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The set of controllable switched linear systems is an open and dense set in the space of all switched linear systems. Therefore it
makes sense to compute the distance from a controllable system to the nearest uncontrollable one. In the case of a standard system,
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), R. Eising, D. Boley, and W. S. Lu obtain some results for this distance, both in the complex and real cases. In
this work we explore this distance, for switched linear systems in the real case, obtaining upper bounds for it.Themain contribution
of the paper is to prove that a natural generalization of the upper bound obtained by D. Boley and W. S. Lu is true in the case of
switched linear systems.

1. Introduction

A natural question in system theory (and inmany other areas
of applied mathematics) is whether a certain qualitative pro-
perty of a system is, or not, preserved under small changes
in its parameters (external perturbations, uncertainty on
their measure, etc.). If the answer is affirmative, a second
natural question concerns the “smallness” of these admissible
changes. See, for example, [1, 2].

In particular, the controllability of a system is a generic
property; that is to say, the set of controllable systems is open
and dense in the corresponding space of matrices. Hence,
it makes sense to ask how far a controllable system is from
the nearest uncontrollable ones (see, e.g., [2–7]) and to find
bounds for the distance between a controllable system and
the set of uncontrollable ones (see, e.g., [2, 3, 8]).

It is known (Eising [4]) that the problem of computing
the distance from a given controllable standard system

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) (1)

with 𝐴 ∈ 𝑀

𝑛×𝑛
(C) and 𝐵 ∈ 𝑀

𝑛×𝑝
(C) to the set of

uncontrollable ones, denoted by 𝜇C(𝐴, 𝐵), is equivalent to

computing the minimum of the smallest singular value of
(𝐴 − 𝜆𝐼

𝑛
| 𝐵) over 𝜆 ∈ C:

𝜇C (𝐴, 𝐵) = min
𝜆∈C

𝜎

𝑛
(𝐴 − 𝜆𝐼

𝑛
| 𝐵) , (2)

this means that there aren’t uncontrollable systems in a ball
centered in (𝐴, 𝐵) with radius 𝜇C(𝐴, 𝐵), with respect to a
given matrix norm.

In this paper we tackle a generalization of this result. As
we will see in an example in Section 4, in the case where
switched linear systems are considered, the natural gener-
alization does not provide the distance from a controllable
switched linear system to the set of uncontrollable ones.

We can also consider, given a controllable standard
system

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) (3)

with 𝐴 ∈ 𝑀

𝑛×𝑛
(R) and 𝐵 ∈ 𝑀

𝑛×𝑝
(R), the distance from this

system to the set of uncontrollable (real) systems anddenote it
by 𝜇R(𝐴, 𝐵). Actually, complex perturbations of real systems
do not always correspond to a system with physical meaning.
Note that in this case (Boley and Lu [3])

𝜇R (𝐴, 𝐵) ≤ min
𝜆∈R

𝜎

𝑛
(𝐴 − 𝜆𝐼

𝑛
| 𝐵) (4)
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and the equality is not true in general (see the example in
[2, page 557]). Obviously 𝜇C(𝐴, 𝐵) ≤ 𝜇R(𝐴, 𝐵). In particular,
any upper bound for 𝜇R(𝐴, 𝐵) is also an upper bound for
𝜇C(𝐴, 𝐵).

Many practical systems can be modelled as switched lin-
ear systems. Due to their theoretical and practical importance
switched linear systems have attracted a lot of interest during
the last years. For continuous-time linear switched systems,
with time-varying delay, the weighted H

∞
model reduction

problem has been investigated in [9] and for continuous-time
switched stochastic systems, the problems of dissipativity
analysis and dissipativity-based sliding mode control have
been studied in [10]. In [11] problems of stability and sta-
bilization for discrete-time switched nonlinear systems with
time-varying delay are studied (see also [12] for the study of
stability and stabilization problems for a class of discrete-time
Takagi-Sugeno fuzzy systems with time-varying state delay).
In [13] the position control for a two-wheeled mobile robot
is studied and in [14] an application to a dynamic output
feedback controller design is described.

Several authors have recently studied controllability and
observability of switched linear systems. Algebraic character-
ization of controllability in [15] shows that controllability is
also in this case a generic property. Therefore, the analogous
questions arise and it makes sense to study the bounds for
the distances from a controllable switched linear system to
the nearest uncontrollable one, as it was studied for standard
systems. Up to now, no bound for switched linear systems
had been obtained, except that in [16] (by the same authors).
In this work, we concretely obtain an upper bound for this
distance which improves substantially that obtained in [16].

The structure of the paper is as follows.

In Section 2, we summarize the definitions and some
properties of norm matrices.
In Section 3, we lay the foundations of the problem to
be solved.
In Section 4, we obtain (Theorem 9) an explicit
upper bound for the distance between a controllable
switched linear system and the set of uncontrollable
ones.

Finally, in Section 5, we consider different examples.

2. Preliminaries

Let us consider the vector space of 𝑚 × 𝑛 matrices with
coefficients in a field 𝑘 (𝑘 = R or C).

A matrix norm ‖ ‖ is a mapping associating to each
matrix 𝑀 a nonnegative number ‖𝑀‖ having the following
properties.

(1) For all matrix𝑀, ‖𝑀‖ ≥ 0 and ‖𝑀‖ = 0 if, and only
if,𝑀 = 0.

(2) For all matrix𝑀 and 𝜆 ∈ 𝑘, ‖𝜆𝑀‖ = |𝜆|‖𝑀‖.
(3) For all matrices 𝑀

1
and 𝑀

2
, ‖𝑀

1
+ 𝑀

2
‖ ≤ ‖𝑀

1
‖ +

‖𝑀

2
‖.

Themost frequently usedmatrix norms are the Frobenius
norm and the 𝑝-norms.

