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ABSTRACT

The axisymmetric form of the hydrodynamic equations within the smoothed particle hydro-
dynamics (SPH) formalism is presented and checked using idealized scenarios taken from
astrophysics (free fall collapse, implosion and further pulsation of a Sun-like star), gas dy-
namics (wall heating problem, collision of two streams of gas) and inertial confinement fusion
(ablative implosion of a small capsule). New material concerning the standard SPH formalism
is given. That includes the numerical handling of those mass points which move close to the
singularity axis, more accurate expressions for the artificial viscosity and the heat conduction
term and an easy way to incorporate self-gravity in the simulations. The algorithm developed
to compute gravity does not rely in any sort of grid, leading to a numerical scheme totally
compatible with the Lagrangian nature of the SPH equations.

Key words: methods: numerical.

1 IN T RO D U C T I O N

Since the smoothed particle hydrodynamics (SPH) method was pro-
posed by Gingold & Monaghan (1977) and Lucy (1977) 30 yr ago,
it has become a powerful and very successful method, which is
routinely used worldwide to model systems with complicated ge-
ometries. In particular, the combination of the SPH method with
hierarchical algorithms, addressed to efficiently organize data and
calculate gravity, have led to a robust and reliable schemes able to
handle complex geometries in three dimensions. In spite of these
achievements, little effort has been put in the development of ax-
isymmetric applications of the method. However, a large body of
interesting applications has to do with systems which have axisym-
metrical geometry such as accretion discs, rotating stars or explosive
phenomena (i.e. novae or supernovae events) provided the ignition
takes place in a point-like region at the symmetry axis. The interac-
tion between the gas ejected during a supernova explosion and the
circumstellar matter has been extensively simulated using cylindric
coordinates either with Eulerian (Blondin, Lundqvist & Chevalier
1996) or SPH (Velarde et al. 2006) codes. In inertial confinement
fusion (ICF) studies, the collapse of the deuterium capsule induced
by laser ablation can be also approximated using two-dimensional
hydrodynamics. Axisymmetrical hydrocodes are also useful to con-
duct resolution studies of three-dimensional codes just by impos-
ing an initial configuration with the adequate symmetry. In these
cases, a comparison between the results obtained using the three-
dimensional hydrocode and the equivalent, although usually better
resolved, two-dimensional simulation could help in numerical con-
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vergence studies. Several formulations of different complexity have
been proposed to handle with the axisymmetric version of SPH.
While the first algorithms were in general very crude [i.e. Herant
& Benz (1992) and references therein] neglecting the so-called
hoop-stress terms, there were also more consistent SPH approx-
imations (Petscheck & Libersky 1993). Recently, more complete
formulations were given by Brookshaw (2003) and Omang, Borve
& Trulsen (2006). In particular, the scheme devised by Omang
et al. includes not only the hoop-stress terms but also a consistent
treatment of the singularity line defined by the symmetry axis. The
algorithm proposed by these authors relies in the use of interpolative
kernels especially adapted to the cylindrical geometry. Although the
resulting scheme is robust, being able to successfully pass several
test cases, it has the numerical inconvenient that an elliptical inte-
gral has to be solved numerically at each integration step for each
particle.

In this paper, we propose a new formulation of the axisymmet-
ric SPH technique which preserves many of the virtues stated by
Brookshaw (2003) and Omang et al. (2006), being also able to han-
dle the singularity axis in an efficient way. In our scheme, there is no
necessity to modify the interpolating kernel (we use the cubic-spline
polynomial). Instead, taking advantage of the symmetry properties
across the Z-axis, we found several analytical correction factors to
the physical magnitudes. These correction factors only affect parti-
cles moving at a distance from the Z-axis lesser than 2h, being h the
smoothing-length parameter. For the remaining particles, the SPH
equations are identical to those given in Brookshaw (2003). In addi-
tion, we also give expressions for the artificial viscosity and a new
heat conduction algorithm, which takes into account the hoop-stress
contribution. Finally, we propose an original method to handle grav-
ity within the SPH paradigm which is consistent with the gridless
nature of that particle method. The text is organized as follows. The
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basic fluid equations written in axisymmetric coordinates, and cor-
rected from axis effects when necessary, are provided in Section 2.
In Section 3, we add useful physics to these equations consisting of
an artificial viscosity term to handle shock waves (Section 3.1), an
expression for thermal conduction (Section 3.2) and an algorithm
addressed to calculate self-gravity within the axisymmetric hypoth-
esis (Section 3.3). Section 4 is devoted to describe and discuss
five test cases aimed at validating the proposed scheme. Finally,
the main conclusions of our work as well as some comments
about the limitations of the developed scheme and prospects for the
future are presented in Section 5.

2 FLUID EQUATIONS IN THE

AXISYMMETRIC APPROACH

An elegant approach to the axisymmetric Euler fluid equations was
given by Brookshaw (2003) who derived the SPH form of these
basic equations using the minimal action principle (see Monaghan
2005, and references therein for the history of variational SPH). The
resulting expressions for mass, momentum and energy conservation
written in the cylindrical coordinate system s = (r, z) are

ηi =
N∑

j=1

mjWij , (1)

⎧⎪⎪⎨⎪⎪⎩
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mj (vi − v j ) · DiWij , (3)

where ηi = 2π riρi is the two-dimensional density of the i-particle,

v = (vr , vz) its velocity, Wij = Wij

( |si −s j |
hi

)
the interpolating

kernel and the remaining symbols have their usual meaning. The
differential operator D = ( ∂

∂r
, ∂

∂z
) is a Cartesian operator written in

the (r, z) plane of cylindric coordinates. The first terms on the right
in the r-component of equations (2) and (3) are called the hoop-
stress terms. They are geometrical terms which arise from the nabla
operator written in cylindrical coordinates. The smoothing-length
parameter, h, is usually taken as the local resolution of the SPH.
Equations (1)–(3) along with the adequate equation of state (EOS)
are the starting point to carry out numerical simulations of fluid
systems with axisymmetric geometry. As boundary conditions we
consider reflective ghost particles across the Z-axis and open flow at
the outer limits of the system. For the i-particle with coordinates (ri ,
zi) and velocity (ṙi , żi), it is defined its reflective k-particle by taking
(rk, zk) = (−ri , zi), (ṙk, żk) = (−ṙi , żi) and mk = mi . Thus, position,
velocity as well as other magnitudes such as density or internal
energy of reflective particles are updated at each step not using the
SPH equations but from the evolution of real particles. Even though
the use of reflective boundary conditions is not strictly necessary
in axisymmetric geometry, it is useful to correctly represent the
density and its derivatives near to the singularity axis.

2.1 Correction terms close to the singularity axis

One of the major causes of inaccuracy of axisymmetric SPH is the
treatment of particles that get close to the symmetry axis. Unlike
spherically symmetric systems, there is only one singular point,

just at the centre, here is a singular line at r = 0. A good treat-
ment of particles moving close to the Z-axis is especially relevant
for implosions such as the collapse of a self-gravitating system or
in ICF studies. As far as we know only Omang et al. (2006) have
consistently addressed this problem. In that paper, the interpolation
kernel is modified according to the particular geometry of the sys-
tem, spherical or cylindrical. The resulting scheme does not have
singularity problems when the particles approach the axis. How-
ever, the resulting kernel does not have an analytical expression and
must be calculated at any step for each particle using a numeri-
cal integration. Recently, useful fitting formulae were proposed by
Omang, Borve & Trulsen (2007) but still involving a large number
of operations which slows the calculation.

An alternative way to handle with the symmetry axis, without
modifying the basic SPH scheme given above, is to calculate correc-
tion terms to equations (1)–(3), which become significant only close
to the Z-axis. These correction factors arise because of the limited
capability of standard kernels to interpolate accurately non-linear
functions. In the particular case of the two-dimensional density,
η = 2π| r|ρ, its profile is not longer linear in the axis neighbour-
hoods due to the presence of reflective particles. Usually, the errors
are small and the interpolation is precise to second order in h. Un-
fortunately, close to the symmetry axis errors grow and density and
other physical magnitudes are not well reproduced, as it will be
shown below. The detailed derivation of these corrections are given
in Appendix A, leading to the following equations:

η̂i =
N∑

j=1

mjWij × f i
1 = ηi × f i

1 , (4)

where η̂i is the new, improved, two-dimensional density and f i
1

is a correction factor which, for the cubic-spline kernel, reads
(Appendix A)

f i
1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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7
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]−1
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8
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3 ζi − 2
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i

]−1

for 1 < ζi < 2

1 ζi > 2

(5)

being ζi = ri/hi . A plot of f 1(ζ ) and its first derivative is given
in Fig. 1. Hereafter, a hat will be placed over any corrected, and
therefore, ‘true’ magnitude.

