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ABSTRACT 

Personal health devices and wearables have the potential to drastically change the 

current landscape of wellness and care delivery. As these devices become 

commonplace, more and more patients are gaining access to new forms of simplified 

health monitoring and data collection, empowering them to engage in their own 

health and well-being in unprecedented ways. Cheap and easy-to-use health IoT 

devices are leading the transformation towards a continuum-of-care health system—

focused on detection and prevention—where health issues can be caught before 

hospital care or professional intervention is needed. However, this vision is set to 

outpace the expectations and capabilities of today’s connected health devices, 

challenging existing ecosystems with unique requirements on functionality, 

connectivity, and usability. 

 This thesis presents a set of health IoT requirements that are especially 

relevant to the design of a connected device’s low-level software features: its thing 

architecture. These requirements represent shared concerns in health-related IoT 

scenarios that can be solved with the features and capabilities of smart things. The 

thesis presents an architectural design and implementation of concrete features 

influenced by some of these requirements—leading to the Atlas Health IoT 

Architecture—which explores the role of safe and meaningful interactions between 

devices and users, referred to as IoTility. The thesis also considers the IoTility of 

smartphone applications in health scenarios, called Mobile Apps As Things (MAAT), 

resulting in a programming enabler that more closely integrates app features with 

those of physical thing devices. Alongside these implementations, this thesis 

presents a set of experimental evaluations investigating the feasibility of both MAAT 

and the architectural requirements as a whole.  
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CHAPTER 1: INTRODUCTION 

Looking towards the future, diseases and health issues that are commonplace today 

may soon become issues considered only in the past tense [1]. Changes towards this 

end will likely be led by an increased focus on individual well-being and health 

maintenance—shifting away from more traditional “reactive” intervention and sick 

care [1]. Such individual and social factors are already shown to play a significant role 

in one’s overall health, accounting for about 60% of a given outcome (compared to 

11% by medical care and services) [2]. These future transformations are motivated 

by a variety of factors, such as economics; emphasis on prevention may lead to 

decreased healthcare spending as issues are caught before hospital care is needed. 

One force in particular, however, plays a central role in this vision: technology. 

 

 

Figure 1-1: The Determinants of Health, a breakdown of health outcome factors [2]. 

 

Personal health devices and wearables are one set of key technologies that are 

anticipated to empower this transformation. These devices, along with a variety of 

connectivity features and services, are building the Health Internet of Things (Health 

IoT)—bringing with them new forms of streamlined data collection and simplified 

health monitoring. With an ever-increasing number of cheap and easy-to-use devices 

available, patients are more engaged in their own health and well-being than ever 

before. Further connecting these devices and their data to healthcare delivery will be 
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a major step towards a continuum-of-care system focused on detection and 

prevention, compared to today’s treatment-focused point-of-care systems. 

 While IoT and wearable technology carries this potential, one must first 

consider if today’s offerings are ready to meet such goals. Many of these wellness 

devices have grown alongside the personal IoT domain, taking inspiration from its 

developments and successes—for example, many traditional medical tools have 

joined the health IoT through the addition of connectivity features and cloud-based 

services similar to those of consumer applications (such as home automation). While 

these features empower the device’s ease of use and the patient’s access to data, 

they may not be sufficient to satisfy the full vision of health IoT: these ecosystems 

instead must be architected to meet new and unique requirements brought about by 

this vision before a device can truly fulfill its role in future healthcare scenarios. 

1.1 MOTIVATION 

At first glance, connected health devices may look and even act similar to their 

counterparts in other IoT domains; however, they also bring unique challenges 

inherent to the health and wellness ecosystem. When considering the future of 

healthcare as described above, various questions must be raised in regard to the 

functionality of an ideal health thing: 

 

• How can one ensure a health device is used properly? 

• How can health data be validated and shared with healthcare professionals? 

• How can health IoT ecosystems support a variety of IoT vendors and devices? 

• How can health things interact with each other and the user to provide useful 

information and functionality? 

• How can users be empowered in managing their collection of health IoT 

things, apps, and data more readily? 
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These questions are only a sample of the many that must be answered as health IoT 

devices evolve and become commonplace. Analyzed from the perspective of the 

thing and its software, such concerns frame a set of overarching features and 

requirements that are especially relevant to effective health IoT ecosystems and 

their overall vision presented above. The following subsections expand on these 

questions and requirements, considering them from an architectural standpoint and 

positioning them amongst the motivations of this thesis. 

