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Binary fluid mixtures with a negative separation ratio heated from below exhibit steady
spatially localized states called convectons for supercritical Rayleigh numbers. With
no-slip, fixed-temperature, no-mass-flux boundary conditions at the top and bottom
stationary odd- and even-parity convectons fall on a pair of intertwined branches
connected by branches of travelling asymmetric states. In appropriate parameter
regimes the stationary convectons may be stable. When the boundary condition on
the top is changed to Newton’s law of cooling the odd-parity convectons start to drift
and the branch of odd-parity convectons breaks up and reconnects with the branches
of asymmetric states. We explore the dependence of these changes and of the resulting
drift speed on the associated Biot number using numerical continuation, and compare
and contrast the results with a related study of the Swift-Hohenberg equation by
Houghton & Knobloch (Phys. Rev. E, vol. 84, 2011, art. 016204). We use the results
to identify stable drifting convectons and employ direct numerical simulations to study
collisions between them. The collisions are highly inelastic, and result in convectons
whose length exceeds the sum of the lengths of the colliding convectons.
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1. Introduction

Spatially localized states occur in a variety of different physical systems including
reaction—diffusion systems (Lee et al. 1994), nonlinear optics (Vladimirov et al.
2002), ferrofluids (Richter & Barashenkov 2005) and several systems of interest in
fluid mechanics, including natural doubly diffusive convection (Ghorayeb & Mojtabi
1997; Bergeon & Knobloch 2008), magnetoconvection (Blanchflower 1999; Dawes
2007; Lo Jacono, Bergeon & Knobloch 2011), binary fluid convection (Kolodner
1993; Batiste & Knobloch 2005a; Batiste et al. 2006; Mercader et al. 2011a) and
plane Couette flow (Schneider, Gibson & Burke 2010). Spatially localized oscillations
known as oscillons are found in vibrating granular media (Umbanhowar, Melo &
Swinney 1996) and colloidal suspensions (Lioubashevski et al. 1999). The localized
states mentioned above are typically left-right symmetric and hence do not drift. In
contrast, asymmetric localized states in translation-invariant systems are expected to
drift; stationary asymmetric localized states are thus generically only found in systems
with spatial inhomogeneities or boundaries that trap or pin an asymmetric localized
state that would otherwise be in motion.
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In the present work we use binary fluid convection to compute for the first time
spatially localized states that move horizontally and study their properties, including
their collisions. Binary fluid convection is well-known for supporting a large variety
of different localized structures. It is therefore important to distinguish the structures
we study, moving convectons, from the localized travelling waves that have been
studied in this system, both experimentally and theoretically, over a number of years.
Wall-attached localized travelling waves were first discovered in rectangular containers
as reviewed by Kolodner, Surko & Williams (1989) and Steinberg et al. (1989).
Subsequent experiments in annular domains (Bensimon er al. 1990; Niemela, Ahlers
& Cannell 1990) revealed that localized travelling waves are an intrinsic state of
the system whose existence does not depend on the presence of boundaries. Careful
experiments (Kolodner 1991a) showed that such localized travelling waves in general
drift, although they are very sensitive to small inhomogeneities in the experimental
cell. Collisions among such drifting pulses of localized travelling waves have also been
studied (Kolodner 1991b).

Localized travelling waves consist of a travelling wave state that propagates with
phase speed c, under an envelope that is itself moving with a group speed c,. As a
result such states are quasi-periodic; their existence is related to the travelling waves
created in a Hopf bifurcation from the conduction state. In contrast, the states of
interest in the present work are related to steady overturning convection and hence
to a steady-state bifurcation from the conduction state. The structures we study are
moving steady states, and are singly periodic in time. The physics responsible for the
motion is quite different, too. Moving convectons move because they are not left—right
symmetric; in contrast, localized travelling wave packets move because of a non-zero
group speed.

Binary fluid convection is perhaps the first fluid system where stationary spatially
localized states, nowadays referred to as convectons, were observed experimentally
(Kolodner 1993). The origin and properties of these states are now well established
(Batiste et al. 2006; Mercader et al. 2010). In particular, it is known that when
the system possesses reflection symmetry in the midplane (i.e. Boussinesq symmetry)
two types of stationary convectons are present: even-parity convectons and odd-parity
convectons. This observation can be used to generate moving localized states — all that
is required is to break the symmetry that forces the convecton to be stationary. While
this can be achieved, for example, by adding throughflow, we prefer here to focus
on the so-called odd-parity convectons which are stationary because of their point
symmetry, i.e. these convectons are invariant under a left-right reflection followed by
a reflection in the layer midplane. Such convectons can therefore be set into motion
through the simple device of breaking the midplane reflection symmetry, an effect that
is easily achieved by applying different boundary conditions at the top of the layer
than at the bottom. In contrast, even-parity convectons are symmetric under left-right
reflection only, and hence remain stationary when the boundary conditions at the top
are changed. A similar effect results from the breaking of Boussinesq symmetry, for
example, by allowing for temperature-dependent diffusion coefficients or including
quadratic dependence of the density on temperature.

In the system with Boussinesq symmetry odd- and even-parity convectons are
organized in a so-called snakes-and-ladders structure (Burke & Knobloch 2007)
consisting of a pair of intertwined branches of localized states with opposite parity,
interconnected by rung-like branches consisting of asymmetric (and hence moving)
localized states. As one proceeds up this structure the localized states grow in length
by nucleating new rolls on either side in such a way that the parity of the state is
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preserved. We seek here to understand how the snakes-and-ladders structure deforms
when the midplane symmetry is progressively broken and the odd-parity states freed
to move. We also seek to use the moving structures thereby created to study the
properties of collisions between them. Since binary fluid convection is a driven
dissipative system (stationary convectons are characterized by a balance between
energy input from the lower boundary and energy dissipation within the convecton) we
do not expect elastic collisions such as occur in completely integrable soliton-bearing
systems.

In the past, simple models based on the Swift-Hohenberg equation have proved to
provide reliable, albeit qualitative, predictions of the behaviour of convecton-bearing
systems. In a recent paper Houghton & Knobloch (2011) used such a model to
describe the setup proposed above. Specifically, Houghton & Knobloch (2011) showed
that the loss of midplane reflection symmetry will allow odd-parity convectons to
move, and described the complex sequence of transitions that must take place as the
midplane symmetry is broken more and more strongly. As part of this work they
also studied collisions between moving localized structures and collisions of moving
structures with a stationary one. These collisions proved highly dissipative (inelastic),
in contrast to collisions between solitons. In this paper, we show that the predictions of
the Swift-Hohenberg model are once again remarkably accurate, despite the fact that
this model has never been derived systematically as an evolution equation for any fluid
system. As such our work demonstrates the utility and predictive power of this class of
simplified models.