At this point, it is useful to introduce a couple of algebraic rules:

Âi =
∑

j

mj

Aj

η̂j

Wij (6)

η̂Ai = f i
1

∑
j

mjAjWij, (7)

which are valid as long as, close to the axis, the magnitude A has a
weak dependence in the r-coordinate. In particular, setting A = 1 in
equation (7) leads to equation (4).

To find the influence of the above correction factor in the mo-
mentum equation, equation (2), it is better to write the components
of that equation in differential form. For the radial component, we
have:

r̈ = − 1

ρ

∂P

∂r
= −2πr

η̂

∂P

∂r
= 2π

P

η̂
− 2πrP

η̂2

∂η̂
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− ∂

∂r

(
2πrP

η̂

)
.

(8)
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Figure 1. Plot of the correction factors f1 and f2 and their derivatives as a
function of ζ = r/h. The cubic spline interpolator kernel was assumed to
compute f1 and f2 (Appendix A).

When r → 0 the particle approaches the Z-axis where symmetry
enforces the last term on the right to vanish for spherically symmet-
ric kernels. The first term on the right is the hoop-stress term which
should be exactly balanced by the central term when r → 0, because
the acceleration should be zero at the symmetry axis. Nevertheless,
this does not happen unless the correction factor f 1(ζ ) is taken into
account during the calculation of the gradient of η̂,

∂η̂

∂r
= ∂[f1(ζ )η]

∂r
= f1(ζ )

dη

dr
+ η

∂f1(ζ )

∂r
. (9)

Similarly, for the Z-component in the momentum equation:

z̈ = − 1

ρ

∂P

∂z
= −2πr

η̂

∂P

∂z
= −2πrP

η̂2

∂η̂

∂z
− ∂

∂z

(
2πrP

η̂

)
, (10)

where now we simply have:

∂η̂

∂z
= f1(ζ )

∂η

∂z
. (11)

The resulting momentum components in discrete SPH form can
be obtained from equations (6) to (11):
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,
(12)

z̈i = −2π

N∑
j=1

mj

[
Piri

η̂i
2 × f i

1 (ζi) + Pj rj

η̂j
2

]
∂Wij
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. (13)

The value of pressure in equations (12) and (13) must be computed
through the EOS using the ‘corrected’ three-dimensional density,
ρ̂ = η̂/(2πr).

Note that close to the axis the summatories in equations (12) and
(13) are non-symmetric with respect any pair of particles. Still the r-
component of the momentum is conserved, even for those particles

with r < 2h, because of the imposed reflective boundary conditions.
In the Z-axis, the momentum is not exactly conserved within the
band defined by r < 2h. In general, such loss is small, affecting
a tiny amount of mass. In most of the tests described below, total
momentum was very well preserved.

A similar approach can be worked out to improve the energy
equation:

du

dt
= −2π
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η̂
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η̂2
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dt
, (14)

where
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]
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being η̂ = η × f1; ̂(ηvz) = (ηvz) × f1 and ̂(ηvr ) = (ηvr ) × f2. The
factor f2 is (Appendix A)
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The resulting energy equation in discrete SPH form is

dui

dt
= −2π

Pi

η̂i

vri + 2π
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η̂i
2

dη̂i

dt
, (17)

where

dη̂i

dt
=

N∑
j=1

mj

(
f i

1 vri − f i
2 vrj

) ∂Wij

∂ri

+
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mj

(
∂f i

1

∂ri
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∂ri
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1
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(
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) ∂Wij

∂zi
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Note that f i
1, f i

2 and their derivatives are only function of the cur-
rent radial coordinate of the particle and its smoothing length. Thus,
they can easily be computed and stored in a vector without introduc-
ing any significant computational overload. Examples about the use
of the axisymmetric fluid equations with axis corrections, equations
(4), (12), (13) and (17) in practical situations will be provided and
discussed in Section 4.

3 ADDI NG PHYSI CS: SHOCKS, THERMAL

C O N D U C T I O N A N D G R AV I T Y

3.1 Artificial viscosity

As in three dimensions, the treatment of shocks in the axisymmet-
ric approach also relies in the artificial viscosity formalism. None
the less, there are a variety of artificial viscosity algorithms suited
for SPH to choose at. We have adapted the standard recipe by
Monaghan & Gingold (1983) to the peculiarities of the two-
dimensional axisymmetric hydrodynamics. In that approach, the
artificial viscosity gives rise to a viscous bulk and shear pressure
which is added to the normal gas pressure only in those regions
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where the particles collide (in the SPH sense1). In three dimen-
sions, it is defined a magnitude, �ij :

�3D
ij =

⎧⎪⎨⎪⎩
−α0 c̄ij μij +β0μ2

ij

ρ̄ij
vi j · ri j < 0

0 vi j · ri j > 0,

(19)

which is closely related to the viscous pressure. In equation (19),
α0 and β0 are constants of the order of unity, ρ̄ij and c̄ij are the
average of density and sound speed of i and j- particles, and μij is

μij = hijvij · r ij

r2
ij + ν2

, (20)

here vij = (vi − vj ), r ij = (r i − rj ) and ν = 0.1h avoid diver-
gences when rij → 0. The scalar magnitude �ij has a linear and a
quadratic term. The linear component mimics bulk and shear vis-
cosity of fluids whereas the quadratic one is important to avoid
particle interpenetration in strong shocks.

The easiest way to write the contribution of the artificial viscosity
to the momentum and energy equations in an axisymmetric code is
by changing the mass of the particles according to their distance to
the Z-axis: m −→ m/2πr . The viscous acceleration becomes

avis
i =

N∑
j=1

mj

2πr̄ij

�3D
ij DiWij . (21)

Taking ρ̄ij = η̄ij /(2πr̄ij ), in equation (19), the explicit depen-
dence on rij in the viscous acceleration formula is removed,

avis
i =

N∑
j=1

mj�
(1)
ij DiWij , (22)

where �
(1)
ij is

�
(1)
ij =

{ −α0 c̄ij μij +β0μ2
ij

η̂ij

vi j · si j < 0

0 vi j · si j > 0
, (23)

being μij :

μij = hijvij · sij

s2
ij + ν2

. (24)

Expressions (22)–(24) account for the Cartesian part of viscos-
ity. It has been shown (i.e. Monaghan 2005) that, in the continuous
limit, these expressions become the Navier–Stokes equations pro-
vided shear and bulk viscosity coefficients are taken ηvis = ρα0hc/8
and ζ vis = 5ηvis/3, respectively. However, in cylindric geometry,
the stress tensor which appears in the Navier–Stokes equations
also includes a term proportional to velocity divergence through the
so-called second viscosity coefficient. Therefore, an extra term con-
taining the magnitude (vr/r) must be added to �

(1)
ij to account for

the convergence of the flux towards the axis. This new term, �
(2)
ij ,

should fulfil a few basic requirements. (1) Far enough from the
axis it should be negligible, (2) must vanish for those particles with
vr ≥ 0, (3) for homologous contractions the viscous acceleration
related to that term should be negligible, (4) it should be symmetric
with respect particles i and j to conserve momentum. An expression
satisfying the four items is

�
(2)
ij =

⎧⎨⎩
−α1 c̄ij qij +β1q2

ij

η̂ij

vri and vrj < 0

0 othercases
(25)

1 In the SPH method, the so-called particles could be looked as finite spheres
of radii 2h.

where qij = 0.5(
hivri

ri
+ hj vrj

rj
). The resulting viscous acceleration is

avis
i =

N∑
j=1

mj�
2D
ij DiWij , (26)

where �2D
ij = �

(1)
ij + �

(2)
ij . Note that for a homologous contraction vr

∝ r meaning q � const., hence the gradient of < η�(2) > vanishes
fulfilling the third requirement above. In diverging shocks, �

(2)
ij

vanishes and only the Cartesian part of viscosity matters. Therefore,
constants α0, β0 should remain close to their standard values α0 � 1
and β0 � 2. All simulations presented in this paper were carried out
using α1 = α0 = 1, β1 = β0 = 2. In converging shocks, however,
the effect of �

(2)
ij is to increase artificial viscosity introducing more

damping in the system.
Equation (26) has the advantage that is formally similar to that

used in three dimensions. Therefore, one can benefit from the well-
known features of the artificial viscosity in three dimensions, which
can be directly translated to the axisymmetric version (several useful
variations of equation 19 can be found in Monaghan 2005). In
particular, it is straightforward to write the corresponding energy
equation:(

dui

dt

)
vis

= 1

2

N∑
j=1

mj�
2D
ij (vi − v j ) · DiWij , (27)

which has to be added to the right-hand side of equation (3).