The Frobenius norm of a matrix 𝑀 = (𝑚

𝑖

𝑗
) 1≤𝑖≤𝑚

1≤𝑗≤𝑛

is

defined as

‖𝑀‖

𝐹
=

√

∑

1≤𝑖≤𝑚

∑

1≤𝑗≤𝑛











𝑚

𝑖

𝑗











2

. (5)

The matrix 𝑝-norm is defined for a real number 1 ≤ 𝑝 ≤

∞ as

‖𝑀‖

𝑝
= sup

𝑥 ̸= 0

‖𝑀𝑥‖

𝑝

‖𝑥‖

𝑝

= max
‖𝑥‖𝑝=1

‖𝑀𝑥‖

𝑝
, (6)

where

‖𝑥‖

𝑝
= (









𝑥

1









𝑝

+ ⋅ ⋅ ⋅ +









𝑥

𝑛









𝑝

)

1/𝑝

, 1 ≤ 𝑝 < ∞
(7)

and ‖𝑥‖
∞
= max

1≤𝑖≤𝑛
|𝑥

𝑖
|.

In particular, ‖𝑀‖

1
= max

1≤𝑗≤𝑛
∑

𝑚

𝑖=1
|𝑚

𝑖

𝑗
|. The spectral

norm ‖ ‖

2
is the square root of the maximum eigenvalue

of 𝑀𝑡

𝑀 in the real case and 𝑀

𝐻

𝑀 in the complex case,
where 𝑀

𝑡, 𝑀𝐻 denote the transpose and the conjugate
transpose of the matrix 𝑀, respectively. And ‖𝑀‖

∞
=

max
1≤𝑖≤𝑚

∑

1≤𝑗≤𝑛
|𝑚

𝑖

𝑗
|.

The Frobenius and the 𝑝-norms satisfy the following
inequality (submultiplicative property): for all 𝑚 × 𝑛 matrix
𝑀

1
and 𝑛 × 𝑝 matrix𝑀

2
, ‖𝑀

1
𝑀

2
‖ ≤ ‖𝑀

1
‖‖𝑀

2
‖, and some

further inequalities, relating them and which are commonly
used in matrix analysis,

(i) ‖𝑀‖

2
≤ ‖𝑀‖

𝐹
≤ √𝑛‖𝑀‖

2
,

(ii) max
𝑖,𝑗
|𝑚

𝑖

𝑗
| ≤ ‖𝑀‖

2
≤ √𝑚𝑛max

𝑖,𝑗
|𝑚

𝑖

𝑗
|,

(iii) (1/√𝑚)‖𝑀‖

1
≤ ‖𝑀‖

2
≤ √𝑛‖𝑀‖

1
,

(iv) (1/√𝑛)‖𝑀‖

∞
≤ ‖𝑀‖

2
≤ √𝑚‖𝑀‖

∞
.

3. Set-Up

Firstly, we will make precise the systems to which the results
in Section 4 can be applied. Let us consider a switched linear
system Σ defined by

�̇� (𝑡) = 𝐴

𝜃(𝑡)
𝑥 (𝑡) + 𝐵

𝜃(𝑡)
𝑢 (𝑡) , (8)

where 𝐴
𝜃(𝑡)

∈ 𝑀

𝑛×𝑛
(R), 𝐵

𝜃(𝑡)
∈ 𝑀

𝑛×𝑝
(R), 𝑥(𝑡) ∈ R𝑛 is the

state; 𝑢(𝑡) ∈ R𝑝 is the piecewise continuous input function;
and 𝜃 is the piecewise constant signal having range an index
set Λ = {1, . . . , ℓ}.

A switching signal (see [15]) is said to be a switching path
if it is a function of time. Given an initial time 𝑡

0
, a switching

path is a function of time.
𝜃 : [𝑡

0
, 𝑇) → Λ, 𝑡

0
< 𝑇 ≤ ∞. A switching path 𝜃 is said

to be well defined on [𝑡
0
, 𝑇) if it is defined in [𝑡

0
, 𝑇) and for

all 𝑡 ∈ [𝑡
0
, 𝑇), both lim

𝑠→ 𝑡
+𝜃(𝑠) and lim

𝑠→ 𝑡
−𝜃(𝑠) exist and the

set

{𝑡 ∈ [𝑡

0
, 𝑇) | lim

𝑠→ 𝑡
+
𝜃 (𝑠) ̸= lim

𝑠→ 𝑡
−
𝜃 (𝑠)} (9)

is finite for any finite sub interval of [𝑡
0
, 𝑇) (in the case where

𝑡 = 𝑡

0
, we will consider lim

𝑠→ 𝑡
−
0
𝜃(𝑠) = 𝜃(𝑡

0
)).
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Sun-Ge proved in [15] that the system above is control-
lable if, and only if, R𝑛 is equal to the vector space

V =

𝑗1 ,...,𝑗𝑛−1∈{0,...,𝑛−1}

∑

𝑖0 ,...,𝑖𝑛−1∈{1,...,ℓ}

Im (𝐴

𝑗𝑛−1

𝑖𝑛−1
⋅ ⋅ ⋅ 𝐴

𝑗1

𝑖1
𝐵

𝑖0
) , (10)

where Im(𝑀) stands for image of matrix𝑀. Hence control-
lability depends only on the set of matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}

defining the subsystems of Σ.
Therefore, the set of matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} defining

subsystems of a controllable system is an open dense subset of
𝑀

𝑛×𝑛
(R)

ℓ

×𝑀

𝑛×𝑝
(R)

ℓ . In particular, for each set of matrices
{(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,... ,ℓ}
} there exists an openneighborhood of this set

in𝑀
𝑛×𝑛
(R)

ℓ

×𝑀

𝑛×𝑝
(R)

ℓ with the whole set of matrices in it
defining subsystems of a controllable system.