We mention that in many translation-invariant systems a left-right symmetric
localized state may undergo a spontaneous symmetry-breaking instability as
parameters are varied, resulting in a transition to spontaneous motion. Such
bifurcations are usually referred to as parity-breaking bifurcations (Greene & Kim
1988; Coullet, Goldstein & Gunaratne 1989). In binary convection the termination of
the branch of travelling waves on the branch of steady overturning convection provides
an example of such a bifurcation involving spatially extended states. Our calculations
provide another example: the bifurcation from symmetric stationary convectons to
drifting asymmetric convectons. In all such bifurcations the speed of the asymmetric
convecton decreases as the square root of the distance from the parity-breaking
bifurcation that creates it.

All our calculations are performed for experimentally realistic parameter values
and employ no-slip, no-mass flux boundary conditions at the top and bottom, and a
fixed temperature boundary condition at the bottom. Cross-diffusion is included by
means of the Soret effect but the Dufour effect is omitted. The low value of the
(inverse) Lewis number characteristic of liquid mixtures limits the aspect ratio of the
layer that is accessible to our continuation technique. Two mixtures are studied, a
typical water—ethanol mixture and a typical He’~He* mixture. Both systems behave
in a similar way when the Boussinesq symmetry is broken although stable moving
convectons are more easily found in the latter case.

This paper is organized as follows. In § 2 we introduce the equations for binary fluid
convection and the boundary conditions we use. Section 3 summarizes the results in
the symmetric case while §4 explores the behaviour of the system as the midplane
symmetry is progressively broken. Collisions between moving convectons are studied
in §5 and the results compared with those from the Swift-Hohenberg model in § 6.
Brief conclusions follow in § 7.
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FIGURE 1. (Colour online) Sketch of the assumed geometry with partially conducting
horizontal boundaries.

2. Formulation of the problem

Binary liquid mixtures are characterized by cross-diffusion quantified by the
separation ratio S that is proportional to the Soret coefficient of the mixture. When
S < 0 the heavier component (of concentration C) migrates up the temperature
gradient. Thus in a layer heated from below the destabilizing temperature gradient
competes with a stabilizing concentration gradient that develops in response to the
heating.

2.1. Boundary conditions

We consider two-dimensional Boussinesq convection between boundaries responsible
for the boundary conditions

- _ B*(T T) atz=0 2.1
dz gt mEeEw '
dT B
=T, - Ty) atz=d, (2.2)
dz d

where d is the layer depth, 7;, Ty are the temperatures of the lower (L) and upper
(U) heat baths, and 7_, T, are the temperatures in the fluid next to the lower and
upper boundaries (see figure 1). Here By are the Biot numbers of the boundaries that
quantify the thermal mass of each boundary relative to that of the fluid in between:
conducting boundaries correspond to the limit B — oo while an insulating boundary
corresponds to B — 0. Note that, by hypothesis, T;, Ty are constants independent of
time, while 7_, T, fluctuate in response to the motion of the fluid.

In the standard description of the Rayleigh-Bénard problem one describes the
system in terms of the dimensionless temperature difference across the fluid in
the conduction state, regardless of whether this state is stable or not. In this state
T'=dT/dz = —AT¢/d everywhere, and so

AT =B (T, —T.) =B (T, — Ty). (2.3)
Here T2 are the temperatures at the bottom and top of the fluid in the conduction state.
Since T¢ — T = AT* it follows that
B.B_
B.B_+B,+B_’

and is therefore independent of the dynamics of the system, provided 7; — T remains
fixed. Moreover, in view of the equivalent relation

AT = (T, — Ty) (2.4)

B,B_AT —d(B,T +B.T,)
N B,B_+B, +B_

AT

; (2.5)
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the temperature difference AT =T_ — T, across the fluid may indeed change during
the evolution of an instability but must be compensated by a corresponding variation
in the temperature gradients (indicated by a prime) at the top and bottom. We propose
therefore, following Clune (1993) and Prat, Mercader & Knobloch (2000), to define
a modified Rayleigh number based on the quantity AT° (as opposed to AT) as the
proper bifurcation parameter for the system.

To do this we non-dimensionalize the equations in the usual way, expressing the
temperature 7 in units of AT, distances in units of the layer depth d and time in units
of d?/k, where « is the thermal diffusivity of the fluid. We define the dimensionless
control parameter by the relation

ag(T, — Ty)d® T, — T
R = 8 Twd” _ p T =Ty

KV AT¢

where Ra’ is defined by analogy to the usual Rayleigh number, i.e. Ra’ is proportional
to the temperature difference across the fluid in the conduction state:

(2.6)

Ra — agd?

AT*. 2.7)
KV

Note that both Ra’ and Ra” defined in this manner remain constant for fixed external
conditions, in contrast to the usual Rayleigh number

_ agATd’
kv

Ra (2.8)
In the limit B. — oo the two Rayleigh numbers, Ra and Ra’, become identical. In the
following we write R = Ra’ and use R as the Rayleigh number specifying the thermal
forcing of the system.

In the following we set B_ = oo (perfectly conducting bottom boundary) and
decrease B, from infinity to zero, thereby progressively degrading the thermal
conduction properties of the upper boundary. In fact, the mathematical limit B, =0
requires a change in the thermal forcing, from fixed temperature to fixed heat flux
as described by Falsaperla & Mulone (2010) and in greater detail by Proctor (1981).
The corresponding boundary condition on the temperature fluctuation 6 is 6, = 0. In
contrast, when B, = oo the fluctuation vanishes on the boundary (6 = 0).

2.2. Basic equations

In this paper we focus on two-dimensional convection. A two-dimensional formulation
suffices for studies of both convectons and spatially localized waves, both of which
are characteristic of binary fluid convection. Indeed, past studies have demonstrated
that a two-dimensional formulation of the problem provides an excellent description of
experimental observations made in relatively narrow annuli (Kolodner 1991a,b; Barten
et al. 1995).

The system is described by the dimensionless equations (Batiste et al. 2001)

u,+ W -Vyu=—-VP+oR[(1 +5)0 — Snlz + oVu, (2.9)
0, + (V)0 =w+ V%0, (2.10)
n+ @-Vn=1tVn+ V0, (2.11)

together with the incompressibility condition

V.u=0. 2.12)



Travelling convectons in binary fluid convection 245

Here u = (u,w) is the velocity field in (x,z) coordinates, P is the pressure, and
0 denotes the departure of the temperature from its conduction profile, in units of
the temperature difference AT > 0 across the layer (see (2.4)). The variable n is
defined such that its gradient represents the dimensionless convective mass flux. Thus
n=60— X, where C=1—z+ X is the concentration of the heavier component
in units of the concentration difference that develops across the layer as a result of
cross-diffusion in response to the temperature difference AT¢ across it. The system
is specified by four dimensionless parameters: the Rayleigh number R defined in the
preceding section (see (2.7)), the separation ratio S that measures the concentration
contribution to the buoyancy force arising from cross-diffusion, the Prandtl number
o =v/k and the Lewis number t = D/k, in addition to the aspect ratio I" of the
domain. Here v is the kinematic viscosity while D and « are, respectively, the solutal
and thermal diffusivities. In writing these equations we have ignored the Dufour effect.
This is appropriate for water—ethanol mixtures and for normal He’-He* mixtures
provided the mean temperature is sufficiently far from the A point of the mixture (Lee,
Lucas & Tyler 1983).