3.2 An approach to the conduction term

The differential equation describing the evolution of the specific
internal energy due to conductive or diffusive heat transfer is(

du

dt

)
cond

= 1

ρ
∇ · (κ∇T ) (28)

being κ the conductivity coefficient which in turn is a function of
the local thermodynamic state of the material. The main difficulty
to write equation (28) in a discrete equation suitable to SPH calcu-
lations is the existence of a second derivative. It is well known that
second and higher order derivatives often pour a lot of numerical
noise in disordered systems. A way to avoid that shortcoming is to
reduce one degree the order of the derivative by taking the integral
expression of equation (28), Brookshaw (1985). It has been shown
(see, for example, Jubelgas, Springel & Dolag 2004) that in three-
dimensional Cartesian coordinates the following expression allows
to approximate a second derivative using only the first derivative of
the interpolation kernel:

(∇2Y )i = 2
N∑

j=1

mj

ρj

Yj − Yi

r2
ij

r ij · ∇i Wi j , (29)

where Y represents any scalar magnitude and r ij = r i − rj . An
useful algebraic relationship which allows to write the heat transfer
equation in SPH notation is

∇ · (κ∇T ) = 1

2
[∇2(κT ) − T ∇2κ + κ∇2T ]. (30)

Combining equations (29) and (30), the usual form of the heat
transfer equation used in three-dimensional SPH studies is obtained.
A mathematical expression for the heat transfer equation in ax-
isymmetric SPH was given by Brookshaw (2003). However, in the
derivation of equation (29), there was not taken into account the
�1/r term which naturally arises whenever the divergence of a
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vector is estimated in cylindric coordinates:

∇ · (∇Y ) = 1

r

(
∂Y

∂r

)
+ ∂

∂r

(
∂Y

∂r

)
+ ∂

∂z

(
∂Y

∂z

)
. (31)

It will be shown in Section 4.1 how the inclusion of the first term
on the right of equation (31) improves the quality of the results in a
particular test.

To obtain the adequate numerical approximation to equation (28)
in axisymmetric SPH, we first make use of equation (30):(

du

dt

)
cond

= 1

2ρ
{∇2(κT ) − T ∇2κ + κ∇2T }. (32)

Then, using equation (31) to develop each term inside the brackets
and using the two-dimensional operator D ≡ ( ∂

∂r
, ∂

∂z
) instead of ∇

the following expression is obtained:(
dui

dt

)
cond

= 1

2ρ

{
1

ri

∂(κTi)

∂ri

− Ti

ri

∂κi

∂ri

+ κi

ri

∂Ti

∂ri

}
+ 1

ρi

N∑
j=1

[
mj

κi + κj

η̂j

(Ti − Tj )
sij

s2
ij

· DiWij

]
. (33)

The magnitudes inside the brackets are the new terms related to
the hoop stress. In order to calculate the derivatives, we make use
of one of the golden rules of SPH (Monaghan 2005):

∂Ci

∂ri

=
∑

j

mj

η̂j

(Cj − Ci)
∂Wij

∂ri

. (34)

After a little algebra, the following expression is obtained:(
dui

dt

)
cond

= −π

N∑
j=1

mj

(κi + κj )

η̂i η̂j

(Ti − Tj )
∂Wij

∂ri

+ 2πri

N∑
j=1

mj

(κi + κj )

η̂i η̂j

(Ti − Tj )
sij

s2
ij

· DiWij . (35)

The presence of (Ti − Tj ) in the equation ensures that there is
not heat flux between different parts of an isothermal system. Note
that the presence of the ri multiplier in the second term in the right-
hand side of equation (35) does not ensure complete conservation
of the heat flux. However, the total energy losses in the numerical
test below simulating a thermal wave evolution were negligible. Of
course equation (35) can be symmetrized by taking the arithmetical
mean r̄ij instead of ri but in that case the evolution of the thermal
wave was not so well reproduced. On another note, equation (35)
is compatible to the second principle of thermodynamics in the
sense that heat always flows from high to low temperature particles.
To demonstrate this, let us take a pair of particles i and j so that
Ti > Tj . The second term on the right-hand side becomes negative
because the scalar product sij · DWij /dsi is always negative. The
first term on the right-hand side is negative for ri < rj and positive
for ri > rj . As the heat flow from particle i must be negative the
only trouble could come if ri > rj . Nevertheless, even in that case
heat flux is still negative if ri/(ri − rj ) > 1/2 because the sign of
the second term in equation (35) prevails. Thus, ri/(ri − rj ) > 1/2
is a sufficient condition to get the right sign of heat flux between
any pair of particles. As ri − rj � h such condition is fulfilled in a
large domain of the system. The exception could be the axis vicinity,
where ri → 0. Nevertheless, in that case symmetry enforces the heat
flux to be negligible. Therefore, we expect a good behaviour of the
heat flux arrow although there are not excluded marginal violations
if resolution is poor and strong heat fluxes were present close to r =
0. A way to ensure complete compatibility to the second principle

of thermodynamics is to make zero the flux between any pair of
particles violating such principle.

3.3 Self-gravity

Current two-dimensional hydrocodes often handle gravity by solv-
ing the Poisson equation or, if the system remains nearly spherical,
by simply computing the enclosed Lagrangian mass in a sphere be-
low the point and using the Gauss law. Methods based on the Poisson
solvers have proven very useful to find gravity in Eulerian hydrody-
namics where the same grid used to compute the motion of the fluid
elements can be used in the calculation of gravity. However, they
have the difficulty to set suitable outer boundary conditions owing
to the infinite range of the gravitational force. In Lagrangian gridless
methods such as SPH, it is better to use the direct interaction among
mass particles themselves to calculate gravity. The evaluation of
the gravitational force through direct particle–particle interaction
leads to an N2 scheme that makes the computation feasible only
for a limited number of particles. When N is high, as it is fre-
quent in three-dimensional calculations, one has to rely in approx-
imate schemes such as those based in hierarchical-tree methods,
Hernquist & Katz (1989). However, hierarchical methods do not
work efficiently in the two-dimensional axisymmetric approach be-
cause what we call particles are in fact rings of different size. Usu-
ally, the ratio between the radius of these rings and the distance to the
point where the force needs to be computed is too large to permit the
multipolar approach to evaluate the gravitational force. Fortunately,
the good resolution usually achieved in two dimensional codes us-
ing a moderate number of particles makes the direct calculation
affordable.

According to Fig. 2, the gravitational force per unit of mass in a
point P of coordinates (0, yp, zp) (being Z the symmetry axis) due
to the ring is

g(0, yp, zp) = G

∫ 2π

0

ρRdϕ

(R2 + s ′2 − 2ypR sin ϕ)3/2

×[(R sin ϕ − yp) j + (z − zp)k], (36)

Figure 2. Sketch of the coordinate system and notation used to describe
gravity.
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where the meaning of the symbols is that shown in Fig. 2.
The gravitational force acting on to the i-particle can be easily
written as:

gi =
N∑

j=1

G

2π

mj(
R2

j + s ′2
i

)3/2

×[(RjI1 − yiI2) j + (zj − zi)I2)k], (37)

where s′
i
2 = y2

i + (zj − zi)2, and mj = 2πRj ρj is the mass of the
particle associated to the j-ring. Integrals I1 and I2 are defined as
follows:

I1 =
∫ 2π

0

sin ϕdϕ

(1 − τ sin ϕ)3/2
(38)

I2 =
∫ 2π

0

dϕ

(1 − τ sin ϕ)3/2
, (39)

where the parameter τ is

τ = 2yiRj

R2
j + s ′2

i

. (40)

Although the elliptical integrals I1 and I2 cannot be solved analyti-
cally, they can be tabulated as a function of the parameter τ given
by equation (40). It is straightforward to show that the value of
τ is always inside the interval τε [0, 1), although for τ → 1 the
integrals I1 and I2 become divergent. Therefore, the gravity force
can be calculated in an efficient way using the following recipe.