1.1.1 SPECIALIZED DEVICE BEHAVIOR 

In the most basic sense, a thing represents some device or object made “smart” 

through additional hardware or software features and a networked connection. Such 

a connection allows things to easily share information with each other, the greater 

network, or the user. While a simple service offering data may be enough for some 

devices, health things often present additional usage concerns; attributes such as 

accuracy and reliability are critical when used in a diagnosis or treatment scenario. 

Human factors also play a role as more advanced medical devices are introduced into 

the personal health market—the device must be used correctly (at the right time, in 

the right manner, etc.) to be effective. Finally, such devices present new security and 

privacy concerns as they generate and handle protected health information. 

 In these scenarios, a thing architecture acts as the final line of defense in 

managing specialized behaviors. An effective architecture must provide facilities to 

handle the safety, privacy, and user engagement aspects of the device it runs on: 

delegating these tasks to IoT applications leaves too many opportunities for error. 

Especially considering the number of devices intended for use by inexperienced end 

users, the thing architecture must not only make the devices easier to operate 

correctly, but also harder to use in a wrong or unsafe manner. Catering to these 

specialized internal needs will play a large role in enabling effective IoT interactions. 
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1.1.2 THE ROLE OF THING ARCHITECTURES 

While a specialized health device (as described in the previous subsection) may be 

built to behave as a connected smart thing, it is not necessarily prepared to interact 

in an Internet of Things. Consider that these things are unlikely to exist in a vacuum: 

they participate as part of a “smart space,” surrounded by other devices that 

perform similar functionalities or offer useful information. A thing that only performs 

its actions on request can at best coexist; it cannot interact directly with other 

devices or utilize information from the rest of the system. While a developer may 

control interactions between devices manually or through an external service, such 

“outward” thing behaviors could automate or simplify this process through more 

direct and informed exchanges. 

 When considering questions such as “how can things interact (with each 

other)?”, these outward features become critical to the health IoT domain. Within a 

smart space, a user’s set of health things are often closely related: at minimum, 

these devices share a primary goal of improving or managing the user’s overall 

health. In practice, they may also be capable of collecting shared information, or 

utilizing unique data from their neighbors. Whereas individual health devices 

normally have access to only a small part of a user’s overall well-being, direct 

interactions can enable these things to obtain a more holistic view and provide 

better-informed services to the user. 

 To meet this goal, an effective thing architecture must also consider higher-

level “outward” interactions in an effort to better integrate with other thing devices 

and cloud services. This includes features such as sharing capabilities and services 

with the smart space, and providing interfaces to find or request behaviors from 

other devices. Such features form the basis for meaningful interactions between 

devices and lead to the creation of new IoT applications that empower the user. How 

these interactions are defined and enabled within the thing architecture, therefore, 

will directly dictate how a health device can participate in an Internet of Things. 
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1.1.3 HEALTH IOT ECOSYSTEM ISSUES 

The variety of connected health devices available today highlight another prominent 

concern: interoperability. Many of these devices are tightly coupled to their 

manufacturer’s ecosystem, creating “silos” of fragmented services that limit how the 

end user can bring their devices together. While such ecosystems may offer highly 

integrated services and features, their issues are especially apparent in health IoT, 

where different manufacturers specialize in different types of wellness devices. As 

their needs (and IoT applications) change and evolve, even the most loyal user is 

bound to encounter a device that is not offered within their chosen ecosystem. In 

this case, the separated “silo” ecosystems are likely to limit the device overall. 

 Similar concerns are also present when considering the influence of thing-like 

objects such as companion mobile applications. Although not directly equivalent to a 

hardware thing, these apps are very common in health IoT and are often the primary 

point of interaction with their associated medical devices, as a companion app 

provides a very flexible interface (compared to that of the hardware thing). These 

apps, however, are also very sensitive to interoperability issues: owning a variety of 

devices may also mean managing each of their companion applications, which may 

be confusing or annoying for the user. 