In this paper we explore the properties of the above system with no-slip
impenetrable boundary conditions corresponding to

u=w=n,=0 onz=0,1 (2.13)
and the temperature boundary conditions
1-p8)8,+B8=0 onz=1, 6=0 onz=0. (2.14)

In the following we refer to 8 =B, /(1 + B,) <1 as the Biot number of the upper
boundary. In particular 8 =1 when the temperature of the top boundary is fixed
(perfectly conducting boundary) while 8 = 0 corresponds to a thermally insulating
boundary. Periodic boundary conditions with period I" are used in the horizontal. We
remark that these equations remain valid in the limit 8 — 0, independently of the way
this limit is interpreted.

When g =1 the system (2.9)—(2.14) possesses midplane reflection symmetry. As
a result stationary solutions of both even- and odd-parity are present and these
satisfy (u(x, z), w(x, 2), 0(x, 2), n(x, 2)) = (—u(—x, 2), w(—x, 2), 8(—x, 2), n(—=x, z)) and
(ulx, 2), wx, 2), 0(x, 2), n(x,2)) = —(u(—x,1—2), w(—x,1-2),0(—x,1—2), n(—x, 1 —
7)), respectively, relative to a suitable origin in x. Thus even solutions are invariant
under the reflection x — —x (relative to x = 0) while odd states are point-symmetric.
These symmetries in turn imply that both states are stationary and hence do not drift
(Batiste et al. 2006). Of course, asymmetric solutions obeying neither symmetry are
also present but these are not expected to be stationary except at isolated values of the
parameters of the problem.

Once B # 1 the midplane symmetry is lost and the only stationary solutions are
those of even parity. The odd-parity states are no longer point-symmetric and hence
are expected to drift, i.e. they become travelling waves.

Throughout this paper we focus on spatially localized solutions with the above
properties, employing a periodic domain of aspect ratio I" = 14 as used in our earlier
study of the § =1 system (Mercader et al. 2011a). This modest aspect ratio used
is large enough to allow well-localized structures and permits a much more detailed
study of the problem than the aspect ratio I" = 60 used by Batiste et al. (2006).

Most of the results obtained below are for water—ethanol mixtures with S = —0.1,
o =7, 1 =0.01. When g =1 the conduction state loses stability at a Hopf bifurcation
at Ry ~ 1909. This bifurcation generates branches of travelling (TW) and standing
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waves (SW) of which the TW branch is computed by Mercader, Batiste & Alonso
(2006). We also consider the case S = —0.5, o = 0.6, v = 0.03, appropriate for
liquid He’-He* mixtures (Sullivan & Ahlers 1988; Batiste & Knobloch 2005a,b),
for which the snaking interval lies well within the region of stability of steady
periodic convection and convectons are more likely to be stable, and use the resulting
convectons to study convecton—convecton collisions in domains with aspect ratio
I' =40 and I" = 60.

2.3. Numerical method

Equations (2.9)—(2.12) are solved using a spectral code, with a Fourier expansion
in the horizontal and a Chebyshev collocation method in the vertical. For the
time evolution a second-order time-splitting algorithm proposed by Hugues &
Randriamampianina (1998) is used. To calculate steady solutions in an efficient
manner we have adapted a pseudo-spectral first-order time-stepping formulation to
carry out Newton’s method (Mamum & Tuckerman 1995), and implemented a
continuation code to follow branches of stationary solutions. The travelling solutions
are computed as steady solutions in a moving frame, where the speed v of the wave is
a nonlinear eigenvalue (Mercader et al. 2006).

Numerical continuation for I" =14, S= —0.1, 0 =7, 7 =0.01 typically requires
32 collocation points in the vertical direction and 650 for the Fourier pseudospectral
evaluation. Direct numerical simulations of collisions in periodic domains with periods
I' =40 and I = 60 and parameters S = —0.5, 0 = 0.6, T = 0.03 require 1200 spectral
points for the Fourier pseudospectral evaluation and a time step At = 10~* in units of
the vertical thermal diffusion time.

Our results are presented in the form of bifurcation diagrams showing either the
dimensionless convective heat flux through the layer, Nu — 1 = f w8 dx, or the Kinetic
energy per unit length, & = 2I')™! /, r u®> + w?dxdz, as functions of the Rayleigh
number R. For moving structures the bifurcation diagrams are accompanied by plots of
the drift speed v as a function of R.

3. The symmetric case: § =1

In figure 2(a) we show a portion of the snakes-and-ladders structure of the pinning
region in the case with midplane symmetry. One of the snaking branches corresponds
to localized states with even parity, while the other shows odd-parity states. As in
standard snaking the convectons grow in spatial extent as one follows either branch
upward, and do so by nucleating new cells at either end. These cells are weak at
the left saddle-nodes but strengthen as one follows each branch upward from the
left saddle-node to the next right saddle-node. In contrast to earlier studies of this
process (Batiste et al. 2006; Mercader et al. 2011a) we have also included three
rung states, labelled A;, A,, A;, consisting of drifting asymmetric states. Figure 2(b)
shows one example of such a solution from each branch, corresponding to the filled
circles in figure 2(a). Figure 3 shows the corresponding drift speeds. The asymmetric
states also grow in length as one moves from rung to rung. Along each rung the
degree of asymmetry changes continuously, from an even-parity state at one end to
an odd-parity state at the other. Thus the drift speed v vanishes at either end of
the branch. However, in contrast to the standard snakes-and-ladders structure (Burke
& Knobloch 2007), some of the rung states terminate on the right on what would
normally be the stable part of the snaking branch. This is the case for the middle
rung which terminates on the even-parity states below the right saddle-node, and does
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FIGURE 2. (Colour online) (a) Bifurcation diagram showing the snakes-and-ladders structure
of the pinning region when S = —0.1, 0 =7, T = 0.01 and g8 = 1. The snaking branches
correspond to stationary convectons with even and odd parity, while the branches labelled
Ay, A, and A; are rung states consisting of drifting asymmetric states. (b) Right-travelling
convectons corresponding to the filled circles in the bifurcation diagram visualized in terms
of contours of constant temperature fluctuation 6 (upper panels) and contours of constant
concentration C (lower panels).