(1) Build a table for I1 and I2 as a function of τ . A table with 104

rows with values 0 ≤ τ ≤ 0.9999 evenly spaced is sufficient.
(2) To increase the speed do not interpolate from that table but

take just the row which is closest to the actual value of τ calculated
using equation (40).

(3) Note that parameter τ is symmetric with respect any pair of
particles, τi = τj , thus I1(τi) = I1(τj ) and I2(τi) = I2(τj ). Therefore,
only half of the interactions have to be calculated.

If the algorithm is optimized the scheme is able to provide the
exact value of the gravity for several dozens of thousand particles.
In many applications, using �5 104 particles in two dimensions is
enough to guarantee a good resolution.

Another physical magnitude of interest is the gravitational po-
tential at the position of the i-particle. It is easy to show that the
contribution of the j-ring to the gravitational potential is

Vi = G

2π

mj(
R2

j + s ′2
i

)1/2 I3, (41)

where

I3 =
∫ 2π

0

dϕ

(1 − τ sin ϕ)1/2
. (42)

Again the same recipe given above to compute the force can
be used to efficiently calculate Vi . On the other hand, the exact
computation of the gravitational potential allows to calculate the
gravitational force by taking the gradient of V at any point.

gi = −(DV )i . (43)

A more suitable form for SPH calculations can be obtained using

η̂DV = D(η̂V ) − V Dη̂, (44)

which, according to equations (7) and (9), leads to the following
discrete equation:

gi = −(DV )i = f i
1

η̂i

N∑
j=1

mj (Vi − Vj )DiWij

+
(

df i
1

dr

)
η̂i

N∑
j=1

mj (Vi − Vj )Wij ur ,
(45)

where f1 is the corrective term given by equation (5) and ur the unit
vector in the r-axis.

This second route to calculate the gravitational force is compu-
tationally more efficient than evaluating equation (37) because the
gradient of the potential is a local quantity which can be calculated
in the same part of the algorithm devised to compute the density
or other magnitudes in the hydrocode. It has the additional advan-
tage that the resulting force is smoothed by the SPH interpolation
procedure avoiding divergences when a pair of particles become
too close. In Fig. 5 (bottom right-hand side), there are shown the
gravity profile calculated using equation (45) (filled triangles) and
the pressure gradient term (continuum line) along a Sun-like poly-
tropic structure. As it can be seen, the fit is satisfactory except at
the surface where the pressure gradient is overestimated. Although
using the potential to calculate gravity is not as exact as the direct
force calculation, it is a factor of 2 faster because there is a lesser
amount of numerical operations in the double loop of the gravity
routine.

Needless to say, the simplicity of the proposed scheme makes
the parallelization of the gravity computational module straightfor-
ward. In this case, calculations with 105–106 particles could become
feasible even for desktop computers with multiple core processors.

3.3.1 Free-fall collapse of homogeneous gas structures. Rotation

As an initial check of the gravity algorithm resulting from equa-
tion (45), we have simulated the free-fall collapse of a uniform
density sphere of mass M0 and radius R0. It is a standard test which
has the following analytical solution:

t

tff

= 1 − 2

π

{
sin−1

[(
r

r0

)1/2
]

−
(

r

r0

)1/2 (
1 − r

r0

)1/2
}

,

(46)

where r0 is the initial position of the fluid element and 0 ≤ t ≤ tff .
The free-fall time tff is

tff = π

2

(
R3

0

2GM0

)1/2

. (47)

We built an uniform sphere with M0 = 1 M� and R0 = R� filled
with N = 15 396 particles settled in a square lattice. Gas pressure
and artificial viscosity were set to zero so that the structure collapsed
under gravity force. Afterwards the implosion was followed until
the elapsed time was close to tff . Although restricted to spherical
symmetry, the free-fall test is quite demanding because the evolution
is highly non-linear, allowing for a good check of both the gravity
module and the integration scheme (see next section for details).
In Fig. 3, there is represented the evolution of a particle initially
located at r0 = 2/3 R�. As we can see, its evolution is in good
agreement to the analytical solution given by equation (46).

A question of great interest in astrophysics is the capability of
axisymmetric SPH codes to handle rotation. The topic is far from
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Homogeneous sphere 

Homogeneous cylinder 

Homogeneous rotating  
cylinder 

Figure 3. Free-fall test. Triangles represent the analytical solution in each
case. The initial radius of the particle was r0 = 2/3 R�, z0 = 0 in all cases.

trivial because in general it involves transport of angular momentum
via viscous coupling. Even though a complete answer to that ques-
tion is beyond the scope of the present work, there is a particular
case that can be handled with the present scheme: the fast implosion
(or expansion) of a self-gravitating rotating cloud. If the character-
istic dynamical time is much shorter than the viscous coupling time
we can impose angular momentum conservation around the sym-
metry axis to solve this problem. The strategy is simply to add the
centrifugal force which arises from finite angular momentum to
the r-component of gravity. As an example, we have simulated the
collapse of a slender rotating cylinder of gas with uniform density
centred at the coordinate origin. The initial conditions are specified
by the mass Mcyl, the radius Rcyl and the length of the cylinder Zcyl.
If we suppose rigid rotation the specific angular momentum of a
mass point is given by Lz(r0) = w0r2

0 being w0 the initial angular
velocity of the cylinder and r0 the position of the fluid element at
the initial time t0. Angular momentum conservation demands Lz(r,
t) = Lz(r0) so that the centrifugal force is Fc = L2

z (r0)/r3(t) which
is added to the first component of gravity, calculated using equa-
tion (45), to obtain an effective gravity value. As in the case of the
spherical collapse, we have taken Mcyl = M� and Rcyl = R� while
the cylinder length was Zcyl = 20Rcyl. The evolution of mass points
was followed assuming two values for the angular momentum:
(1) zero angular momentum and (2) Lz(r0) =

√
(0.5g0r

3
0 ), where

r0 = 2/3Rcyl for which centrifugal force was a half of gravitational
force at that position. In this case, we have used a larger number of
particles, N = 70 000 to reduce boundary effects.

On the other hand, assuming Zcyl >>Rcyl and using the Gauss
law it is possible to work out an analytical approach to the above
scenario. The acceleration equation becomes

r̈ = −g0
r0

r
+ L2

0

r3
, (48)

where L0 ≡ Lz(r0) and g0 is the value of gravity at r = r0. According
to the Gauss law, g0 = 2GMcyl r0/(R2

cylZcyl), but it is better to
take g0 directly from the SPH simulation to ensure identical initial

conditions in both calculations. The solution of equation (48) is

t(r) = −
∫ r

r0

dr ′[
−2g0r0 ln(r ′/r0) + L2

0

(
1
r2
0

− 1
r ′2

)]1/2 , (49)

which has to be solved numerically once r0 and L0 are specified.
Fig. 3 depicts the evolution of a particle initially located at r0 =

2/3Rcyl, Z0 � 0 without and with initial angular momentum as well
as that obtained using the analytical approach, equation (49). The
case with zero angular momentum led to the free fall of the mass
element which was less violent than the spherical case owing to
the lower initial density in the cylinder. As it can be seen in Fig. 3,
the agreement between analytical and SPH results is not as good
as in the spherical case for t > tff . This is not surprising because
boundary effects at cylinder edges progressively affect gravity at
current particle test position and its evolution is very sensible to
small variations of gravity force.

