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Abstract

Complex networks is a recent area of research motivated by the empirical study of real-
world networks, such as social relations, protein interaction, neuronal connections, etc. As
closed-form probabilistic models of networks are often not available, the ability of randomly
generating networks verifying specific constraints might be useful. The purpose of this work
is to develop optimization-based procedures to randomly generate networks with structural
constraints, within the probabilistic framework of conditional uniform models. Based on the
characterization of families of networks by means of systems of linear constraints, polynomial-
time methods to generate networks with specified structural properties are constructed.
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1 Extended Abstract

After observing a real-world network, a conditional uniform model [1] might be used to
check whether empirical features (for example, the number of closed triangles, or the number of
connected paths) are significantly unlikely under a uniform distribution of all networks having
fixed and well known structural properties (for example, uniform probability distribution of
all networks with fixed density). Comparing the observed network with an ensemble of such
networks allows one to detect deviations from randomness in network properties.

Let xij be the (i, j) component of the adjacency matrix (AM, from now on) of a simple
graph. Then, the set Gn of all simple graphs with n nodes is characterized by the integer points
of the polytope ϕ = {(x12, . . . , xn−1n) ∈ [0, 1]n(n−1) : xij − xji = 0, i = 1 . . . n − 1, i < j ≤ n },
i.e., ϕ∩Z

n(n−1). Adding nonnegative slacks, the representation of ϕ in standard matrix form is
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Matrix I is the n(n− 1)/2× n(n− 1)/2 identity matrix, e = (1, . . . , 1)T ∈ R
n(n−1)/2, xT = [x12,

x13, . . . , x1n, x23, x24, . . . , x2n, . . . , x45, . . . , x(n−1)n, x21, x31, x32, x41, . . . , xn(n−1)] and

sT = [s12, s13, . . . , s1n, s23, s24, . . . , s2n, . . . , s45, . . . , s(n−1)n, s21, s31, s32, s41, . . . , sn(n−1)].
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The coefficient matrix of (1) is totally unimodular (TU, from now on), such that all extreme
points of ϕ are integer. Moreover, since ϕ is a subset of the n(n − 1)-dimensional unit cube,
there couldn’t be any integer point in the interior, so that each graph with n nodes, whose AM
is given by an integer solution of (1), must be associated to a unique extreme point of ϕ and,
conversely, the latter is by construction associated to a unique AM. Sufficient conditions for a
matrix to be totally unimodular are shown in the appendix of [4].

We proved that, due to the total unimodularity of their matrix structure, many interesting
families of networks could be characterized by extreme points of polytopes:

- undirected networks conditioned to the total density;

- directed networks conditioned to the total density;

- undirected networks conditioned to the within & between group densities;

- undirected networks conditioned to the within group densities;

- undirected networks conditioned to the between group densities;

- directed networks conditioned to the within & between group densities;

- directed networks conditioned to the within group densities;

- directed networks conditioned to the between group densities;

- undirected networks conditioned to the within group densities and the total density;

- undirected networks conditioned to between group densities and the total density;

- directed networks conditioned to the within group densities and the total density;

- directed networks conditioned to the between group densities and the total density;

- directed networks conditioned to the in-&-out-degree sequences;

- undirected networks conditioned to the lower bound of the degree sequence range and density;

- directed networks conditioned to the diad count;

- directed networks conditioned to the number of mutual links;

The fact that we are able to associate to each network verifying specified constraints an
extreme point of a polytope, allows to generate random networks by solving linear programs.

It may be seen that the systems of linear constrains associated to the families of networks
listed above have a primal block-angular structure, as the following

min
k

∑
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ciT xi (2a)
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(2b)

0 ≤ xi ≤ 1 i = 0, . . . , k. (2c)

Matrices Ni ∈ R
mi×ni and Li ∈ R

l×ni , i = 1, . . . , k, respectively define the block-diagonal
and linking constraints, k being the number of blocks. Vectors xi ∈ R

ni , i = 1, . . . , k, are the
variables for each block. x0 ∈ R

l are the slacks of the linking constraints. bi ∈ R
mi , i = 1, . . . , k,

is the right-hand-side vector for each block of constraints, whereas b0 ∈ R
l is for the linking

constraints. The upper bounds for each group of variables are defined by ui, i = 0, . . . , k.
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Specialized versions of the simplex method, interior point methods and decomposition tech-
niques have been proposed for these particular structures [2, 3].