 Interfacing with a variety of health IoT vendors and devices is another 

important component of an effective thing architecture. Such an architecture should 

understand various health data and device standards and work towards 

consolidating the multitude of ecosystems and silos present in a smart space, 

providing support and features that are appealing for vendors as well as developers 

and end users. Additionally, treating companion apps as first-class citizens in health 

IoT will also play a role in enabling meaningful interactions between the patient and 

their devices. Overall, focusing on interoperability will be a key step in solving various 

health ecosystem issues. 
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1.2 PROBLEM STATEMENT 

Health IoT continues to develop rapidly while presenting a variety of unique 

challenges and concerns when compared to closely related application domains. This 

thesis aims to examine these issues from an architectural standpoint, seeking to 

identify the features and capabilities an IoT thing architecture must provide to best 

support the needs of personal health and healthcare delivery scenarios. Once these 

features are identified, this thesis investigates their feasibility—addressing how such 

requirements may be implemented and evaluated within an IoT thing architecture—

and whether their realization indeed enables new solutions with connected health 

devices in mind. These goals, alongside the questions raised in the initial motivation, 

are summarized in the following research questions: 

 

• RQ1: What needs and priorities separate health IoT from other IoT domains? 

• RQ2: What distinct capabilities and software features must a health IoT 

device provide to best support the specialized needs of personal health and 

healthcare delivery integration scenarios? 

• RQ3: How can a device architecture meet performance and usability needs 

across a variety of health IoT scenarios and hardware? 

• RQ4: What roles do various stakeholders play when using a specialized health 

IoT architecture in new applications? 

1.3 THESIS SCOPE AND STRUCTURE 

This thesis focuses on personal health and wellness IoT devices when identifying 

these unique needs. It aims to present a core set of requirements, such that each is 

believed to have a significant impact on the thing architecture’s potential within 

these health devices. As these requirements cover a wide range of implementation 

features and domains, the implementation focuses mainly on concepts that facilitate 

flexible use and meaningful interactions between things and other devices. 



Chapter 1: Introduction Wyatt Lindquist 

 20 

On the other hand, this thesis does not consider medical devices—such as 

those found in a hospital environment or acquired through prescriptions—at the 

same level of detail, as their requirements are likely to differ substantially. This thesis 

also does not attempt to present a complete set of personal health requirements; for 

example, new or extended requirements may continue to be identified through 

additional evaluation or in consideration of specialized scenarios. Finally, this thesis 

does not focus on some of the core requirements involving additional and specialized 

research areas, such as security or incentivization. 

The remainder of the document is structured as follows. Chapter 2 discusses 

the requisite background for this research and presents a set of relevant literature. 

Chapter 3 introduces the identified health requirements, along with the 

methodology used. Chapter 4 introduces an overview of the developed thing 

architecture, presenting an overview of the individual major components. Chapter 5 

revisits these components, describing their implementation and functionality in 

detail. Chapter 6 then presents a set of experiments evaluating these components. 

Finally, chapter 7 concludes the thesis. 



  

  

CHAPTER 2: LITERATURE REVIEW 

An IoT thing architecture plays an important role in many facets of the greater 

Internet of Things. An effective architecture facilitates the developer to safely and 

easily interface with the hardware features of a device, dictates how the thing 

interacts with its surrounding smart space and users, and prepares the device to 

fulfill its requirements as part of a larger IoT platform or service. Each of these facets 

has received attention from a variety of research directions (such as data science or 

security) and application areas (such as smart homes or wearables), resulting in a 

vast number of new concepts and ideas. As connected medical devices and services 

become increasingly commonplace, the same holds true for health-related IoT, which 

is referred to as health IoT. 

This chapter surveys work relevant to the requirements of health IoT and 

their potential implications in IoT thing architectures. Section 2.1 begins by 

considering developments in present-day health IoT ecosystems, in both commercial 

and experimental capacities. Section 2.2 extends this discussion, analyzing the 

direction of future health IoT ecosystems and their potential effect on future thing 

architectures. Section 2.3 narrows its focus to work on generalized thing 

architectures and their enabling features. Finally, section 2.4 discusses some initial 

work towards specialized health thing architectures, along with areas and issues that 

require additional efforts to be put forth. 