The norm (Frobenius norm, 2-norm, etc.) of the set of
matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} is taken as











{(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}











=









(𝐴

1









𝐵

1









⋅ ⋅ ⋅









𝐴

ℓ









𝐵

ℓ
)









(11)

and thus the distance between two sets of matrices is

𝑑 ({(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} , {(𝐴



𝑖
, 𝐵



𝑖
)

𝑖∈{1,...,ℓ}

})

=













{(𝐴



𝑖
− 𝐴

𝑖
, 𝐵



𝑖
− 𝐵

𝑖
)

𝑖∈{1,...,ℓ}

}













.

(12)

Given a controllable system Σ with subsystems defined
by the set of matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}, the distance (with

regard to a givenmatrix norm) from this system to the nearest
uncontrollable one is

𝜇R ({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
})

= min
𝛿𝐴𝑖∈𝑀𝑛×𝑛(R),𝛿𝐵𝑖∈𝑀𝑛×𝑝(R)











{(𝛿𝐴

𝑖
, 𝛿𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}











(13)

with {(𝐴
𝑖
+ 𝛿𝐴

𝑖
, 𝐵

𝑖
+ 𝛿𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} being the set of matrices

defining the subsystems of an uncontrollable system.

4. Upper Bound for the Distance

Note that if we generalize, in a natural way, (2) to the case of
switched linear systems and define

𝜇C ({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
})

= min
𝛿𝐴𝑖∈𝑀𝑛×𝑛(C),𝛿𝐵𝑖∈𝑀𝑛×𝑝(C)











{(𝛿𝐴

𝑖
, 𝛿𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}











(14)

with {(𝐴
𝑖
+ 𝛿𝐴

𝑖
, 𝐵

𝑖
+ 𝛿𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} being the set of matrices

defining the subsystems of an uncontrollable system, then
this distance 𝜇C({(𝐴 𝑖

, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}) is not equal to

min
𝜆1 ,...,𝜆ℓ∈C

𝜎

𝑛
(𝐴

1
− 𝜆

1
𝐼

𝑛









𝐵

1









⋅ ⋅ ⋅









𝐴

ℓ
− 𝜆

ℓ
𝐼

𝑛









𝐵

ℓ
) (15)

as the following example shows.

Example 1. Consider a switched linear system with two sub-
systems defined by matrices

𝐴

1
= (

0 0 0

0 2 0

0.1 1 2

) , 𝐴

2
= (

0 1 1

0 0 1

0 0 1

) ,

𝐵

1
= 𝐵

2
= (

1

0

0

) .

(16)

This system is controllable, as it is straightforward to be
checked (dimV = 3) and

min
𝜆1 ,𝜆2∈C

𝜎

3
(𝐴

1
− 𝜆

1
𝐼

3









𝐵

1









⋅ ⋅ ⋅









𝐴

2
− 𝜆

2
𝐼

3









𝐵

2
)

= min
𝜆1 ,𝜆2∈C

𝜎

3
(

𝜆

1
0 0 1 −𝜆

2
1 1 1

0 2 − 𝜆

1
0 0 0 −𝜆

2
1 0

0.1 1 2 − 𝜆

1
0 0 0 1 − 𝜆

2
0

)

= 0.348160,

(17)

but the system consisting of two subsystems defined by

𝐴

1
= (

0 0 0

0 2 0

0 1 2

) , 𝐴

2
= (

0 1 1

0 0 1

0 0 1

) ,

𝐵

1
= 𝐵

2
= (

1

0

0

) ,

(18)

is uncontrollable and the distance (both considering the
Frobenius norm and the 2-norm) between this system and
the previous one is 0.1 < 0.348160.

The main result in this section is the generalization of
inequality (4) to the case of switched linear systems. The
natural generalization seems to be

𝜇R ({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
})

≤ min
𝜆1 ,...,𝜆ℓ∈R

𝜎

𝑛
(𝐴

1
− 𝜆

1
𝐼

𝑛









𝐵

1









⋅ ⋅ ⋅









𝐴

ℓ
− 𝜆

ℓ
𝐼

𝑛









𝐵

ℓ
) .

(19)

This generalization is proved inTheorem 9.
Consider the switched linear system (8) and let us assume

that this system is controllable. For each 𝑖 ∈ {1, . . . , ℓ}, let us
consider the vector subspace

∑

𝑘1 ,...,𝑘ℓ∈{0,1}

𝑘1+⋅⋅⋅+𝑘ℓ=1

𝑗1,...,𝑗𝑛−2∈{0,1,...,𝑛−2}

𝑗1+⋅⋅⋅+𝑗𝑛−2≤𝑛−2

ℎ1 ,...,ℎ𝑛−2∈{1,...,ℓ}

𝐴𝑖 ̸= 𝐴ℎ1

[

[

∑

0≤𝑗≤𝑛−1

Im (𝐴

𝑗

𝑖
(𝐴

𝑗1

ℎ1

⋅ ⋅ ⋅ 𝐴

𝑗𝑛−2

ℎ𝑛−2

𝐵

𝑘1

1
⋅ ⋅ ⋅ 𝐵

𝑘ℓ

ℓ
))

]

]

(20)

and let us denote by 𝐺
𝑖
(Σ) the matrix having as columns

the generators of the vector subspace above and by 𝐺(Σ) the
matrix

𝐺 (Σ) = (𝐺

1
(Σ) | ⋅ ⋅ ⋅ | 𝐺

ℓ
(Σ)) . (21)

Throughout the paper, the notation rk𝑀 will denote the
rank of matrix𝑀.
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Lemma 2. The rank of matrix 𝐺(Σ) (written rk𝐺(Σ)) is equal
to the dimension of the vector space

∑

𝑘1 ,...,𝑘ℓ∈{0,1}

𝑘1+⋅⋅⋅+𝑘ℓ=1

𝑗1,...,𝑗𝑛−1∈{0,1,...,𝑛−1}

𝑖1 ,...,𝑖𝑛−1∈{1,...,ℓ}

Im (𝐴

𝑗1

𝑖1
⋅ ⋅ ⋅ 𝐴

𝑗𝑛−1

𝑖𝑛−1
𝐵

𝑘1

1
⋅ ⋅ ⋅ 𝐵

𝑘ℓ

ℓ
) .