When angular momentum was added to the cylinder at t0 = 0 s,
the implosion of the structure slowed down. As commented above,
the amount of angular momentum was chosen to get a centrifugal
force contribution at r0 = 2/3Rcyl equals to a half of gravity force at
that position. As we can see in Fig. 3, the result of the simulation is
in better agreement to the analytical approach than the pure free-fall
case. This is because the evolution is driven not only by gravity and
errors due to the finite size of the rotating cylinder are not affecting
so much the outcome as in the non-rotating case. At t � 5tff , the
fluid element begins to be centrifugally sustained, in good match to
the analytical estimation.

4 TEST CASES

In this section, we describe and discuss in detail five test cases
addressed to validate the computational scheme developed in the
precedent sections. The first test involves the propagation of a ther-
mal discontinuity born at the symmetry axis. It is a well-known
calculation which has an analytical solution to compare with. Three
calculations: the gravitational collapse of a polytrope, the implo-
sion of a homogeneous capsule, and the wall shock problem deal
with implosions of spherically symmetric systems. Although, at first
glance, such constraint looks too restrictive in fact it is not because
the spherical symmetry is not a natural geometry for axisymmetrical
systems described with cylindrical coordinates. Any deviation from
the pure spherical symmetry during the implosion will trigger the
growth of hydrodynamical instabilities. Therefore, the preservation
of the symmetry during the calculation is an important feature to
be added to mass, momentum and energy conservation. Finally, the
last test was devoted to simulate the collision of two bubbles of fluid
along the Z-axis.

The initial models were calculated by mapping the spherically
symmetric profiles into a two-dimensional distribution of particles
settled in a square lattice. The mass of the particles was conveniently
adjusted to reproduce the density profile of the one-dimensional
model. For example, masses proportional to the r-coordinate of
the particle were taken to obtain models with constant density.
Reflective boundary conditions using specular ghosts particles were
imposed across the Z-axis. The EOS was that of an ideal gas with γ

= 5/3 and radiation in the test devoted to the collapse of a polytrope,
and only gas ideal for the other tests. We have used and adaptive
smoothing length parameter h(s, t) which was updated at each time-
step to keep a constant number of neighbours nv = 36 within a circle
of radius 2h. The interpolating kernel was the cubic polynomial
spline. Numerical integration of SPH fluid equations was performed
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using a two-step centred scheme with second order accuracy. It is
worth to mention that in the free-fall test of a homogeneous sphere
the velocity was updated using the XSPH (where X stands for
any generic filtered variable) variant of Monaghan (1989) to avoid
particle penetration through the symmetry axis. In this particular
test, mass points at low radius are proner to cross Z-axis because
pressure and viscous forces were artificially set to zero. Therefore,
any residual value of gravity can impel particles located close to the
centre towards unphysical r < 0 values. We have updated only the
r-component of velocity using the following expression:

˜̇ri = ṙi + ε2πri

N∑
j=1

mj

η̂ij

(ṙj − ṙi)Wij , (50)

where ˜̇ri is the new, smoother, velocity. The parameter ε was taken
variable,

ε =
⎧⎨⎩ ε0

[
1 − (r/h)2

9

]
r ≤ 3h

0 r > 3h
(51)

where ε0 = 0.5. Using XSPH variant to move particles enforces
ṙ → 0 when r → 0, making it difficult for particles to cross the
axis.

4.1 Evolution of a thermal discontinuity

Lets consider the problem relative to the propagation of a ther-
mal wave moving through an uniform static medium. This is a
well-known test, addressed to check the capability of the numerical
scheme to handle thermal discontinuities. The initial model was a
sample of 57 908 particles evenly distributed in a square lattice so
that the density was ρ = 1 g cm−3. A δ-like jump in internal energy
originates a thermal wave front which evolves according to

u(r, z, t) = A

(4πcvkt)3/2
exp

(
− r2 + z2

4cvkt

)
+ u0, (52)

where cv is the specific heat and k is the thermal conductivity.
The following set of values were taken A = 105 erg cm3 g−1, u0 =
103 erg g−1 and cvk = 1 cm2 s−1. The initial internal energy profile
was that given by equation (52) for t = 1 s, which was taken as the
initial time (t = 0 s) for the SPH simulation. The evolution of the

Figure 4. Evolution of a thermal discontinuity initially seeded around the symmetry axis. The profile of the internal energy at different times is well reproduced
by the SPH when the hoop-stress term is included (left-hand side). However, when that term is neglected the result does not match the analytical solution
represented by the continuum line (right-hand side).

thermal signal is then controlled by the heat conduction equation,
equation (35).

In Fig. 4 (left-hand side), there is represented the thermal profile
at different times. As we can see the coincidence with the analytical
solution given by equation (52) is excellent. As time goes on the
peak of the signal and its slope decreases due to heat diffusion. The
initial discontinuity is rapidly smeared out by thermal diffusion and
soon a thermal wave is born which travels to the right, equalizing
the internal energy of the system. At t = 5 s, the profile of the
internal energy of the gas is already quite flat and the system is
not far from thermal equilibrium. At that moment, total energy was
conserved up to 5 × 10−5. In Fig. 4 (right-hand side), it is shown
the evolution of the thermal profile which results when the first
term on the right-hand side in equation (35) is removed. As we can
see, the evolution is no longer reproduced by the SPH calculation.
Therefore, it is of utmost importance to include that term, especially
in those calculations dealing with strong thermal gradients close to
the symmetry axis.

4.2 Gravitational collapse of a polytrope

The second test involves a catastrophic, albeit highly unprobable,
astrophysical scenario. A spherically symmetric Sun-like polytrope
was suddenly unstabilized by removing the 20 per cent of its inter-
nal energy so that the structure collapsed under the gravity force.
At some point, the collapse is halted and an accretion shock forms
which manages to eject part of the mass of the polytrope. Several
episodes of recontraction followed by mass loss ensued until the
star sets in a new equilibrium state. Even though that particular
scenario is not realistic, it contains several pieces of physics of
great interest because accretion shocks and pulsational instabilities
are ubiquitous in astrophysics. As the initial model has spherical
symmetry, we expect it to be preserved during the implosion and
further bounce. The conservation of the symmetry is a demanding
test for multidimensional hydrocodes in those cases where there
are episodes of strong decelerations. In the particular case of ax-
isymmetric hydrodynamics, the higher numerical noise close to the
symmetry axis may trigger the growth of convective instabilities.
An additional advantage of considering an spherically symmetric
initial model is that the evolution calculated with the SPH code
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Figure 5. Density, gravity and pressure gradient profiles of the polytrope. Upper left- and right-hand side: density profile without and with axis corrections,
respectively. Bottom left- and right-hand side: the same but for the pressure gradient. The absolute value of gravity computed using the gradient of the
gravitational potential calculated using equation (45) is marked with full triangles (bottom right-hand side). All mass points of the polytrope have been
represented. Neglecting axis corrections leads to a much larger dispersion in the profiles.

can be checked using standard Lagrangian hydrodynamics in one
dimension.

The initial model was a 1 M� spherically symmetric polytrope
of index n = 3. The radius was set equal to 1 R� so that the central
density was ρc = 77 g cm−3. Once the one-dimensional equilibrium
model was built, it was mapped to a two-dimensional distribution
of 51 408 particles located in a rectangular lattice. The mass of the
particles was conveniently adjusted to reproduce the density profile
of the polytrope. In Fig. 5, there are shown the profiles of density and
gradient of pressure at t = 0 s calculated using the two-dimensional
SPH. As we can see, the inclusion of the corrective term f1 given by
equation (5) in the momentum equation is crucial to get good enough
profiles of these quantities to guarantee the stability of the initial
model. The polytrope was perturbed by reducing the temperature
everywhere in a 20 per cent of its equilibrium value. Afterwards,
the evolution was followed with the two-dimensional SPH from the
implosion until the first pulsation and compared to that obtained by

Table 1. Main features of test models described in Sections 4.2 and 4.3. Conservation of momentum is given by the centre of mass
displacement �r̄ = [(r̄(t)− r̄0)− v̄0

r t] and �z̄ = [(z̄(t)− z̄0)− v̄0
z t] divided by the radius of the configuration at that time (Columns 5

and 6). Momentum and energy conservation correspond to the last calculated model shown in Figs 6–9.