so via an additional saddle-node or fold on the branch. The net effect of this type
of termination is two-fold. First, the extent of the potentially stable part of the even-
parity branch is reduced, and second, the asymmetric states near the end point may
acquire stability. The former effect has recently been seen in the Swift-Hohenberg
equation with additional non-variational terms (Burke & Dawes 2011). In our case
we do not in fact compute the stability properties of the individual branches, and
only test for stability occasionally using a time-stepping code. Figure 3 reveals one
additional difference: the drift speed along the branch A, behaves differently from
the speeds along the A; and A; branches. At the left end the branch bifurcates close
to the saddle-node of the odd-parity states and, as a consequence, v increases much
more rapidly than the square-root behaviour along the A; and A; branches, where the
corresponding bifurcation corresponds to a non-degenerate parity-breaking bifurcation.
Beyond this initial phase the speed along A, grows linearly with Rayleigh number
almost until the fold at the right, where it drops precipitously to zero. Owing to the
prominent overshoot (figure 3) the drift speed along A, in fact changes sign just after
the fold even though the solution structure does not change significantly. Evidently the
nonlinear eigenvalue v is exquisitely sensitive to the solution profile.

On a larger-scale (not shown) both snaking branches terminate together on a branch
of periodic convection with seven pairs of cells within the periodic domain I" = 14,
hereafter P; (Mercader et al. 2010). The termination point lies just below the fold
on this branch, as in other problems of this type (Lo Jacono, Bergeon & Knobloch
2010; Beaume, Bergeon & Knobloch 2011). For our choice of parameters the length
I' =14 is very close to 7A., where A, is the critical wavelength at onset of convection.
Consequently the domain chosen favours the natural wavelength of convection for the
parameter values used.

It is important to observe that the snaking branches shown in figure 2(a) are in
fact double (Mercader et al. 2011a). This is because there are two even-parity states,
related by midplane reflection symmetry. Likewise, there are two odd-parity states,
also related by midplane symmetry. The rung states have multiplicity four since each
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FIGURE 3. The drift speeds v corresponding to the asymmetric rung states A;, A, and A;
shown in figure 2. States obtained by reflection in the vertical plane through the convecton
centre or by reflection in the midplane drift with speed —v.
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FIGURE 4. (Colour online) Bifurcation diagram for 8 = 0.95 showing the branch of steady
overturning convection with 14 rolls in the domain (P, solid line), the branch of travelling
waves (TW, dashed line) and a pair of snaking branches of stationary even-parity convectons.

state can be separately reflected in the midplane and left to right. Because the states
are related by symmetry they are not distinguished in a bifurcation diagram such as
figure 2(a). However, their multiplicity is important since it indicates that even-parity
branches will split once the midplane reflection symmetry is broken, while the odd-
parity states will still be related by left-right reflection and so will continue to lie on a
single branch in the bifurcation diagram. The rung states will likewise split into a pair
of branches. These theoretical predictions are confirmed by explicit calculation in the
next section.

4. The asymmetric case
4.1. The nearly symmetric case: B = 0.95

In figure 4 we show the corresponding bifurcation diagram when 8 = 0.95. The figure
is almost identical to the corresponding figure in the symmetric case § = 1 and shows
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FIGURE 5. (Colour online) (a) Bifurcation diagram for 8 = 0.95 showing a pair of branches
of stationary even-parity convectons (barely distinguishable), and a pair of branches of
drifting convectons labelled Z branch and S branch. (b) The drift speed along the Z and S
branches. The prominent hook seen in figure 3 is now absent.

the branch of steady periodic states with 14 rolls within the domain, labelled P,
as well as the branch of spatially periodic travelling waves, labelled TW. The TW
bifurcate subcritically from the primary Hopf bifurcation (together with a branch of
standing waves, not shown) and terminate in a parity-breaking bifurcation on the P;
branch. As a result the P; state is unstable below this termination point but stable
above it. The snaking region of even states is present in the region where the P
state is stable, suggesting that long, even-parity convectons will be stable. The splitting
of the even-parity localized states is too small to be visible on the scale of the
figure. Consequently, we show in figure 5(a) an enlargement of a portion of the
figure corresponding to the same parameter range as figure 2(a). In addition, we have
included the branches arising from the odd-parity and asymmetric states. These take
two forms, hereafter referred to as S and Z branches (Houghton & Knobloch 2011).
Both form by the breakup of the pitchfork bifurcations on the odd-parity states that
generate the asymmetric states along the rung states. The predicted splitting of the
even-parity states is visible in the figure as is the splitting of the rung, one part
of which forms part of an S branch while the other forms part of a Z branch. A
careful examination shows that the Z branch connects the two even-parity branches
produced by the splitting of the even-parity states while the S branch connects an
even-parity branch to itself. The stability properties along these branches are expected
to be inherited from those of the B =1 case. Thus the drifting states along the
middle portion of the Z branch are expected to be potentially stable (and likewise the
solutions on the portion of the branch near the right termination point), while none of
the states along the S branch are expected to be stable, except for those very near the
upper end of the S branch, below the rightmost fold on the branch.

In figure 5(b) we show the corresponding speeds v. The speed vanishes near either
end of the S and Z branches; it is also small in the location corresponding to the
breakup of the pitchfork on the branch of odd-parity states, where it may in fact
pass through zero. Along the Z branch the drift speed is maximum near the top right
fold and again near the bottom right fold just prior to termination where it drops
precipitously to zero. The situation is repeated along the S branch, with maximum
drift speed near the top and bottom right folds. Overall, the broken midplane reflection
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Form Ry Uy R, v

S 19532 —0.63x1072 2135.6 1.26 x 1072
S 1924.6 0.51x 1072 18922 0.75x 1072
Z 1953.2 0.56 x 1072 1890.6 0.81 x 1072
S 1859.2 0.48x 1072 1874.5 0.92x 1072
Z 1857.5 0.77x 1072 1875.3 0.97 x 1072
S 1851.0 0.58x 1072 1870.3 1.40 x 1072
Z 1850.7 1.05x 1072 1869.9 1.43 x 1072
S 1848.7 0.71x107%2 1864.3 2.02 x 1072
Z 1845.9 1.19x 1072 1863.9 2.04 x 1072
Z 18464 —0.66x 1072 1855.2 0.48 x 1072

TABLE 1. Rayleigh numbers R and drift velocity v at the two velocity maxima along
each S and Z branch when g = 0.95, proceeding up the snakes-and-ladders structure in the
direction of increasing Nu. The subscripts s and [ indicate the location of the maxima on
the short (s) and long (/) branch segments, respectively. The type of branch, S or Z, is also
specified. The fourth and fifth entries correspond to figure 5(a,b).

has a large effect on the Rayleigh number dependence of v along the segments of
the S and Z branches arising from A; and A; in figure 2 but not along the segment
arising from A, (figure 3). We emphasize that for the present parameter values the
speed of the convectons generally increases as one progresses up the snaking structure,
indicating that longer convectons typically travel faster than small convectons (see
table 1). We note, however, that since we have kept the spatial period I fixed for
all our computations, longer convectons are closer to their periodically distributed
neighbours, implying the existence of steeper concentration gradients between them.
These gradients are in turn set up by lateral pumping as discussed already by
Batiste et al. (2006). Thus the convectons do not in fact propagate through identical
backgrounds and this affects their speed. Since the convecton speed v is in general
slow, this pumping process is essentially as described by Batiste et al. (2006); however,
as v increases the contours in the comoving frame may open up resulting in much
more efficient, non-diffusive transport through the structure (Knobloch & Merryfield
1992).