(22)

Proof. It is a straightforward consequence of Cayley-
HamiltonTheorem and the fact that this vector subspace and
V defined above are the same subspace.

As a consequence of Lemma 2, another characterization
of controllable switched linear systems is that system Σ is
controllable if, and only if, rk𝐺(Σ) = 𝑛.

A first upper bound for the distance, from our system
to the set of uncontrollable ones, may be deduced from the
singular value decomposition of matrix 𝐺(Σ), in a similar
way to the one in [3], in the case where rk𝐺

𝑖
(Σ) = 𝑛, for all

𝑖 ∈ {1, . . . , ℓ}. Namely, let 𝑃, 𝑄 be orthogonal matrices such
that

𝐺 (Σ) = 𝑃

𝑡

(diag (𝜎
1
, . . . , 𝜎

𝑛
) | 0) 𝑄, (23)

where 𝜎
1
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑛
are the singular values of 𝐺(Σ). Then the

following statement holds.

Theorem 3 (see [16]). Given a controllable switched linear
system Σ consisting of subsystems defined by a set of matrices
{(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}, such that rk𝐺

𝑖
(Σ) = 𝑛, for all 𝑖 ∈ {1, . . . , ℓ},

with regard to the 2-norm,

𝜇R ({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}) ≤ ∑

𝑖∈{1,...,ℓ}

𝜎

𝑛
(1 +











𝐴

𝐶

𝑖









2

𝜎

𝑛,𝑖

) , (24)

where 𝐴𝐶

𝑖
is the companion matrix for 𝐴

𝑖
and 𝜎

1,𝑖
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑛,𝑖

are the singular values of 𝐺
𝑖
(Σ).

Remember that, given a square matrix 𝐴 with character-
istic polynomial𝑄(𝑡) = 𝑡𝑛+𝑎

1
𝑡

𝑛−1

+⋅ ⋅ ⋅+𝑎

𝑛−1
𝑡+𝑎

𝑛
, thematrix

(

0 0 ⋅ ⋅ ⋅ 0 −𝑎

𝑛

1 0 ⋅ ⋅ ⋅ 0 −𝑎

𝑛−1

0 1 ⋅ ⋅ ⋅ 0 −𝑎

𝑛−2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 1 −𝑎

1

) (25)

is called the companion matrix of matrix 𝐴.

Proof. First of all, note that {(𝐴
𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} are associated to

a controllable system if, and only if, {(𝑃𝐴
𝑖
𝑃

𝑡

, 𝑃𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} are

also associated to a controllable system.
Denoting byP

diag(
ℓ

(

𝑃

𝑡

𝐼

𝑝

) , . . . , (

𝑃

𝑡

𝐼

𝑝

)

) (26)

and since
𝑃 (𝐴

1
− 𝑋

1









𝐵

1
− 𝑌

1









⋅ ⋅ ⋅









𝐴

ℓ
− 𝑋

ℓ









𝐵

ℓ
− 𝑌

ℓ
)P

= (𝑃 (𝐴

1
− 𝑋

1
) 𝑃

𝑡 






𝑃 (𝐵

1
− 𝑌

1
)









⋅ ⋅ ⋅











𝑃 (𝐴

ℓ
− 𝑋

ℓ
) 𝑃

𝑡










𝑃 (𝐵

ℓ
− 𝑌

ℓ
) )

(27)

and 𝑃 andP are orthogonal matrices, we deduce that








(𝐴

1
− 𝑋

1









𝐵

1
− 𝑌

1









⋅ ⋅ ⋅









𝐴

ℓ
− 𝑋

ℓ









𝐵

ℓ
− 𝑌

ℓ
)







2

=











(𝑃 (𝐴

1
− 𝑋

1
) 𝑃

𝑡 






𝑃 (𝐵

1
− 𝑌

1
)









⋅ ⋅ ⋅











𝑃 (𝐴

ℓ
− 𝑋

ℓ
) 𝑃

𝑡










𝑃 (𝐵

ℓ
− 𝑌

ℓ
) )









2

.

(28)

Therefore

𝜇R ({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}) = 𝜇R ({(𝑃𝐴 𝑖

𝑃

𝑡

, 𝑃𝐵

𝑖
)

𝑖∈{1,...,ℓ}

}) .

(29)

Let us consider 𝑃𝐵
𝑖
= (

𝐵
1

𝑖

𝐵
2

𝑖

), with 𝐵1

𝑖
∈ 𝑀

(𝑛−1)×𝑝
(R), for

𝑖 ∈ {1, . . . , ℓ}.
We can write

𝐵

2

𝑖
= 𝑒

𝑡

𝑛
(𝑃𝐵

𝑖
) = 𝑒

𝑡

𝑛
(𝑃𝐺 (Σ)(0 ⋅ ⋅ ⋅ 0

(
𝑗𝑖)

𝐼

𝑝
0 ⋅ ⋅ ⋅ 0)

𝑡

)

= 𝑒

𝑡

𝑛
((diag (𝜎

1
, . . . , 𝜎

𝑛
) | 0)𝑄(0 ⋅ ⋅ ⋅ 0

(
𝑗𝑖)

𝐼

𝑝
0 ⋅ ⋅ ⋅ 0)

𝑡

) ,

(30)

where 𝑗
𝑖
indicates the column 𝑗

𝑖
of matrix𝐺(Σ)where matrix

𝐵

𝑖
first appears, with 𝑒

1
, . . . , 𝑒

𝑛
being the natural basis of the

Euclidean space R𝑛. Then











𝐵

2

𝑖









2

≤ 𝜎

𝑛























𝑄(0 ⋅ ⋅ ⋅ 0

(
𝑗𝑖)

𝐼

𝑝
0 ⋅ ⋅ ⋅ 0)