Let A ∈ R
m′×n′

be the coefficient matrix associated to one of the polytopes whose extreme
points are bijectively related to the aforementioned families of networks. By the Fundamental
Theorem of Linear Programming, given a c ∈ R

|V |(|V |−1), there exists a network g belonging to
the specified family of networks such that g ∈ argmaxx cTx, s.t. x ∈ ϕ. This means that, if c is a
properly defined random vector, the probability distribution of a network in the specified family
can be obtained by associating to a given c ∈ R

|V |(|V |−1) the set {x ∈ ϕ : x ∈argmaxx cTx}.
Clearly, if each network is an optimal solution of a LP with randomly generated objective

function, we cannot state that every network has the same probability of being selected, i.e.
we are not authorized to regard the sample of networks generated this way as draw from a
uniform distribution. After fixing a random objective function the probability of obtaining
a network depends on geometrical properties of the associated polytope (the polytope whose
extreme points characterize the family). It seems in any case reasonable to assume that such
probability does not depend on any structural property of the network, except for the ones
defined by the specified constraints.

If we have a given extreme point x0 of ϕ, we might obtain another extreme point x1 of ϕ by
fixing r variables and optimizing, with a given objective cost vector c ∈ R

N−r, the remaining
N − r variables.

To clarify this method, consider a primal block-angular problem with R blocks and let
r ⊂ {1, 2, . . . , R}. Let x(r) be the vector of decision variables associated with blocks indexed
by r and x(rc) be the vector of decision variables associated with the |rc| = R − |r| remaining
blocks. Similarly, let A(r) represent the submatrix of A, whose columns corresponds to the blocks
indexed by r and A(rc) the submatrix of A, whose columns corresponds to the blocks indexed
by r

c.
Algorithm 1 illustrates the iterative procedure to generate a sequence of networks by ran-

domly selecting c ∈ R
N−r and the blocks to be optimized r.

Algorithm 1 R-blocks chain

1: Let k = 0 xk be an initial extreme point
2: repeat

3: Randomly select c ∈ R
N−r and r ⊂ {1, 2, . . . , R};

4: Construct A(rc), A(r), x(rc) and x(r);
5: Solve the associated subproblem;
6: Update xk+1

(r) using the optimal solution;
7: k = k + 1;
8: until k ≥ K

Another way to generate extreme points of a polytope is to produce a sequence of nonde-
generate bases. Consider a partition of the set of columns of A into two groups: the basic
columns B (linearly independent, |B| = rank(A)), and the nonbasic ones N . The components of
x associated to the non-basic columns (xN ) are fixed at their limits, namely either 0 or 1, and
the variables associated to basic columns ( xB) are computed as xB = B−1(b−NxN ), where B
and N are the matrices of columns of A associated to B and N . Denoting as eq the q-th column
of the identity matrix of dimension |N |, q = 1, . . . , |N |, if |ϕ ∩ Z

n(n−1)| > 1 (i.e, there is more
than one extreme point in ϕ), from an extreme point xk ∈ ϕ we can compute another extreme
point as

xk+1 = xk + λ

[

B−1Neq

−eq

]

. (3)

Indeed (3) is equal to the standard simplex iteration. Using (3) we can obtain a finite sequence
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of K extreme points {xk}
K
k=0. (From now on we shall use δB(q) to denote in a more compact

notation the direction of movement of (3).)
It can be shown for the polytopes described in this paper (subsets of a finite-dimensional

hypercube with integer extreme points) that the step length λ ∈ {−1, 0, 1}.
The sequence (3) requires the repeated selection of q ∈ {1, . . . , |N |} and λ ∈ {−1, 0, 1}.

Thus, if we let q be a random variable, (3) gives rise to a Markov Chain over the extreme points
of ϕ. Algorithm 2 provides an iterative procedure to simulate using that Markov chain.

Algorithm 2 Pivoting sequence

1: Let x0 be an initial extreme point
2: repeat

3: Randomly select q ∈ {1, . . . , |N |};
4: compute the feasible step-length λ ∈ {−1, 0, 1} associated with q;
5: if λ 6= 0 then

6: Update B−1 and N and compute xk+1 = xk + λδB(q); k = k + 1;
7: end if

8: until k ≥ K

The two procedures to generate extreme points have been implemented, for most of the
aforementioned families of networks. The comparison of our computational results with the
few available analytical solutions confirms that both procedures provide coherent numerical
results, matching the known theoretical values. When analytical results are not available, the
two procedures give rise to the same results for large sample sizes and differ only in terms of
efficiency, since many bases obtained by the pivoting method do not produce new networks due
to the high degeneracy of the problems. Finally, the method based on the sequential random
selection of K blocks is (1 efficient, and (2 allows to obtain unbiased information of real-world
network properties.
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