Figure 6(a) shows the solution profiles along the Z branch in figure 5(a) at the
locations indicated by solid dots while figure 6(b) shows the corresponding profiles
along the S branch. Each of these solutions drifts to the right. The top panel in
figure 6(a) reveals the asymmetry between the fore and aft rolls that is responsible
for the rightward drift, and likewise for the bottom panel in figure 6(b). The middle
panels also exhibit fore-and-aft asymmetry but this time these states drift owing to
broken midplane symmetry. Since S is close to the symmetric case f =1 this drift
is slower. However, in each case the concentration contours peak at the trailing end
of the convecton suggesting that the structure is being ‘pushed’ by the asymmetry in
the concentration field. The two solutions at R = 1851 result from a slight splitting
of an asymmetric rung state. When = 1 these states are related by the Boussinesq
symmetry and hence drift in the same direction. When the Boussinesq symmetry is
broken the two states are no longer related by symmetry but both continue to drift to
the right. However, this time the concentration gradient across either structure is very
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FIGURE 6. (Colour online) Contours of constant temperature fluctuation 6(x,z) and
concentration C(x, z) on (a) the Z branch and (b) the S branch at locations indicated by
solid dots in figure 5(a). All solutions drift to the right and are unstable.
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FIGURE 7. (Colour online) (a) The lower portion of the bifurcation diagram for g = 0.95
showing a pair of branches of even convectons and a pair of S branches of drifting convectons.
(b) The drift speed along the S branches.

weak and the leading roll rotates clockwise on the Z branch but counterclockwise on
the S branch.

In figure 7 we show the corresponding behaviour along the small-amplitude part
of the snaking branches. The snaking is imperfect here and the S and Z branches
no longer alternate. Indeed, figure 7(a) reveals the presence of two consecutive S
branches, connecting an even-parity branch to itself. One likewise finds departures
from the regular behaviour once the periodic domain is almost full, and the branches
leave the snaking region (Mercader et al. 2011a).

4.2. Intermediate values of B

In figure 8(a) we show the bifurcation diagram for 8 = 0.5. For this value of S the
splitting of the even-parity states is much larger but the S and Z branches remain
much as before. Figure 8(b) shows the corresponding drift speeds and reveals that the
maximum drift speed along the Z branch is now associated with the first fold on the
right instead of the second fold on the right, cf. figure 5. The dominance of the first
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FIGURE 8. (Colour online) (a) Bifurcation diagram for 8 = 0.5 showing a pair of branches
of stationary even-parity convectons (solid and dashed lines), and a pair of branches of
drifting convectons labelled Z branch and S branch. The solid (dashed) lines correspond to
convectons with rising (descending) flow in the centre. (b) The drift speed along the Z and S
branches.
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FIGURE 9. (Colour online) Bifurcation diagrams for (a) 8 = 0.5, (b) = 0.3, showing the
two branches of even-parity convectons together with the branches of periodic convection (Pg)
and travelling waves (TW). The snaking solid (dashed) lines correspond to convectons with
rising (descending) flow in the centre. In both cases the P¢ branch is stable only above the
filled circle.

fold develops gradually as B decreases and is shared by both Z and S branches. At
the same time the drift speed near the second fold, i.e. the point arising from the
reconnection of the branches of odd and asymmetric convectons, also increases as S
decreases.

Figures 9(a) and 9(b) compare the resulting bifurcation diagrams for 8 = 0.5 and
B = 0.3, respectively. The figures are quite similar although the saddle-node on the
P¢ branch moves to lower Rayleigh numbers as B decreases. At the same time the
Nusselt number decreases. This is of course a consequence of the reduced conductivity
of the upper boundary. This reduction manifests itself in increased wavelength of the
convection — for both values of 8 the convecton branches terminate on the branch Pg
with 12 rolls in the domain instead of 14 rolls.
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FIGURE 10. (Colour online) (a) Bifurcation diagram for § = 0.3 showing a pair of branches
of stationary even-parity convectons (solid and dashed lines), and a pair of branches of
drifting convectons labelled Z branch and S branch. (b) The drift speed along the Z and S
branches.
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FIGURE 11. (Colour online) The bifurcation diagram for B = 0, corresponding to an
insulating upper boundary, showing the two snaking branches (solid and dashed lines) of
even-parity convectons together with the branches of periodic convection (Ps) and travelling
waves (TW). The Ps branch is now unstable throughout most of the pinning region.

More significantly, as § decreases the termination of the TW branch on Pg also
moves to lower Rayleigh numbers (as does the primary Hopf bifurcation that creates
it). However, the convecton branches move to lower Rayleigh numbers slightly faster,
so that for g = 0.3 the termination point of the TW branch now falls within the
snaking region, suggesting reduced stability range for the localized states, cf. Jung
& Liicke (2007). For completeness and comparison with figure 8(a,b), we present in
figure 10 the corresponding results for the S and Z branches.

4.3. Insulating upper boundary: B =0

Figure 11 shows the bifurcation diagram for the case 8 = 0. The snaking region is
now almost entirely in the region of unstable Ps, the preferred number of rolls at this
value of B being 10. This is a reflection of the tendency for insulating walls to favour
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FIGURE 12. (Colour online) (a) Bifurcation diagram for 8 = 0 showing a pair of branches of
stationary even-parity convectons (solid and dashed lines), and a pair of branches of drifting
convectons labelled Z branch and S branch. (b) The drift speed along the Z and S branches.
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FIGURE 13. (Colour online) (a) The lower part of the bifurcation diagram for even-parity
convectons when B = 0. (b) The convectons corresponding to the filled circles in the
bifurcation diagram visualized in terms of contours of constant temperature fluctuation 6
(upper panels) and contours of constant concentration C (lower panels). All three states
consist of a pair of rolls with fluid rising in the centre.

larger-scale patterns (Proctor 1981; Knobloch 1989). However, even in this extreme
case the Z and S branches are still present (figure 12).