2.1 EXISTING HEALTH IOT ECOSYSTEMS 

What makes up an IoT ecosystem? In this context, an ecosystem refers to the 

complete set of components that work together towards some common goal. This 

includes device hardware (the things themselves), the network between these things 

as well as the functionality they offer, and the features of the cloud, IoT platform, or 

other services (such as mobile apps) connecting them together. An IoT ecosystem 

also involves a variety of stakeholders, including vendors who own the ecosystem, 
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third party developers who create new applications and interactions (depending on 

the openness of the ecosystem), and end users who take advantages of these 

features. Together, these stakeholders define the unique needs and expectations for 

each component of a specific ecosystem. 

 The whole of such an ecosystem is greater than the sum of its parts, 

especially when considering health IoT. While thing devices collecting data and 

performing actions make up the core of an ecosystem, their interactions with other 

components—such as mobile apps and cloud services—are what truly determine 

how a user can utilize the system and achieve their personal health goals. This 

highlights the importance of the thing architecture within the ecosystem: in addition 

to controlling the devices, the architecture plays a major role in defining and 

enabling these interactions. Although some ecosystems (especially those with tight 

control over the “silo” of available devices and features) may depend less on its 

flexibility, the thing architecture represents a common point that each ecosystem 

component must interact with in some capacity. 

 In the same manner, the needs of the ecosystem also influence the design of 

the thing architecture and facilitate its advancement. Changes and new ideas within 

the ecosystem promote evolution of the architecture as well, leading to a cycle of 

improvement that continues to push both forward. With this in mind, an analysis of 

present-day ecosystems, their challenges, and their direction can provide insight into 

the needs and requirements of future health IoT architectures. To illustrate this 

potential, the following subsections introduce some existing ecosystems and 

concepts with this capacity to drive improvement. 

2.1.1 COMMERCIAL ECOSYSTEMS 

The increasing popularity and availability of wearables and other connected health 

devices has caught the interest of vendors and manufacturers, resulting in a variety 

of commercial health IoT ecosystems. Most of these target the domain of personal 

health—offering various devices for home use and diagnosis—but have also begun to 

look towards additional use cases, such as connecting users and data with healthcare 
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providers. However, while such ecosystems may offer highly integrated devices and 

services, they are often tightly coupled: leaving less room for interaction with other 

ecosystems outside of their designated “silo,” and limiting the types of devices that 

can be used in a single ecosystem. 

 iHealth Labs [3] offers health things such as pulse oximeters, body weight 

scales, blood pressure monitors, and thermometers, most of which communicate 

using Bluetooth and the user’s smartphone. Their MyVitals app is capable of 

controlling these devices, taking measurements for storage and tracking within a 

proprietary cloud service. Withings [4] (previously known as Nokia Health) is another 

vendor offering connected health devices, including smart watches, body weight 

scales, thermometers, and sleep sensors. These devices send their readings over 

Bluetooth or WiFi to the Withings cloud service (or a custom solution for customers 

using their Med Pro service), which can be reviewed through the fitness- and 

wellness-tracking Health Mate app. Both companies have also introduced additional 

integrations with healthcare providers, such as remote patient monitoring and 

telehealth functionality. 

 Libelium’s MySignals [5] ecosystem centers around an Arduino-based 

development platform capable of interfacing with a variety of MySignals-branded 

devices, including spirometers, temperature sensors, glucose monitors, and EKG 

electrodes. The platform is also capable of interfacing with a mobile app and 

proprietary cloud service for collecting and recording data. Unlike the two 

ecosystems mentioned above, however, MySignals offers additional flexibility 

through prototyping and modification, allowing new sensors to be integrated with 

the main device (although these integrations must be programmed and configured 

manually by individual developers). 

 Apple Health [6] and Google Fit [7] focus less on devices (although both offer 

their respective smart watches) and more on the software and cloud services needed 

in a health ecosystem. Rather than offer a set of first-party things, the platforms 

focus on enabling third-party integrations that allow users to collect data from 

multiple ecosystems in a single place. This is achieved through common APIs that 
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vendors can use within their own apps to read and write shared health data. 

Additionally, these services offer compatibility with various electronic health record 

standards and simplified integration with healthcare systems. Still, the onus is on 

individual vendors to support these platforms before such interoperability features 

can be taken advantage of. 