𝑡


















2

= 𝜎

𝑛
(31)

since 𝑄 is an orthogonal matrix.
It is straightforward to check that 𝐴

𝑖
𝐺

𝑖
(Σ) = 𝐺

𝑖
(Σ)(𝐼 ⊗

𝐴

𝐶

𝑖
), where 𝐼 is the identitymatrix of suitable order.Then if we

denote by𝐺
𝑖
(Σ)

† the Moore-Penrose inverse of matrix𝐺
𝑖
(Σ),

𝐴

𝑖
= 𝐺

𝑖
(Σ)(𝐼 ⊗ 𝐴

𝐶

𝑖
)𝐺

𝑖
(Σ)

† and

𝑃𝐴

𝑖
𝑃

𝑡

= 𝑃𝐺

𝑖
(Σ) (𝐼 ⊗ 𝐴

𝐶

𝑖
)𝐺

𝑖
(Σ)

†

𝑃

𝑡

= 𝑃(𝐺 (Σ) (0 ⋅ ⋅ ⋅ 0

(𝑖)

𝐼

𝑐𝑖
0 ⋅ ⋅ ⋅ 0)

𝑡

)(𝐼 ⊗ 𝐴

𝐶

𝑖
)𝐺

𝑖
(Σ)

†

𝑃

𝑡

= (diag (𝜎
1
, . . . , 𝜎

𝑛
) | 0)𝑄(0 ⋅ ⋅ ⋅ 0

(𝑖)

𝐼

𝑐𝑖
0 ⋅ ⋅ ⋅ 0)

𝑡

× (𝐼 ⊗ 𝐴

𝐶

𝑖
)𝐺

𝑖
(Σ)

†

𝑃

𝑡

,

(32)

where 𝑐
𝑖
is the number of columns of matrix 𝐺

𝑖
(Σ).
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In an analogous way, let us consider

𝑃𝐴

𝑖
𝑃

𝑡

= (

𝐴

1

𝑖
𝐴

2

𝑖

𝐴

3

𝑖
𝐴

4

𝑖

) (33)

with 𝐴1

𝑖
∈ 𝑀

(𝑛−1)×(𝑛−1)
(R),

𝐴

3

𝑖
= 𝑒

𝑡

𝑛
(diag (𝜎

1
, . . . , 𝜎

𝑛
) | 0)𝑄

× (0 ⋅ ⋅ ⋅ 0

(𝑖)

𝐼

𝑐𝑖
0 ⋅ ⋅ ⋅ 0)

𝑡

(𝐼 ⊗ 𝐴

𝐶

𝑖
)𝑄

𝑡

𝑖

× (

diag( 1

𝜎

1,𝑖

, . . . ,

1

𝜎

𝑛,𝑖

)

0

)𝑃

𝑖
𝑃

𝑡

(

𝐼

𝑛−1

0

) ,

(34)

where 𝜎
1,𝑖

≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑛,𝑖
, are the singular values of 𝐺

𝑖
(Σ)

(𝐺
𝑖
(Σ) = 𝑃

𝑡

𝑖
(diag (𝜎

1,𝑖
, . . . , 𝜎

𝑛,𝑖
) | 0)𝑄

𝑖
). Therefore











𝐴

3

𝑖









2

≤ 𝜎

𝑛











(𝐼 ⊗ 𝐴

𝐶

𝑖
)









2











𝐺

𝑖
(Σ)

†








2

≤

𝜎

𝑛

𝜎

𝑛,𝑖











𝐴

𝐶

𝑖









2

. (35)

Let us set the blocks 𝐵

2

𝑖
, 𝐴3

𝑖
to zero, for all 𝑖; it is

obvious that the system thus obtained is uncontrollable. The
real perturbation we have committed has a norm which is
bounded by 𝜎

𝑛
+ (‖𝐴

𝐶

𝑖
‖

2
𝜎

𝑛
/𝜎

(𝑛,𝑖)
), for all 𝑖 ∈ {1, . . . , ℓ}, and

the statement follows.
Observe that, in the case where ℓ = 1 (there is only one

subsystem) we obtain the same result as that in [3] because
the product 𝑃

𝑖
𝑃

𝑡 in (34) is equal to 𝐼
𝑛
, and therefore ‖𝐴3

𝑖
‖

2
≤

(𝜎

𝑛
/𝜎

𝑛−1
)‖𝐴

𝐶

𝑖
‖

2
.

In order to obtain an improved upper bound, we need the
following matrix.

Let us consider a switched linear system with subsys-
tems defined by the set of matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}. Given

𝜆

1
, . . . , 𝜆

ℓ
∈ R, we will denote by 𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
) the fol-

lowing matrix:

𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
) = (𝐴

1
− 𝜆

1
𝐼

𝑛









𝐵

1









⋅ ⋅ ⋅









𝐴

ℓ
− 𝜆

ℓ
𝐼

𝑛









𝐵

ℓ
) .

(36)

Lemma 4. Given a switched linear system Σ with subsystems
defined by a set of matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
},

rk𝐺 (Σ) ≤ rk𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
) , ∀ (𝜆

1
, . . . , 𝜆

ℓ
) ∈ R

ℓ

.

(37)

Proof. Let us assume that 𝜆0
1
, . . . , 𝜆

0

ℓ
∈ R are such that

min
𝜆1 ,...,𝜆ℓ∈R

rk𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
) = rk𝑀(Σ, 𝜆

0

1
, . . . , 𝜆

0

ℓ
) . (38)

Note that in the case where rk𝑀(Σ, 𝜆

0

1
, . . . , 𝜆

0

ℓ
) = 𝑛,

the statement is obvious. Let us assume that the rank of
𝑀(Σ, 𝜆

0

1
, . . . , 𝜆

0

ℓ
) = 𝑛 − 𝑚, 𝑚 > 0. Then there exist linearly

independent vectors V
1
, . . . , V

𝑚
∈ R𝑛 such that

V
𝑡

1
𝑀(Σ, 𝜆

0

1
, . . . , 𝜆

0

ℓ
) = ⋅ ⋅ ⋅ = V

𝑡

𝑚
𝑀(Σ, 𝜆

0

1
, . . . , 𝜆

0

ℓ
) = 0. (39)

Therefore
V
𝑡

𝑖
(𝐴

1
− 𝜆

1
𝐼

𝑛
) = ⋅ ⋅ ⋅ = V

𝑡

𝑖
(𝐴

ℓ
− 𝜆

ℓ
𝐼

𝑛
) = 0, 𝑖 ∈ {1, . . . , 𝑚} ,

V
𝑡

𝑖
𝐵

1
= ⋅ ⋅ ⋅ = V

𝑡

𝑖
𝐵

ℓ
= 0, 𝑖 ∈ {1, . . . , 𝑚} .