It is of interest to examine the behaviour of the solution branches for this value of
B both at small amplitude (figure 13) and at large amplitude (figure 14). Figure 13(b)
shows three solution profiles at increasing amplitude (decreasing Rayleigh number)
showing intensification of the rising plume in the centre and the broader descending
plumes on either side. In contrast, near the termination of the branch at the upper
end the branch undergoes several unexpected gyrations (figure 14a). The top panel in
figure 14(b) shows a structure that is almost periodic but as one follows the branch
further the solution departs from this state and creates noticeable modulation at either
end of the domain. This modulation results in a state that is dominated by three rising
plumes in the centre, with a pair of weaker rising plumes on either side. Ultimately
these ‘defects’ fill in again, and the branch terminates successfully on Ps near its fold.
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FIGURE 14. (Colour online) (a) The upper part of the bifurcation diagram for even
convectons when 8 = 0 showing an unexpected loop prior to the termination of the branch
on Ps. (b) The convectons corresponding to the filled circles in the bifurcation diagram
visualized in terms of contours of constant temperature fluctuation 6 (upper panels) and
contours of constant concentration C (lower panels). The solution at R = 1520 has adjusted
the width of the descending flow near the left and right boundaries in order to terminate on the
branch Ps of periodic states (not shown).

This type of behaviour is a consequence of the finite period I" of the domain, and
more specifically, of the incommensurability between the wavelength selected by the
fronts at either end of the convectons and the prescribed period (Bergeon et al. 2008;
Dawes 2009).

5. Colliding convectons

Now that we have been able to make convectons undergo spontaneous translation by
changing the boundary condition at the top boundary we may also examine collisions
between them. For this purpose we need to identify a stable drifting convecton
and the work of Mercader et al. (2011b) suggests that conditions for stability with
water—ethanol parameters are more easily satisfied for smaller |S|. However, such
convectons drift slowly and we have found it advantageous to use parameters for
He’-He* mixtures (Sullivan & Ahlers 1988; Batiste & Knobloch 2005a,b) in order to
obtain stable convectons that drift relatively rapidly.

Figure 15(a) shows the midplane temperature fluctuation 6(x,z = 1/2) for a stable
convecton at R = 2750 moving to the left with speed v = —0.016. The panels above
and below show contours of constant temperature fluctuation 6(x, z) and the associated
concentration C(x, z) at the initial (f = 0) and final (r = 100) times. The convecton
leads with a clockwise roll, i.e. it entrains high-concentration fluid at the leading edge
while entraining low-concentration fluid at the trailing edge. In this case the convecton
is therefore ‘pulled’ by the concentration profile, i.e. the opposite of the situation
shown in figure 6(a), middle panel, in which the fore and aft rolls also rotate in a
clockwise direction but the structure drifts to the right. The solution in figure 15(a)
exhibits strong concentration pumping (Batiste et al. 2006) resulting in a marked
concentration gradient that extends across the convecton. However, despite its motion
the temperature and concentration fields within the convecton are exactly in phase.
This is in contrast to travelling waves (and localized travelling waves) in which these
fields are always out of phase (Barten et al. 1995). In such states the phase difference
is responsible for the motion of the wave and is in turn maintained by the motion.
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FIGURE 15. (Colour online) (a) A stable left-travelling convecton in a I" = 20 periodic
domain at Ra = 2750 shown in the form of a space-time plot showing the midplane
temperature fluctuation 6(x,z = 1/2,¢) with time increasing vertically upwards. The
parameters are S = —0.5, 0 = 0.6, T =0.03 and 8 =0.9. (b) A coexisting stationary
convecton of even parity at the same parameter values. The bottom and top panels show
the profiles of the temperature fluctuation € (x, z) and the corresponding concentration C(x, z)
at the initial (# = 0) and final (r = 100) times, respectively.

Figure 15(b) shows an even-parity stationary convecton for comparison. The
convecton entrains cold light fluid from both sides; as a result the mean concentration
within the structure is below average (figure 155, lowest panel).

5.1. Symmetric collisions

Figure 16(a) shows a head-on collision between two identical convectons drifting
in opposite directions in a periodic domain of period 21" using a space-time plot.
The initial condition (¢ = 0) for the Ileft-travelling convecton is the state shown
in figure 15(a); the right-travelling convecton at ¢ =0 is obtained by left-right
reflection. The collision takes place in the centre of the domain and is symmetric
despite the fact that no symmetry has been imposed on the time evolution for
t > 0. When the convectons are approximately within one wavelength of one another,
radiation is emitted and the convectons fall into one another. After a complex
transient accompanied by additional radiation the system forms a stationary even-parity
convecton with inhomogeneous wavelength distribution, followed by a relatively rapid
wavelength adjustment (at # & 480) into the final localized state. The width of this state
exceeds the combined widths of the incident convectons. The even-parity convecton
that results is embedded in a background state filled with small-amplitude standing
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FIGURE 16. (Colour online) (a) A symmetrical collision between two identical convectons
in a I' = 40 periodic domain at Ra = 2750 shown in the form of a space—time plot showing
the midplane temperature fluctuation 6 (x, z = 1/2, t) with time increasing vertically upwards.
The parameters are S = —0.5, 0 = 0.6, 7 = 0.03 and 8 = 0.9. The collision radiates waves
and results in an even-parity stationary convecton whose width exceeds the combined width
of the colliding convectons. (b) Snapshots of the state before (+ = 0), during (¢t = 300) and
after (+ = 1000) the collision in terms of contours of constant temperature fluctuation 6 (upper
panels) and concentration C (lower panels).

waves, cf. Kolodner (1993). We believe that the presence of standing waves is a
consequence of the much reduced convecton-free region, a constraint that suppresses
the travelling waves that are more natural in systems of this type. Indeed, the initial
state at + =0 does not exhibit standing oscillations. Instead, small perturbations of
the background evolve into travelling waves that are absorbed by the convecton as
described in greater detail by Batiste ef al. (2006). In this case the background state is
oscillation-free despite its instability in an infinite domain.

We mention that the individual convectons used in figure 16 are stable in the
half-domain I" = 20 but unstable in the larger domain I" =40 (see § 5.3).