2.1.2 DEVICE AND DATA STANDARDS 

Although some health IoT ecosystems may be completely proprietary, many offer at 

least some support for various health-related standards. For example, a device 

standard may define a common API for things and their interactions, while a data 

standard helps simplify interoperability between platforms and service providers. 

The existence of these standards influences the design of an ecosystem and even 

plays a role in its effectiveness and adoption; commercial ecosystems can often use 

their standards-compliance as a selling point. This subsection introduces some 

standards targeting connected health devices. 

 The Continua Design Guidelines [8] (now part of the Personal Connected 

Health Alliance [9]) provide a set of health device standards alongside an open 

implementation focused on device connectivity and interoperability. The project 

includes guidelines for Bluetooth Low Energy (BLE), Zigbee, and USB connectivity, 

and builds on other standards such as ISO/IEEE 11073 [10] and the BLE Health Device 

Profiles [11]. Connected health devices may become “Continua Certified” (such as 

various A&D Medical [12] devices), assuring end users of their compliance and 

interoperability with similar devices. Overall, the standard provides a variety of 

guidelines, testing tools, and software examples to empower vendors and 

developers in creating interoperable health things and ecosystems. 

 Fast Healthcare Interoperability Resources (FHIR) [13] is a data standard 

facilitating interaction with electronic health records (EHR) and healthcare providers. 

The project, aiming to supersede and simplify previous Health Level 7 (HL7) 

standards, represents an EHR through a set of resources, holding reusable data types, 

metadata, and human-readable content. The standard is already used in a variety of 
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existing ecosystems, such as Apple Health and Google Fit (described above); 

however, it still must be supported by both the EHR vendor and the user’s healthcare 

provider before it can be taken advantage of. The standard has also seen some 

integration with decentralized storage platforms such as Solid [14] and MyData [15], 

empowering users to better access and “own their data” in similar scenarios. 

2.1.3 HEALTH ECOSYSTEM RESEARCH 

Connected health devices have also seen use in various research-based health IoT 

ecosystems. These systems often target an individual health issue or scenario (such 

as diabetes), which is used to define the specific requirements and challenges the 

architecture aims to solve. Implementation focus in these ecosystems varies 

between low-level device features, thing interaction and connectivity features, and 

cloud-based features depending on the needs of the target scenario. Still, many of 

these identify challenges that are applicable to a variety of health IoT situations. This 

subsection introduces some of these specialized health IoT ecosystems. 

 Harous et al. [16] introduce MA4OCMP, an ecosystem targeting obesity 

management. The system collects data from a combination of health sensors and 

social media activity, which are stored, analyzed, and shared with healthcare 

providers through a cloud service that provides customized suggestions, warnings, 

and recommendations to at-risk users. The project focuses on the use of multiple 

data sources and the interaction between patients and healthcare providers in 

effectively managing obesity. In the same vein, Deshkar et al. [17] analyze diabetes 

ecosystems, making similar findings on the importance of context-awareness 

between the various stakeholders within the ecosystem. Deshkar also identifies a 

common focus on interoperability, security, and privacy amongst these systems. 

 Debauche et al. [18] present an ecosystem for patient and elderly monitoring 

using a fog IoT architecture. This system uses a smart gateway edge service in 

addition to a sensor network and cloud architecture to track state and behavior 

changes of patients. The project focuses on data reliability—storing and managing 

data on the edge device if the cloud service is unavailable—and privacy, ensuring 
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GDPR conformance as information is passed between the sensors, edge device, and 

cloud service. The ecosystem again focuses on interaction with stakeholders, sending 

alerts and warnings to healthcare providers and allowing them to validate 

abnormalities through a graphical web interface. 

 Some concerns and challenges are ubiquitous across these ecosystems; for 

example, security and privacy remain a prominent concern when sending protected 

health data and information to the cloud. As such, there exists a variety of research 

projects and solutions targeting these facets in the context of health IoT ecosystems. 

Lomotey et al. [19] propose a system managing data traceability and provenance in 

wearable devices. Verifying and associating data sources with the correct patient is 

critical in a variety of scenarios, such as adding to an EHR. Mahalle et al. [20] present 

an access control system that calculate trusted value based on parameters captured 

from the smart space. These trust values can be used to manage user identity across 

thing devices. O’Donoghue et al. [21] and Yang et al. [22] focus on data validation, 

consistency, and reliability across connected sensors, wearables, and mobile apps. 