(40)

It is straightforward to check that V
1
, . . . , V

𝑚
are left

eigenvectors of matrices 𝐴
1
, . . . , 𝐴

ℓ
and therefore

V
𝑡

1
𝐺 (Σ) = ⋅ ⋅ ⋅ = V

𝑡

𝑚
𝐺 (Σ) = 0. (41)

Thus rk𝐺(Σ) ≤ 𝑛 − 𝑚.

As a consequence of Lemma 4, we can conclude that if
there exist 𝜆0

1
, . . . , 𝜆

0

ℓ
∈ R such that rk𝑀(Σ, 𝜆

0

1
, . . . , 𝜆

0

ℓ
) < 𝑛,

the system can not be controllable.

Remark 5. Note that there exist uncontrollable systems such
that for all 𝜆

1
, . . . , 𝜆

ℓ
∈ R, rk𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
) = 𝑛. For

example, we consider a system Σ with subsystems defined by
matrices

𝐴

1
= (

0 0 0

0 2 0

0 1 2

) , 𝐴

2
= (

0 1 1

0 0 1

0 0 1

) ,

𝐵

1
= 𝐵

2
= (

1

0

0

) .

(42)

It is straightforward that rk𝐺(Σ) = 1 and that the rank of
𝑀(Σ, 𝜆

1
, 𝜆

2
) = 3, for all 𝜆

1
, 𝜆

2
∈ R.

In particular, we may obtain a new upper bound for
the distance between a controllable system and the set of
uncontrollable ones, with no restriction on rk𝐺

𝑖
(Σ), 𝑖 ∈ {1,

. . . , ℓ}.

Theorem 6. Given a controllable system with subsystems
defined by the set of matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
},

𝜇R ({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}) ≤ 𝑑 ({(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} ,X) , (43)

where X = {{(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
} | ∃𝜆

1
, . . . , 𝜆

ℓ
∈ R such that

rk𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
) ≤ 𝑛 − 1}.

Proof. It is easily deduced from Lemma 4.

In the particular case of an uncontrollable system with
rk𝐺(Σ) = 𝑛 − 1, the results above may be summarized as
follows.

Theorem 7. Given an uncontrollable switched linear system
with subsystems defined by the set of matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}

with rk𝐺(Σ) = 𝑛 − 1, there exist 𝜆0
1
, . . . , 𝜆

0

ℓ
∈ R such that

rk𝑀(Σ, 𝜆

0

1
, . . . , 𝜆

0

ℓ
) = 𝑛 − 1.

Proof. Let us consider the controllability canonical form of
{(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}

{

{

{

{

{

((

𝐴

1

𝑖
𝐴

2

𝑖

0 𝐴

3

𝑖

) ,(

𝐵

1

𝑖

0

))

𝑖∈{1,...,ℓ}

}

}

}

}

}

. (44)
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Since rk𝐺(Σ) = 𝑛 − 1, 𝐴3

𝑖
= (𝑎

3

𝑖
), 1 ≤ 𝑖 ≤ ℓ, it suffices to take

𝜆

0

1
= 𝑎

3

1
, . . ., 𝜆0

ℓ
= 𝑎

3

ℓ
.

Remark 8. Note that given a controllable system (rk𝐺(Σ) =
𝑛) it is possible that the nearest uncontrollable one is a system
Σ

 such that rk𝐺(Σ

) < 𝑛−1. For example, let us consider the
system with subsystems defined by

𝐴

1
= (

0 0 0

1 0 0

0 1 0

) , 𝐵

1
= (

0

0

1

) ,

𝐴

2
= (

0 0 0

1 0 0

0 1 0

) , 𝐵

2
= (

0.1

0

0

) .

(45)

It is easy to check that this system is controllable and that
the nearest uncontrollable one is a system Σ

 with subsystems
defined by

𝐴

1
= (

0 0 0

1 0 0

0 1 0

) , 𝐵

1
= (

0

0

1

) ,

𝐴

2
= (

0 0 0

1 0 0

0 1 0

) , 𝐵

2
= (

0

0

0

) ,

(46)

which is such that rk𝐺(Σ

) = 1.
More concretely, there is no uncontrollable system with

distance (with regard to the Frobenius norm) less than 0.1,
from the first system.

Finally, the following upper bound is obtained.

Theorem 9. Given a controllable system Σ with subsystems
defined by the set of matrices {(𝐴

𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}, the distance

(with regard to the Frobenius norm) from this system to the
nearest uncontrollable one is

𝜇R ({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}) ≤ min

𝜆1 ,...,𝜆ℓ∈R
𝜎

𝑛
(𝑀 (Σ, 𝜆

1
, . . . , 𝜆

ℓ
))

(47)

and the distance (with regard to the 2-norm) from this system
to the nearest uncontrollable one is

𝜇R ({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,...,ℓ}
}) ≤ min

𝜆1 ,...,𝜆ℓ∈R
𝜎

𝑛
(𝑀 (Σ, 𝜆

1
, . . . , 𝜆

ℓ
)) ,

(48)

where 𝜎
𝑛
(𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
)) is the smallest singular value of the

matrix𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
).