5.2. Asymmetric collisions

Figure 17 shows the corresponding results for an asymmetrical collision between a
drifting convecton and an even-parity stationary convecton. The stationary convecton
entrains lower-concentration fluid at both ends, resulting in a lower than average
concentration throughout the structure. This fact in turn implies that concentration is
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FIGURE 17. (Colour online) (a): A collision between a drifting convecton and a stationary
even-parity convecton in a I = 40 periodic domain at Ra = 2750 shown in the form of
a space—time plot showing the midplane temperature fluctuation 0 (x, z = 1/2,¢) with time
increasing vertically upwards. The parameters are S = —0.5, 0 = 0.6, T =0.03 and 8 = 0.9.
The collision results in complex dynamics, wave radiation and ultimately in the same even-
parity stationary convecton as in figure 16. (b) Snapshots of the state before (r = 0), during
(t =300) and after (+ = 1000) the collision in terms of contours of constant temperature
fluctuation 0 (upper panels) and concentration C (lower panels).

expelled from the convecton, setting up a step-like concentration front at t = 0 between
the incoming and target convectons. However, this concentration step dissipates rapidly,
and as the incoming convecton approaches the target convecton the convectons begin
to attract one another just as in the symmetric collision. This attraction is the
result of a concentration gradient between the incoming convecton and the target
convecton that builds up as the incoming convecton approaches the target convecton.
The resulting asymmetry between the concentration on either side of the target
convecton leads to attraction between the two convectons. As a result the target
convecton becomes distorted and starts to drift towards the incoming convecton. This
accelerates the process and the convectons fall into one another. The asymmetry of
the resulting collision amplifies both the radiation that results from this process and
the length of the resulting transient. However, ultimately the transient decays and
the system equilibrates in the same stationary even-parity convecton as generated
by the symmetric collision in figure 16. As in figure 16 this process requires the
gradual elimination of the large-scale concentration inhomogeneity that is present at
the moment of collision (¢ = 300).
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FIGURE 18. (Colour online) (a) A collision between a drifting convecton and a stationary
even-parity convecton in a I" = 40 periodic domain at Ra = 2750 shown in the form of
a space—time plot showing the midplane temperature fluctuation 6(x, z = 1/2, t) with time
increasing vertically upwards. The parameters are S = —0.5, 0 = 0.6, T =0.03 and 8 = 0.9
but the stationary convecton is selected from a different segment of the branch of even-
parity states than in figure 17, resulting in mutual repulsion between it and the incoming
convecton. The collision results in complex dynamics, wave radiation and ultimately in the
same even-parity stationary convecton as in figures 16 and 17. (b) Snapshots of the state
before (t = 0), during (t = 600) and after (+ = 1000) the collision in terms of contours of
constant temperature fluctuation 6 (upper panels) and concentration C (lower panels).

In figure 18 we show a collision between the same drifting convecton as in figure 17
but a different even-parity stationary convecton. In this case the stationary convecton
entrains higher-concentration fluid at both ends, resulting in a higher than average
concentration throughout the structure. The asymmetry between the concentration to
the left and right of the target convecton that builds up as the incoming convecton
approaches displaces the target convecton to the right leading to a repulsion between
the two convectons. This repulsion delays the collision but the eventual outcome of
the collision is once again the same even-parity convecton already seen in figures 16
and 17.

5.3. Effect of domain size
In view of the relatively small convecton-free region that remains after the collisions
shown in figures 16-18 we now examine the collision shown in figure 16 on a larger
domain. We choose I = 60 and recompute the solution starting from the same initial
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condition. Figure 19(a) shows the initial stage of the resulting evolution. We see that
the instability of the background state now leads to erosion of the initial state via
growing travelling waves, and its replacement by a pair of slowly drifting (almost)
even convectons. These states are substantially broader and attract one another over
a long time scale, resulting in a collision at ¢t & 250 (figure 19b) at which the two
‘even’-parity states coalesce into a single stationary even-parity state. This state is not
stable, however, and undergoes a long chaotic transient before settling into an even
broader and apparently stable even-parity state (+ = 1200, figure 19b). The final state is
so broad, in fact, that we may think of it as a hole in an otherwise periodic state, in
other words as an anticonvecton (Mercader et al. 2011a).

The displacement of the final state relative to the original collision is most likely the
result of slight asymmetry generated in the course of time integration — our integration
scheme does not impose any symmetry with respect to the midpoint I" = 30. This
asymmetry is greatly amplified by the rapid phase slips triggered by the continued
self-compression of the structure (see the time interval 250 < ¢ < 400 in figure 19b),
much as described by Ma, Burke & Knobloch (2010). These set in at ¢ & 400, creating
a complex transient that allows the structure to find its preferred wavelength. These
processes are not available in smaller domains, highlighting the critical role played by
the aspect ratio of the domain, as remarked recently by Watanabe, lima & Nishiura
(2012).

6. Comparison with the Swift-Hohenberg equation

The Swift—-Hohenberg equation has proved to be a valuable and reliable model for
spatially localized structures in many fluid systems (Bergeon et al. 2008; Schneider
et al. 2010). In particular this equation was used to predict the snakes-and-ladders
structure of the pinning region and to establish the multiplicity of stable single-pulse
and multipulse localized states within this region (Burke & Knobloch 2009; Lo Jacono
et al. 2010; Beaume et al. 2011; Mercader et al. 2011a). Although the equation
has some shortcomings even as a qualitative model (for example, it fails to capture
the different widths of the pinning regions for odd- and even-parity localized states,
or the presence of Hopf bifurcations) the equation describes faithfully the different
ways in which branches of localized states terminate both in periodic domains with
finite spatial period (Bergeon et al. 2008), and in closed domains with non-Neumann
boundary conditions (Mercader et al. 2009, 2011a).

In a recent paper Houghton & Knobloch (2011) wused the cubic-quintic
Swift-Hohenberg equation to examine the effects of breaking the symmetry u — —u
of this equation. Specifically, they considered the equation

Uy =ru — (1+8f)2u+b3u3 —u5+6u2+8u§. 6.1)

Here r is a parameter akin to the Rayleigh number. When ¢ = § = 0 the symmetry
u — —u is analogous to the midplane reflection symmetry in the present problem. The
last two terms break this symmetry and thus model the effect of the Biot number
measured by B8 # 1. The resulting problem is variational when § = 0; otherwise it is
non-variational.

Houghton & Knobloch (2011) found that in both cases the effects of breaking the
midplane reflection symmetry are similar. With increasing € or § the branch of even-
parity localized states splits into two branches, one with states with maxima at x =0
and the other with states with minima at x = 0. In addition the branch of odd-parity
states reconnects with the branches of asymmetric localized states corresponding to
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FIGURE 19. (Colour online) Same as figure 16 but for two identical convectons in a I" = 60
domain. The parameters are Ra = 2750, S = —0.5, 0 = 0.6, t = 0.03 and 8 = 0.9. The initial
convectons are unstable to even-parity states (a, r ~ 10) that attract one another, resulting in
a collision (b, t & 250). Further compression of the resulting structure creates phase slips that
amplify numerical noise and generate a long chaotic transient that results in an even-parity
state displaced relative to the initial collision (b, t = 1200). (c) Snapshots of the initial state
(t = 0), the even states prior to collision (+ = 100) and the final state (¢ = 1200) in terms
of contours of constant temperature fluctuation 6 (upper panels) and concentration C (lower
panels).
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FIGURE 20. Bifurcation diagrams for the Swift—-Hohenberg equation (6.1) when b3 =2,
€ =0and (a) § =0.1, (b) § = 0.3 for comparison with figures 8(a) and 10(a).

the rung states in the symmetric case € = § = 0. These reconnection take the form
of Z and S branches, and figure 20 shows two examples of the resulting bifurcation
diagrams.