2.2 FUTURE HEALTH IOT ECOSYSTEMS 

While present-day health ecosystems are already enabling a variety of new and 

useful interactions with connected health devices, visions of future ecosystems 

continue to evolve. These future concepts provide additional insight into the current 

needs and problems of existing ecosystems, and can lead the direction of thing 

architecture development as previously described; future thing architectures cannot 

base themselves on only the needs of the present-day. This section introduces works 

considering future ecosystems in this manner, as well as works that identify and 

analyze the specific health IoT challenges they must solve.  

Deloitte Insights [1] envisions an increasing focus on the consumer in future 

health ecosystems, with greater importance given to well-being and maintaining 

health rather than responding to illness. Alongside this, health sensors will become 

increasingly integrated and ubiquitous, providing a large amount of personal health 
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data for early detection of various health issues. Empowered by this information, end 

users will be better informed to determine when and how they interact with 

healthcare providers—for example, more routine health issues could be handled at 

home without direct intervention from a physician. 

Deloitte argues that interoperability and open platforms will be critical to the 

effective use of this abundant health data. As much basic medical care is relatively 

algorithmic, access to this data will play a large role in proactive intervention through 

artificial intelligence, therapeutic and health algorithms, and other new 

combinations of services provided by vendors and other stakeholders. While many of 

these interactions are likely to take place in the cloud, the thing architecture still 

plays an important role in collecting and channeling the data that is needed to 

enable this vision. Similarly, interoperability will be needed not only at the ecosystem 

level, but the architecture level as well. 

 However, considering data collection and interoperability alone is a relatively 

narrow vision; as ecosystems become increasingly ambitious, their potential needs 

and requirements grow as well. In addition to efficiently sharing data, future 

ecosystems may also require new ways to interact with the user, create new 

application opportunities, manage uncertainty, and much more. In anticipation of 

these new ambitions, a variety of potential challenges have been identified and 

considered by researchers. Each of these challenges may play a role in the design of 

health IoT ecosystems and thing architectures, in the same manner as 

interoperability is envisioned to. 

 Laplante et al. [23] investigate a set of case studies, such as dementia and 

patient safety, to determine potential quality issues and needs. The authors identify 

a variety of privacy and safety requirements and relate them to an overarching 

“caring” requirement. Caring is defined here as a combination of qualities such as 

reliability, trust, and empathetic interactions. These caring requirements and 

expectations are mentioned to vary between individuals and scenarios; the sub-

qualities that make up caring may change depending on the needs of the 
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stakeholders. The authors suggest that collaboration with various healthcare workers 

and providers will be critical in identifying the specifics of these requirements. 

 Farahani et al. [24] analyze health challenges from the perspective of their 

fog-driven IoT architecture. Five major challenges are identified: 1) data 

management, where the volume and variety of data makes standardized processing 

difficult, 2) scalability, from individual users to hospital deployments, 3) 

interoperability and standardization, especially involving regulatory concerns, 4) 

interfaces and human factors, due to patients (especially elderly) that may not be 

familiar with connected devices, and 5) security and privacy of protected health data. 

The authors also present a case study to illustrate these challenges further. 

 Plaza et al. [25] identify similar requirements when considering the needs of 

healthcare IoT platforms and middleware, again referring to scalability, 

interoperability, and security and privacy. Amongst these needs, the authors also 

identify dynamic discovery and reconfiguration as important features of a health IoT 

architecture. Such discovery is critical due to the number and heterogeneity of 

sensors that may present in a health system, while reconfiguration can help devise 

adapt to changes without interfering with the operations of other devices. The 

authors then compare how these requirements manifest in a variety of present-day 

health ecosystems and architectures. 

2.3 GENERALIZED THING ARCHITECTURES 

Zooming in on the thing architecture, one specialized for health IoT will likely share a 

variety of similarities with its more generalized personal IoT counterparts. In addition 

to abstracting hardware and other internal features, thing architectures also aim to 

enable outward interactions and integrate with other thing devices and cloud 

services. This includes features such as sharing capabilities and services with the 

smart space, and providing interfaces allowing other devices to use these 

capabilities. Such features help enable a device or platform as an IoT thing, rather 
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than just a connected device. This section introduces some explicit IoT architectures, 

along with concepts that are likely to play a role in specialized health IoT scenarios. 