Proof. The statement summarizes the results above. We
apply theorem in the appendix (Eckart-Young-Mirskymatrix
approximation theorem) to the matrix 𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
)

which has full rank 𝑟 = 𝑛 for any values of 𝜆
1
, . . . , 𝜆

ℓ
∈ R,

because system Σ is controllable. A perturbed uncontrollable
systemΣ

 would have associated thematrix𝑀(Σ



, 𝜆

1
, . . . , 𝜆

ℓ
)

with rank 𝑘 = 𝑛 − 1. Theorem in the appendix shows that the
minimal distance from𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
) to𝑀(Σ



, 𝜆

1
, . . . , 𝜆

ℓ
)

𝑖𝐿(𝑡)

𝑅

𝐶

𝑠(𝑡)

𝐿

1

0

−

−

+

+
𝑒𝐶(𝑡)

𝑒𝑆(𝑡)

Figure 1: Boost converter.

(with regard to the Frobenius norm or the 2-norm) is equal
to the smallest singular value of matrix𝑀(Σ, 𝜆

1
, . . . , 𝜆

ℓ
). The

nearest uncontrollable system is obtained minimizing the
values of 𝜆

1
, . . . , 𝜆

ℓ
∈ R.

5. Examples

Example 1. Let us consider a boost converter (see [17]) which
is represented in Figure 1 and with the equations

(

̇𝑒

𝐶
(𝑡)

̇

𝑖

𝐿
(𝑡)

) = (

−

1

𝑅𝐶

1

𝐶

−

1

𝐿

0

)(

𝑒

𝐶
(𝑡)

𝑖

𝐿
(𝑡)

) +(

0

𝑒

𝑆

𝐿

) (49)

if 𝑠(𝑡) = 0, and

(

̇𝑒

𝐶
(𝑡)

̇

𝑖

𝐿
(𝑡)

) = (

−

1

𝑅𝐶

0

0 0

)(

𝑒

𝐶
(𝑡)

𝑖

𝐿
(𝑡)

) +(

0

𝑒

𝑆

𝐿

) (50)

if 𝑠(𝑡) = 1.

Denoting 𝑡 = 𝜏𝑇, with 𝑇 being the switching time period,

(

̇𝑒

𝐶
(𝜏)

̇

𝑖

𝐿
(𝜏)

) = (

−

𝑇

𝑅𝐶

𝑇

𝐶

−

𝑇

𝐿

0

)(

𝑒

𝐶
(𝜏)

𝑖

𝐿
(𝜏)

) +(

0

𝑇

𝐿

𝑒

𝑆

) (51)
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if 𝑠(𝑡) = 0, and

(

̇𝑒

𝐶
(𝜏)

̇

𝑖

𝐿
(𝜏)

) = (

−

𝑇

𝑅𝐶

0

0 0

)(

𝑒

𝐶
(𝜏)

𝑖

𝐿
(𝜏)

) + (

0

𝑇

𝐿

𝑒

𝑆

) (52)

if 𝑠(𝑡) = 1.
Thus the system can be described as a switched linear

system Σ(𝑅, 𝐶, 𝐿, 𝑇, 𝑒

𝑆
):

�̇� (𝜏) = 𝐴

1
𝑥 (𝜏) + 𝐵

1
𝑢 (𝜏) ,

�̇� (𝜏) = 𝐴

2
𝑥 (𝜏) + 𝐵

2
𝑢 (𝜏)

(53)

with 𝑢(𝜏) = 1,

𝐴

1
= (

−

𝑇

𝑅𝐶

𝑇

𝐶

−

𝑇

𝐿

0

) , 𝐵

1
= (

0

𝑇

𝐿

𝑒

𝑆

),

𝐴

2
= (

−

𝑇

𝑅𝐶

0

0 0

) , 𝐵

2
= (

0

𝑇

𝐿

𝑒

𝑆

) .

(54)

Assume that 𝑒
𝑆
(𝑡) = 5V, 𝐿 = 0.75mH, the switching time

period is 𝑇 = 20 𝜇s, 𝐶 = 60 𝜇F, and 𝑅 = 20Ω. Then the
system obtained, which we will denoted by Σ, has

𝐴

1
= (

−

1

60

1

3

−

2

75

0

) , 𝐵

1
= (

0

2

15

) ,

𝐴

2
= (

−

1

60

0

0 0

) , 𝐵

2
= (

0

2

15

) .

(55)

In this case,

𝐺

1
(Σ) = (𝐵

1
𝐴

1
𝐵

1
𝐵

2
𝐴

1
𝐵

2
) = (

0

2

45

0

2

45

2

15

0

2

15

0

) ,

𝐺

2
(Σ) = (𝐵

1
𝐴

2
𝐵

1
𝐵

2
𝐴

2
𝐵

2
) = (

0 0 0 0

2

15

0

2

15

0

) .

(56)

System Σ is controllable, since rk𝐺(Σ) = rk (𝐺
1
(Σ) |

𝐺

2
(Σ)) = 2. Note that Theorem 3 cannot be applied because

rk𝐺
2
(Σ) < 2, but applying Theorem 9, an upper bound

for 𝜇R({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,2}
}) with regard to the 2-norm can be

obtained:

min
𝜆1 ,𝜆2∈R

𝜎

2
(𝑀 (Σ, 𝜆

1
, 𝜆

2
)) = 0.186217. (57)

Note that for any real value of 𝑅 ̸= 0, 𝐶 ̸= 0, 𝐿 ̸= 0, 𝑇 ̸= 0

and for any constant function 𝑒
𝑆
̸= 0, system Σ(𝑅, 𝐶, 𝐿, 𝑇, 𝑒

𝑆
)

is controllable. In order to obtain an uncontrollable system
we should apply a parameter variation to the values of the
parameters, setting 𝑒

𝑆
= 0, or 𝑇 = 0, or 𝐿 = ∞, or 𝐶 =

∞. Straightforward calculations show that the distance, with
regard to the 2-norm, from system Σ to a system having any
of these values is at least 0.188562.