Test Number of particles
(

ρmax
ρ0

)
1D

a
(

ρmax
ρ0

)
2D

|�r̄|
R

|�z̄|
R

|�E|
E0

Polytrope 51 408 2.43 2.49 5 × 10−15 10−11 5 × 10−3

Capsule implosion 30 448 29 32 4 × 10−14 10−11 8 10−3

Noh test 50 334 64 58 6 × 10−14 3 × 10−8 2 × 10−3

Gas clouds collision 55 814 – – 5 × 10−14 1.3 × 10−3 10−2

aAnalytical value for the Noh test.

a one-dimensional Lagrangian hydrocode. The main features of the
model and a summary of the results are shown in Table 1.

Soon after the model was destabilized, the polytrope started to
collapse. At t = 960 s, a maximum of the central density ρmax =
192.8 g cm−3 was reached. A similar maximum of ρmax =
187.1 g cm−3 was obtained using one-dimensional hydrodynamics.
The profiles of density and radial velocity at different times are
depicted in Fig. 6. As we can see, the evolution calculated in one
and two dimensions is very similar and, in general, both profiles
are in good agreement. At our last calculated time, t = 1545 s, the
shock is already breaking out the surface of the polytrope. Shortly
after that time, some mass is ejected from the surface and, as the
one-dimensional calculation shows, the star embarks in a long pul-
sational stage until a new equilibrium state is achieved.

Therefore, the numerical scheme was able to handle with this
scenario. The algorithm devised to calculate the gravity using equa-
tion (45), which relies in the direct interaction between rings (Fig. 2),
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Figure 6. Density profile (left-hand side) and radial velocity (right-hand side) during the implosion and further rebound of the polytrope at different times.
The black continuum line is the profile calculated using a one-dimensional hydrocode of similar resolution. At t = 1545 s, the shock wave is breaking the
surface of the star. In the figure, all particles used during the calculation are shown.

did a good job. The artificial viscosity module was also able to keep
track with the shocks although, at some stages, the post-shock region
showed a small amount of spurious oscillations. These numerical
oscillations in the velocity profile are clearly visible in Fig. 6 at
t = 1545 s. In the last three columns of Table 1, there is informa-
tion concerning momentum and energy conservation at t = 1545 s,
our last calculated model. There was an excellent momentum con-
servation, close to machine precision, whereas the conservation of
energy was more modest, �0.5 per cent. On the other hand, the
spherical symmetry was also quite well preserved during the cal-
culation. On the negative side, we find that the two-dimensional
calculation was systematically delayed with respect to its one-
dimensional counterpart. The relative shift in time remained ap-
proximately constant, around 1.5 per cent, during the evolution.
For the sake of clarity, the elapsed times shown in Fig. 6 were
that of the SPH simulation and the times of the one-dimensional
evolution were conveniently chosen to fit the two-dimensional
profiles.

4.3 Implosion of a homogeneous capsule

Probably the most unfavourable case to numerical simulation is
that of a strong implosion as it currently appears, for example, in
ICF studies. Thus, our third test deals with the implosion of a ho-
mogeneous spherical capsule of size R0 = 1 cm and density ρ0 =
1 g cm−3, induced by the (artificial) ablation of its surface. The ab-
lation of the capsule was triggered by the instantaneous deposition
of energy in the outermost layers of the capsule, which had their
internal energy increased in the same proportion. The energy depo-
sition profile was taken linear from s = 0.8 to s = R0 = 1 cm so
that the internal energy at R0 = 1 cm was a factor of 104 higher than
that at s = 0.8 cm. Below s = 0.8 cm a flat profile of the internal
energy was assumed. The rocket effect caused by the evaporation of
the surface layers forms a strong shock wave which compresses the
interior of the capsule. The convergence of the shock at the centre
of the sphere increases the temperature and the density in a large
factor, much larger than that obtained in the previous section deal-
ing with the collapse of a solar-like polytrope. The main features of
the model are shown in Table 1 and Fig. 7. The profiles of density

and radial velocity at several times are depicted in Fig. 7 which also
shows the profiles obtained using a one-dimensional Lagrangian
hydrocode (continuum lines) with the same physics and identical
initial conditions. The evolution of the capsule can be summarized
as follows. Soon after the initial energy deposition a pair of shock
waves moving in opposite directions appear (profiles at t = 0.0044 s
in Fig. 7). As the reverse shock approaches the centre, it becomes
stronger owing to the spherical convergence (profiles at t = 0.0087 s
in Fig. 7). Once the maximum compression point is reached, ρmax =
32 g cm−3 at t = 0.0111 s, the wave reflects. When t = 0.0150 s, the
density peak has already dropped to 7 g cm−3 and most of the ma-
terial of the capsule is expanding homologously. At t = 0.0264 s,
the reflected wave reaches the initial radius of the capsule, R0 =
1 cm. At that time, the material of the capsule is rather diluted
ρ(r) � 1 g cm−3 and the radial velocity profile consist of two ho-
mologously expanding zones separated by a transition region at s �
1 cm. At the last calculated time, t = 0.0264 s, the outermost layer
of the sphere has expanded until s = 10 cm, 10 times the original
size of the capsule. As we can see, the two-dimensional simula-
tion matches quite well the one-dimensional results. According to
Table 1, the central density at the moment of maximum compres-
sion is almost the same in both calculations. The conservation of
momentum is very good, close to machine precision (Columns 5
and 6 of Table 1), while numerical energy losses remained lesser
than 1 per cent (last column in Table 1). However, an inspection of
Fig. 7 reveals that the spherical symmetry was not so well preserved
as in the collapsing polytrope. Now the implosion of the capsule
was more violent and the deceleration phase before the bounce
was more intense, making easier the growth of instabilities. Even
though the initial model had good spherical symmetry, the initial
distribution of the particles in a regular lattice acts as a source of
the so called hour-glass instability. Such instability is related to the
existence of preferred directions along the grid through which the
stress propagates. As in the previous test, another point of conflict
between the one-dimensional and the two-dimensional calculations
is that the two-dimensional evolution is a bit delayed with respect
its one-dimensional counterpart. For instance, the times at which
the maximum central densities are achieved are t1D = 0.01 095 s
and t2D = 0.0111 s, so that the relative difference was around
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Figure 7. Same as in Fig. 6 but for the small capsule implosion.

1–2 per cent. Such percent level of discrepancy remained approxi-
mately constant during the calculation.

4.4 Wall heating shock: the Noh test

The wall heating shock test, Noh (1987), was especially devised to
analyse the performance of algorithms addressed to capture strong
shocks. Basically, the wall heating shock test consists in making
a sphere or a cylinder implode by imposing a converging velocity
field. For these geometries, there is an analytical approach to the
evolution of density and thermodynamical variables as a function
of the initial conditions. The results of numerical codes can be
compared with the analytical solution to seek the best method or to
choose for optimal combination of parameters. It is well known that
schemes which rely in artificial viscosity have difficulties to handle
the wall heating shock test. The reason is that artificial viscosity
spreads the shock over a three or four computational cells, which
induces an unphysical rise of internal energy ahead the shock. In
the case of spherical or cylindrical geometry, the artificial increase
in internal energy is magnified by the geometrical convergence of
the shock. Therefore, the wall shock problem represents a strong
challenge for the axisymmetric SPH. Brookshaw (2003) carried out
a similar test with the SPH code but far from the symmetry axis. In
particular, he modelled the impact of two supersonic streams of gas,
obtaining good profiles for density and internal energy except in a
small region around the collision line. The density profile showed a
dip at that region while a large spike was seen in the internal energy.
Both, the dip and the spike were numerical artefacts which can be
smoothed out by using an artificial heat conduction term to spread
the excess of internal energy and reduce the error around the contact
discontinuity.