 ARM Mbed [26] presents an architecture focusing on the interaction between 

a thing device and the cloud platform, where device functionalities can be linked and 

re-exposed as cloud services that can be provisioned, discovered, and managed 

through a set of standard interfaces. The architecture runs on Cortex-M devices 

using its Mbed OS, which provides a lightweight library for interacting with 

hardware, communication protocols, and network security. Applications can also be 

programmed and compiled through a web-based IDE, minimizing the setup 

requirements placed on the developer. However, the architecture is tied closely to 

the ARM ecosystem, both its cloud service and microprocessor models. 

 The Network of Things (NoT) [27], introduced by the National Institute of 

Standards and Technology (NIST), proposed a foundational design for IoT systems. 

NoT breaks down IoT systems into a set of four underlying concepts that influence its 

design: sensing, computing, communication, and actuation. The work also introduces 

a set of primitives and elements to describe the functionality of individual sensors 

and groups of devices, while also taking into account issues such as trust, privacy, 

and security. The concepts presented by NoT can directly map to the implementation 

of lower-level architectures and designs in a variety of IoT domains. 

 MOSDEN [28] is an IoT middleware targeting mobile devices, allowing users 

to collect and analyze sensor data through a service model. Users can connect new 

sensor types without the need to directly program such an interaction; this is 

achieved through a plugin architecture, where plugins (developed by third parties) 

can be added and removed on the fly (downloaded from the smartphone’s 

application store) to support a specific sensor type or brand. A specialized mobile 

app allows users the view detected sensors and the data that has been collected. 

Smartphones may play similar roles in health IoT systems, as they are a primary 

mode of interaction for many connected health devices. However, in this case, the 

smartphone acts as an endpoint (interfacing with only sensors) and cannot easily 

participate in thing interactions. 
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2.3.1 PROGRAMMING MODELS 

As mentioned above, interactions between things play an important role in all forms 

of thing architecture. Programming models allow developers to more easily create 

these interactions, facilitating new connections between things and services. These 

models are important in health IoT architectures as well, especially given that health 

sensors are frequently used in groups and collect related measurements. This 

subsection presents a selection of personal IoT programming models that can 

facilitate these kinds of interactions. 

 If This Then That (IFTTT) [29] [30] is a web-based service that allows users to 

manually connect various internet-based services and applications through trigger-

action rules: if a certain event occurs, then perform some action. IFTTT can utilize 

various cloud APIs offered by service vendors, alongside limited support for smart 

home products and Android system functions. These interactions form applets, 

which may be defined manually or downloaded from other users. In a similar vein, 

Yun et al. [31] developed Things Talk to Each Other (TTEO), which focuses on if-then 

rules specifically targeting thing devices. The TTEO architecture consists of two 

platforms, one which discovers and communicates with the thing devices, and 

another which manages the logic and execution of the trigger-action rules. Users can 

add new rules through a specialized mobile app, again highlighting the importance of 

smartphones in an IoT ecosystem. However, these approaches also require the user 

to manually identify their desired behaviors, which may be less practical in the 

presence of many devices (such as in a future health IoT ecosystem). 

 The Social Internet of Things (SIoT) [32] [33] mimics human social networks 

with the properties of smart things. The authors present an architecture defining 

different social relationships that describe how devices may interact, namely: 

parental (things built by the same vendor), co-location and co-work (things existing 

in the same place or providing similar functions), and owner (things owned by the 

same user). These relationships can then be used to detect or suggest more relevant 
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interactions between things, rather than requiring explicit user consideration. Similar 

social concepts play a role in the Atlas Thing Architecture (described below). 

2.3.2 THING DESCRIPTIONS 

Understanding the features and capabilities of a thing also plays a role in structuring 

interactions within an IoT ecosystem. However, the wide landscape of (health) 

ecosystems on offer has resulted in a significant amount of fragmentation; even a 

device that supports new and exciting interactions may be limited by its 

programming interface or cloud connection. Such platforms offer these synergistic 

features, but lack the provisioning needed for intercommunication. A common, base 

layer of compatibility that reflects a device’s capability and can be understood by 

other things has the potential to overcome these issues. 