As already mentioned the snaking structure in the symmetric case ¢ =§ =0
differs from that identified in figure 2 in the termination of the rung states below
the saddle-node on the even-parity states; this termination is preceded by a saddle-
node bifurcation of the rung states. Figures 8(a) and 10(a) show that this saddle-
node persists even when the midplane symmetry is substantially broken. However,
aside from this effect, which may be related to the pumping effect present in the
binary convection problem, the break-up of the snakes-and-ladders structure of the
pinning region as B decreases from S = 1 follows precisely the scenario identified by
Houghton & Knobloch (2011) in the Swift—-Hohenberg equation.

We mention one other difference between the predictions of the Swift—-Hohenberg
model (6.1) and the convecton problem. As shown in table 1, in the latter
the maximum drift speed of broader convectons is larger than that of narrower
convectons, at least for S = —0.1, 0 =7, t =0.01 and B = 0.95, in contrast to the
Swift-Hohenberg model in which narrow localized structures drift faster than broad
ones.

Figure 20(b) shows that with increased symmetry breaking the S branches eventually
disappear, while the Z branches straighten out into rung states connecting even-parity
states with maxima at x = 0 to even-parity states with minima at x = 0, as found
in generic non-symmetric systems (Burke & Knobloch 2006; Beck et al. 2009). In
the present case the maximum symmetry breaking occurs for 8 =0 and as shown in
figure 12(a) both S and Z branches are still present.

We also mention that collisions within the Swift—-Hohenberg model and in binary
fluid convection behave in a surprisingly similar way. In particular, when a moving
convecton impacts a stationary convecton the outcome depends on whether the
proximate rolls rotate in the same sense or in the opposite sense. Specifically,
in the former case the structures attract while in the latter they repel. In the
Swift-Hohenberg model this type of interaction is also present although it falls off
exponentially the separation of the structures. In binary fluid convection the effect
is much more pronounced — a consequence of a non-local interaction between the
structures mediated by the concentration field associated with them. In both systems
attractive interactions resulted in stationary symmetric states. In the binary mixture this
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was the case even when the structures repelled, in contrast to the Swift-Hohenberg
case. Moreover, symmetric collisions in both systems were found to be attractive,
possibly a result of the higher relative velocity. This observation suggests that the
results reported here likely depend on the parameters employed. For example, the
tendency of the structures to add rolls during coalescence could be a consequence
of the Rayleigh number used, with higher Rayleigh numbers favouring roll insertion
and lower Rayleigh numbers favouring roll annihilation. However, a detailed parameter
study of the collision process is beyond the scope of the present paper.

7. Conclusions

In this paper we have used a simple and experimentally realizable recipe to generate
moving convectons. The basis of our suggestion is the observation that in systems
with midplane reflection symmetry odd-parity convectons will necessarily be stationary.
This is a consequence of the point symmetry of these convectons, generated by a
left-right reflection followed by a reflection in the layer midplane. When the latter
symmetry is broken, so is the point symmetry, and the convectons generically begin
to move. In contrast to odd-parity convectons even-parity states are unaffected by the
loss of midplane reflection symmetry and remain stationary. The midplane symmetry
is easily broken, either through the use of different boundary conditions at top and
bottom or the presence of non-Boussinesq effects. We have chosen here to explore the
effects of changing boundary conditions as measured by an effective Biot number S
for the upper boundary.

We have described, through the use of numerical branch following of both steady
and drifting states, the transformation of the bifurcation diagram from that prevailing
in the symmetric case, 8§ = 1, to its form for maximally non-symmetric boundary
conditions, B = 0. We have found that as § is reduced below unity the even-parity
convecton branch splits into two branches, one with upflow at the midpoint x = 0
and the other with downflow at x = 0. In addition, we found that the odd-parity
branch reconnected with the left-right asymmetric rung states present at 8 =1 in
two different ways, generating branches of drifting convectons we refer to as S and
Z branches according to their appearance in the bifurcation diagrams. This structure
persists all the way down to 8 =0 and follows the behaviour identified earlier in the
cubic-quintic Swift—-Hohenberg equation with broken # — —u symmetry (Houghton &
Knobloch 2011).

The direction of drift cannot be readily inferred from the concentration profile
across the convecton. In both cases considered, water—ethanol and He’~He* mixtures,
the drift direction exhibits sensitive dependence on the system parameters and more
particularly on the portion of the odd-parity branch whence it came. All such drifting
convectons pump concentration and we have seen that as a result convecton—convecton
interactions occur via a concentration precursor. In finite domains this effect exceeds
in importance the usual type of interaction between localized states which interact
via exponentially decaying profiles (Burke & Knobloch 2009) and leads to non-local
interaction.

Having generated drifting convections through the simple device of changing
the upper boundary condition we then performed direct numerical simulations of
convecton—convecton collisions. In order to do so we chose parameter values for
liquid He’~He* mixtures where stable convectons are more easily obtained and used
a relatively large negative separation ratio to increase their drift speed. In contrast
to similar collisions performed with the Swift-Hohenberg equation (Houghton &
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Knobloch 2011) the convecton collisions are accompanied by radiation of energy.
We found that like convectons are strongly attractive when close to one another,
but a drifting convecton can either attract or repel a stationary convecton depending
on whether the facing roll rotates in the same direction as the incoming roll or
in the opposite direction. These forces are the result of the concentration profile
in the nominally convecton-free region between the two convectons. In the cases
computed in detail we have found that both symmetric and asymmetric collisions
were highly inelastic and yielded the same final state, a broad stationary even-parity
convecton. In all cases the width of this state exceeded the sum of the widths of
the incident convectons as the collision excited the nucleation of additional rolls
in between. Broadly speaking these results conform to similar computations for
the Swift-Hohenberg equation (Houghton & Knobloch 2011). However, the present
problem is non-variational and we have also seen that on larger domains waves
can amplify if the background state is unstable and that these growing waves can
substantially modify the convectons prior to their interaction.

The convecton collisions studied here differ fundamentally from collisions between
localized travelling waves that are present near the primary Hopf bifurcation. These
localized states consist of travelling waves under a stationary or slowly drifting
envelope (Kolodner et al. 1989; Steinberg et al. 1989; Surko et al. 1991; Barten
et al. 1995). States of this type can also undergo collisions (Kolodner 19915; lima &
Nishiura 2009; Taraut, Smorodin & Liicke 2012; Watanabe et al. 2012) but are quite
different from the drifting localized states studied here which are time-independent in
the moving frame.
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