To check the performance of our code, we have settled N =
50 334 particles in a square lattice. As in the previous tests, the
mass of the particles was conveniently crafted to reproduce an
spherical homogeneous system with initial radius R0 = 1 cm.
The initial conditions were taken as in Noh (1987): ρ(s, 0) =
1 g cm−3; ṡ(s, 0) = −1 cm s−1 ; u(s, 0) = 0 erg g−1. The exact solu-
tion at time t = 0.6 s for γ = 5/3 is shown in Fig. 8 (dashed line).
The analytical profile is characterized by a constant post-shock state
until distance s = 0.2 cm followed by a rapid decrease in density

and internal energy. In the shocked zone density reach a constant
value ρ = 64 g cm−3 while internal energy was u = 0.5 erg g−1.
The combination of such harsh initial conditions plus geometrical
convergence leads to a strong implosion, even harder than that de-
scribed in the ablated capsule test. In Fig. 8 (left-hand side), there
are shown the spherically averaged profiles of density and internal
energy obtained using SPH at t = 0.6 s. The error bars in the plot
give the 1σ dispersion of these variables with respect to its mean
value in the shell. As we can see, the resulting profiles compare
poorly with the analytical results in the shocked region. In addition,
the dispersion is high, especially at low radius, a clear signature
for the presence of numerical noise. Close to the axis there is the
typical artificial combination of a dip (in density) and spike (in in-
ternal energy). The maximum density value was ρ � 58 which is
around 10 per cent lower than the exact value. Such bad quanti-
tative agreement was not unexpected because it is common to all
hydrodynamic codes which use the artificial viscosity scheme. A
way to improve the quality of the simulation is to allow for heat
conduction in the hydrocode to remove the thermal energy spike
and to sharpen the shock. Recipes to obtain an artificial conduc-
tivity coefficient in SPH to better handle the wall shock problem
were given by Monaghan (1992) and Brookshaw (2003). For this
calculation, we have adapted the recipe of Monaghan to the features
of the axisymmetric SPH defining an artificial conductivity for the
i-particle,

ki = ρ̄ij c̄vij
h̄ij (c̄ij + 4|μij |), (53)

where c̄vij
is the symmetrized specific heat and |μij | is the artificial

viscosity parameter given by equation (24). According to equa-
tion (53) ki = kj , which can be used directly in equation (35) to
compute the artificial heat flux. As shown in Fig. 8 (right-hand
side), the inclusion of the artificial heat conduction term leads to a
significant improvement of the results. Not only the profound dip
in density in the central region has been removed but also the simu-
lation shows much lesser dispersion around the averaged values of
density and internal energy. However, the maximum peak in density
still remains �10 per cent below the theoretical value. In this respect,
the only way to improve the results is sharpening the shock either by
using adaptive kernels, Owen et al. (1998), Cabezón, Garcı́a-Senz
& Relaño (2008), or by increasing the number of particles.
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Figure 8. Results of the Noh test at t = 0.6 s. Upper left- and right-hand side: averaged density profiles without and with the artificial heat conduction. Bottom
left- and right-hand side: same but for internal energy. Dispersion around the averaged values are given by the error bars.

4.5 Supersonic collision of two streams of gas

Our last test is specifically addressed to check momentum conser-
vation in a very anisotropic situation: the supersonic collision along
the Z-axis of two homogeneous spherical clouds of gas with differ-
ent size and mass. The size and mass of the spheres are R1 = 1 cm;
M1 = 4π/3 g and R2 = 3 cm; M2 = 36π g, respectively, so that their
density is ρ1 = ρ2 = 1 g cm−3. The biggest sphere is at rest with
its centre located at (0, 0) cm while the smaller one is centred at (0,
−5) cm moving upwards with velocity v0

z = 10 cm s−1. The initial
internal energy of both spheres was u0

1 = u0
2 = 10−3 erg g−1, whereas

EOS obeys an ideal gas law with γ = 5/3. The corresponding initial
Mach number was M0

s � 500, thus the impact is supersonic. The
number of particles in each sphere was N1 = 5480 and N2 = 50 334,
respectively.

In Fig. 9, there are represented several snapshots showing the
density evolution during the collision process. As can be seen the
large mass contrast leads to the complete deformation of the smaller
sphere which, in the end transfers most of its initial momentum to
the larger bubble. Information about the evolution of the centre of
mass of each bubble as well as that of the whole system is provided
in Fig. 10. According to Figs 9 and 10, the collision history can be

roughly divided in three stages. (1) For 0 ≤ t ≤ 0.5 s, the incoming
smaller cloud deforms while a large fraction of its kinetic energy
went into internal energy around the collision region. A shock wave
was launched into the larger bubble, (2) between 0.5 ≤ t ≤ 1 s,
the total internal energy did not change so much. At t = 1 s, the
velocity of the centre of mass of both structures was practically the
same, (3) for t > 1 s, the energy stored as internal energy is again
restored to the system. At large times, the velocity of the smaller
bubble became negative while the bigger cloud acquired a positive
velocity to preserve total momentum. At our last time t = 1.4 s, the
interaction between both structures is coming to an end. Fig. 10
also shows that, in spite of the large changes in the velocity of
each bubble, the velocity of the centre of mass of the whole system
remained unaltered.

In the last row of Table 1, there are shown several magnitudes
related to momentum and energy conservation. Conservation of
linear momentum during the interaction was monitored through the
displacement of the centre of mass of the system. At the final time,
t = 1.4 s, the deviation of the centre of mass position with respect
to the value expected from v̄0

z t was much larger than that shown in
the other tests. Still the relative error in the position of the centre of
mass once the collision has practically ceased was �10−3. Angular
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Figure 9. Density colour-map of the collision of two streams of gas at times t = 0, 0.31, 0.69 and 1.41 s. Axis units are in centimetres.

Figure 10. Evolution of v̄z of the centre of mass of each bubble and of the
system. Subscripts 1 and 2 refer to the smaller and larger bubble, respectively.
Evolution of total kinetic and internal energy is also given.

momentum was very well preserved, almost to machine precision.
Total energy was conserved to 10−2 relative to the initial kinetic
energy of the system.

In an attempt to understand the origin of the discrepancy rela-
tive to momentum conservation in the Z-direction, we ran exactly
the same model but this time symmetrizing equation (13) (multi-
plying the term Pj rj /η̂

2
j by fj

1). There was no significant changes.
We conclude that strict total momentum conservation in the Z-
direction was not possible because of the interaction between real
and reflected particles. Such interaction took place in a small band

around the symmetry axis, acting as an external force which mod-
ified momentum of real particles. However, that force cannot be
balanced by an opposite force acting in the left semiplane because,
in the Z-direction, reflected particles were obliged to move exactly
in the same way real particles did. Therefore, if strong directional
anisotropies appear in the vertical displacements of the mass points
some degree of violation in momentum conservation is unavoid-
able. Eventually, momentum conservation should improve as the
number of particles increase because the amount of mass settled in
the axis vicinity is lower.

5 C O N C L U S I O N S

Despite the success of the SPH technique to handle gas-dynamics
problems in three dimensions, little effort has been invested to
develop two-dimensional (axisymmetric) applications. This work
intends to fill that gap by solving many of the problems often in-
voked in connection with SPH in cylindric coordinates. These are
the treatment of the singularity axis, the handling of shock and
thermal waves and, in many astrophysical scenarios, an accurate
procedure to calculate the gravitational force. Our general philos-
ophy in developing the mathematical formalism was to remain as
close as possible to the Cartesian scheme so that many of the results
of the standard SPH in three dimensions can be extrapolated with
minimum changes to the axisymmetric version.