This ad hoc study of this circuit leads to the conclusion
that the obtained upper bound (0.186217) is useful to guaran-
tee that, if we take any system (with physical meaning) at a
distance from the system Σ less than this upper bound, it will
be controllable.That is to say, we can obtain any desired value
for the voltage over the load 𝑅, with an appropriate source
voltage 𝑒

𝑆
(𝑡) and an appropriate switching signal.

Example 2. Let us consider the following first order time-
varying plant (see [18]) with the equations

̇𝑦 + 2𝑦 = 0.1𝑢 , ̇𝑦 + 0.25𝑦 = 10𝑢. (58)

Adopting a pole placement design, being the goal to place
the poles of the closed-loop system at fixed locations, if we
choose the state vector as 𝑥 = (�̇�, 𝑢, 𝑦)

𝑡, the following state
space representation of the closed-loop system Σ is obtained:

�̇� (𝑡) = 𝐴

1
𝑥 (𝑡) + 𝐵

1
𝑢

𝑐
(𝑡) ,

�̇� (𝑡) = 𝐴

2
𝑥 (𝑡) + 𝐵

2
𝑢

𝑐
(𝑡)

(59)

with 𝑢
𝑐
(𝑡) = 1,

𝐴

1
= (

−4.4 1.56 −43.2

1 0 0

0 0.1 −2

) , 𝐵

1
= (

12

0

0

) ,

𝐴

2
= (

−6.15 −5.7 0.0225

1 0 0

0 10 −0.25

) , 𝐵

2
= (

0.12

0

0

) .

(60)

In this case,

𝐺

1
(Σ) = (𝐵

1
𝐴

1
𝐵

1
𝐴

2

1
𝐵

1
𝐴

2
𝐵

1
𝐴

1
𝐴

2
𝐵

1
𝐴

2

1
𝐴

2
𝐵

1
𝐵

2
𝐴

1
𝐵

2
𝐴

2

1
𝐵

2
𝐴

2
𝐵

2
𝐴

1
𝐴

2
𝐵

2
𝐴

2

1
𝐴

2
𝐵

2
)

= (

12 −52.8 251.0 −73.8 343.4 −1678.1 0.1 −0.5 2.5 −0.7 3.4 −16.8

0 12 −52.8 12 −73.8 343.4 0 0.1 −0.5 0.1 −0.7 3.4

0 0 1.2 0 1.2 −9.8 0 0 0.0 0 0.0 −0.1

) ,

(61)

𝐺

2
(Σ) = (𝐵

1
𝐴

2
𝐵

1
𝐴

2

2
𝐵

1
𝐴

1
𝐵

1
𝐴

2
𝐴

1
𝐵

1
𝐴

2

2
𝐴

1
𝐵

1
𝐵

2
𝐴

2
𝐵

2
𝐴

2

2
𝐵

2
𝐴

1
𝐵

2
𝐴

2
𝐴

1
𝐵

2
𝐴

2

2
𝐴

1
𝐵

2
)

= (

12 −73.8 385.5 −52.8 256.3 −1272.7 0.1 −0.7 3.9 −0.5 2.6 −12.7

0 12 −73.8 12 −52.8 256.3 0 0.1 −0.7 0.1 −0.5 2.6

0 0 120 0 120 −558 0 0 1.2 0 1.2 −5.6

) .

(62)
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Since rk𝐺(Σ) = rk (𝐺
1
(Σ) | 𝐺

2
(Σ)) = 3, system Σ is

controllable. In this case, rk𝐺
1
(Σ)rk𝐺

2
(Σ) = 3. Applying

Theorem 3, an upper bound for 𝜇R({(𝐴 𝑖
, 𝐵

𝑖
)

𝑖∈{1,2}
}) with

regard to the 2-norm is obtained:

∑

𝑖∈{1,2}

𝜎

3
(1 +











𝐴

𝐶

𝑖









2

𝜎

3,𝑖

) = 123.756921, (63)

and applying Theorem 9, an upper bound for 𝜇R({(𝐴 𝑖
,

𝐵

𝑖
)

𝑖∈{1,2}
}) with regard to the 2-norm is obtained:

min
𝜆1 ,𝜆2∈R

𝜎

3
(𝑀 (Σ, 𝜆

1
, 𝜆

2
)) = 1.359749. (64)

Thus, a substantial improvement for the upper bound has
been achieved.

The ad hoc study of the closed-loop system Σ leads to
the conclusion that the obtained upper bound (1.359749) is
useful to guarantee that, if we take any system (with physical
meaning) at a distance from the system Σ less than this upper
bound, it will be controllable.

6. Conclusions

The main contribution of the paper is to obtain (Theorem 9)
an upper bound for the distance from a controllable switched
linear system to the set of uncontrollable ones, generalizing
the upper bound obtained byD. Boley andW. S. Lu for a stan-
dard system.Up to nowno bound for a switched linear system
has been obtained before that in [16] and the one presented
here, which improves it. On the other hand, this upper bound
can be effectively computed with the current resources.

Appendix

Eckart-Young-Mirsky Matrix
Approximation Theorem

Let the singular value decomposition (SVD) of 𝐶 ∈ R𝑚×𝑛 be
given by 𝐶 = ∑

𝑟

𝑖=1
𝜎

𝑖
𝑢

𝑖
V𝑡
𝑖
with 𝑟 = rk𝐶. If 𝑘 < 𝑟 and 𝐶

𝑘
=

∑

𝑘

𝑖=1
𝜎

𝑖
𝑢

𝑖
V𝑡
𝑖
, then

min
rk𝐷=𝑘

‖𝐶 − 𝐷‖

2
=









𝐶 − 𝐶

𝑘







2
= 𝜎

𝑘+1
,

min
rk𝐷=𝑘

‖𝐶 − 𝐷‖

𝐹
=









𝐶 − 𝐶

𝑘







𝐹
=
√

𝑞

∑

𝑖=𝑘+1

𝜎

2

𝑖
,

(A.1)

where 𝑞 = min{𝑚, 𝑛}.
This theorem can be found in [19].
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