this particular scenario, the predictor is a very useful
structure in order to reduce unnecessary accesses into the in-memory and the
on-disk part of the hybrid table.

Hybrid tables are a good solution in comparison to all-or-nothing solutions
that allow to improve the overall performance of the system, making our proposal
important for real-time applications.

Acknowledgements: The authors would like to thank the Center for Advanced
Studies (IBM Toronto Labs) for supporting this research. We also thank the Ministry
of Science and Innovation of Spain and Generalitat de Catalunya, for grant numbers
TIN2009-14560-C03-03 and SGR-1187 respectively.

References

1. Guisado-Gamez, J., Wolski, A., Zuzarte, C., Larriba-Pey, J., Muntés-Mulero, V.:
Hybrid in-memory and on-disk tables for speeding-up table accesses. In: DEXA.
pp. 231-240. Springer (2011)