Starting from the fluid Euler equations given by Brookshaw
(2003), we have obtained analytical corrections to those particles
which move close to the singularity axis. These corrections appear
as multiplicative factors to the different terms of the fluid equa-
tions. Such multiplicative factors become equal to one when r >

2h (Fig. 1) so that there is no need to calculate them beyond that
distance and the method is computationally efficient. Once the ba-
sic formalism was built, we added several pieces of physics which
make the scheme well suited to handle a large variety of prob-
lems. First of all an extension of the three-dimensional standard
artificial viscosity to the two-dimensional axisymmetric realm was
devised, equations (23)–(25). The artificial viscosity includes the
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convergence of the flow towards the symmetry axis via linear and
quadratic terms proportional to [(vrh)/r] (being r the distance to
the symmetry axis). These terms arise because the diagonal part of
the stress tensor in cylindric coordinates includes the divergence
of the flow velocity. However, the Cartesian part of the divergence
was already present in the standard formulation given by equations
(22) and (23) giving rise to bulk and shear viscosity. Therefore,
only the axis converging part of velocity divergence, proportional
to vr/r has been added. The resulting viscous force �2D has two
terms: �(1) (Cartesian) and �(2) (axis converging part) which are
calculated using similar expressions, equations (23) and (25) in-
volving four constants α0, β0 [�(1)] and α1, β1 [�(2)]. The axis
converging part of viscosity will be of importance only for strong
implosions. Although in the simulations reported in this paper, we
have taken α0 = α1 = 1 and β0 = β1 = 2 there could be other
plausible combinations worth to explore. A similar approach was
used to built the conductive transport equation. Starting from the
expression given by Brookshaw (1985), we have added a new term
that accounts for the divergence of the temperature gradient in the
axis neighbourhoods. Even though the resulting expression was not
totally antisymmetric, it led to a satisfactory energy conservation
in the tests described in Sections 4.1 and 4.4. Finally, the set of
equations was completed with the inclusion of self-gravity. In ax-
isymmetric geometry, it is better to rely in the direct, ring to ring,
interaction to compute gravity. Such procedure, although in general
computationally expensive, has several advantages: (1) it does not
rely in any sort of grid and gives the exact value of the gravitational
force, (2) the calculations are feasible for a moderate number of par-
ticles (i.e. around 5 × 104 in serial desktop machines) which often
suffice in many two-dimensional simulations and (3) the scheme is
clear and extremely simple making it straightforward to parallelize.
The algorithm devised to compute gravity was able to keep track
the free-fall collapse of an homogeneous sphere as well as of an
homogeneous rotating cylinder. Given an initial amount of rotation,
the evolution of any point of the cylinder was handled by imposing
angular momentum conservation around the symmetry axis.

Five test cases aimed at validating the computational scheme were
considered. Each of them intended to check a particular physics
item: heat conduction (Sections 4.1 and 4.4), shock waves (Sec-
tions 4.3 and 4.4) and gravity (Sections 3.3.1 and 4.2). Momentum
conservation was specially checked in Section 4.5. Because for
the most part the initial configurations had spherical symmetry,
the preservation of that symmetry during the collapse and further
expansion of the system was taken as an indicator of the general
ability of the scheme to handle large changes in the spatial scale.
It was also possible to make detailed comparisons of the results
with those obtained either from analytical calculations, as in the
case of the thermal wave propagation, or from one-dimensional
simulations carried out using standard Lagrangian hydrodynamics.
The results, obtained using several dozen thousand particles, were
in good agreement with the analytical expectations and to the one-
dimensional simulations. Additionally, there was an almost perfect
momentum conservation while numerical energy losses always re-
mained lesser than 1 per cent. The spherical symmetry was well
preserved although a slight deviation was observed in the capsule
implosion test, partially due to the so called hour-glass instability
(owing to the initial setting of the particles in a lattice) and, de-
spite the corrective terms, to the effect introduced by the singularity
axis on to the approaching particles. A similar but probably more
demanding test was the wall heating shock problem, dealing to
the spherically symmetric implosion of a supersonic stream of gas.
Although the results are not as good as those obtained with other

methods which do not use artificial viscosity, they are comparable
with one-dimensional calculations with similar resolution relying
in artificial viscosity schemes. However, the results improved when
artificial heat conduction, calculated using equations (35) and (53),
was switched on.

As discussed in Section 4.5, a weak point of the formulation is
that the inclusion of reflective particles in the scheme could degrade
total momentum conservation in the Z-direction. However, a good
momentum conservation, much better than energy conservation for
instance, is expected in those systems in which the velocity field is
not too anisotropic. If strong momentum exchange along the Z-axis
is expected, as in the test described in Section 4.5, then momentum
will be preserved to a similar level as total energy.

As a conclusion, we can say that the formulation of the axisym-
metric SPH given in this paper is a solid tool to carry out simulations
using that particle method. However, there are still a number of un-
resolved issues which deserve further development. One of them is
how to build good initial models without settling particles of dif-
ferent mass in regular lattices. This is important because ordered
lattices introduce spurious instabilities in the system and the mix-
ing of particles with very different masses could lead to numerical
artefacts. Another point of difficulty has to do with artificial vis-
cosity because it introduces too much shear viscosity in the system
damping the natural development of hydrodynamical instabilities.
The new term �

(2)
ij given by equation (25) of artificial viscosity

comes from the diagonal of the stress tensor so its contribution to
shear viscosity is probably lower than that of �

(1)
ij . In any case, the

artificial viscosity formulation given in this work is so close to the
standard formulation that it could benefit from future advances in
the much better studied three-dimensional SPH. Finally, the simple
test about the implosion of a rotating cylinder indicates that ax-
isymmetric SPH is able to handle rotating structures but more work
needs to be done to incorporate angular momentum transport into
the numerical scheme.
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A P P E N D I X A : C O R R E C T I O N FAC TO R S

CLOSE TO Z- A X IS

First, we derive the factor f1 affecting the two-dimensional density
η. Close to the Z-axis symmetry enforces the three-dimensional
density ρ to have a maximum or a minimum. Thus, we can safely
assume ρ = ρ0 in the axis vicinity. If we make the one-dimensional
SPH estimation of the averaged density along the r-axis,

〈η(r)〉 =
∫ ∞

−∞
η(r ′)W 1D

( |r − r ′|
h

)
dr ′, (A1)

where W1D is the cubic-spline kernel in one dimension:

W 1D(ur ) = 2

3h

⎧⎪⎨⎪⎩
1 − 3

2 u2
r + 3

4 u3
r 0 ≤ ur ≤ 1

1
4 (2 − ur )3 1 < ur ≤ 2

0 ur > 2

(A2)

being ur = |(r − r′)|/h. If we take η(r′) = 2π|r′| ρ0, which is only
valid for r′ → 0,

〈η(r)〉 = 2πρ0

∫ ∞

−∞
|r ′|W 1D

( |r − r ′|
h

)
dr ′. (A3)

Using the cubic-spline the right-hand side of equation (A3) can be
integrated to give:

〈η(r)〉 = η̂

f1(ζ )
, (A4)

where ζ = r/h, and η̂ = 2πrρ is the corrected density (hereafter
we put a hat over any corrected quantity). The correction factor
f 1(ζ ) is given by equation (5). The density in brackets is what SPH
computes using summatories instead of integrals. Thus, adding the
z-coordinate and using W2D the corrected density can be evaluated
using

η̂(r) = 〈η〉f1(ζ ) =
(

N∑
j=1

mjW
2D(|ri − r j |, hi)

)
× f i

1 . (A5)

A similar procedure can be used to get the adequate expressions
for ηvr and ηvz, needed to compute the temporal evolution of den-
sity, equation (15). Symmetry enforces the radial velocity to vanish
at the symmetry axis, thus close to that axis vr = Cr and

〈ηvr〉 = ρ(z)2πK1DC

∫ ∞

−∞
|r ′|r ′W 1D(ur ) dr ′. (A6)

Again the integral on the right-hand side admits an analytical so-
lution for the cubic-spline kernel. After a little algebra, the following
expression is obtained:

〈ηvr〉 = η̂vr

f2(ζ )
, (A7)

where f 2(ζ ) is given by equation (16). The expression inside the
brackets is what the numerical code calculates using summatories
instead of integrals. Thus, the corrected η̂vr , value of that magnitude
is

(η̂vr )i =
(

N∑
j=1

mjvrj W (|si − s j |, hi)

)
× f i

2 . (A8)

Similarly, the correction to be applied to ηvz is

〈ηvz〉 = η̂vz

f1(ζ )
, (A9)

and its corresponding discrete expression is

(η̂vz)i =
[

N∑
j=1

mjvzj
W (|si − s j |, hi)

]
× f i

1 . (A10)

A plot of the factors f 1(ζ ) and f 2(ζ ) and their radial derivatives are
given in Fig. 1. The factor f 1(ζ ) is exactly one for r = 2h and goes
to zero when r/h → 0, as expected. However, it can be seen that
factor f 2(η) is close but not exactly one at r = 2h and its slope is not
totally flat. This is because the integral expression in equation (A6)
is quadratic in the radial coordinate r thus the interpolation does not
give the exact value of 〈ηvr〉.
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