 The Web of Things (WoT) framework [34] [35], introduced by the World Wide 

Web Consortium (W3C), aims to represent thing capabilities through web-based 

services, described and accessed with a semantic WoT Thing Description (WoT-TD). 

The TD data model can be extended with domain-specific information and is 

represented in a serialized JSON format. However, while the TD is capable of 

describing the properties of individual things, additional information is required to 

represent potential interactions or relationships between things. These concepts are 

extended in the WoT Asset Description (WoT-AD) by Le et al. [36], which groups 

physical thing devices into “Assets” that provide a set of services. This JSON-

formatted description defines high-level interactions, allowing multiple thing APIs to 

be provisioned through a single functionality-focused description. While this 

simplifies device setup, however, its focus on the groups of things also makes it 

difficult to define more generic descriptions. 

 The Atlas Device Description Language (DDL) [37] [38] is a human- and 

machine-readable device description that aims to simplify the integration of things 

and services in a smart space. The XML-based format defines metadata and 

functional descriptions for the various sensors and actuators that may be part of a 

thing. DDL descriptions are meant to be developed initially by device manufacturers 
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and OEMs, reducing the responsibilities on developers integrating new devices. The 

DDL forms the base of Khaled’s Internet of Things DDL (IoT-DDL) [39], which 

describes additional metadata and capabilities to better facilitate interactions 

between things. The IoT-DDL is extended further in this thesis, in response to some 

of the health IoT requirements identified in chapter 3. 

2.3.3 THE ATLAS THING ARCHITECTURE 

While many architectures focus on communication through a single point (such as a 

cloud or edge device), the Atlas Thing Architecture [39] [40] focuses on the potential 

derived from direct thing-to-thing interactions. The architecture is based on the 

original Atlas Sensor Platform [41], building on the Service Oriented Device 

Architecture (SODA) [42] and abstracting the device’s hardware to provide new thing 

functionalities through the DDL project discussed above. The Atlas platform focuses 

on self-discovery and advertisement of device characteristics through the DDL, 

interaction with remote provisioning and management, and secure communication 

with other devices in the smart space. 

 The Atlas Thing Architecture builds on top of this platform, introducing new 

features such as the extended IoT-DDL and improved interoperable communication 

[43]. The architecture also introduces an inter-thing relationships framework [44] 

that defines a set of relationships to logically and functionally describe new 

connection between unrelated services and devices in a smart space. Such 

relationships can be specified manually or inferred to enable new thing interactions. 

Like the IoT-DDL, this thesis expands upon the Atlas Thing Architecture in response 

to the health IoT requirements identified in chapter 3. 

2.4 HEALTH IOT ARCHITECTURES 

While generalized IoT architectures may provide features that are useful in health 

IoT contexts as well, a specialized health thing architecture can better account for 

the unique needs of healthcare scenarios. Even if such a feature is not exclusive to 
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the health domain, it may come with different priority and importance compared to 

other domains such as personal IoT. This section discusses the implementation of 

some specialized health IoT systems and architectures. 

 Azimi et al. [45] introduce HiCH, a fog-based health IoT architecture that is 

divided into two components; the distributed thing architecture, and a higher-level 

cloud component. At the thing level, the architecture focuses on requirements such 

as data accuracy, availability, and security. The thing also performs analysis on the 

data it collects in an attempt to lower the amount of needed communication with 

the cloud service. In the cloud, the architecture utilizes machine learning and other 

analytics to detect trends and issues in health data. While the architecture fulfills 

some of the lower-level needs of thing devices, it focuses mainly on sensor data 

collection, and does not fully consider the potential for interaction between things. 

 Catarinucci et al. [46] offer another architecture targeting healthcare 

systems, called the smart hospital system (SHS). The authors utilize a variety of 

communication protocols to collect and monitor data, putting much focus on the 

interoperability features of these devices and networks. This data can then be 

accessed uniformly by healthcare providers through a cloud service, or monitored to 

send push notifications to caregivers on critical sensor events. Various services for 

stakeholders are exposed through web and mobile applications, which consider their 

own security and privacy challenges. Again, this architecture does not fully consider 

the full range of potential health IoT requirements, such as device safety or inter-

thing interactions. 

 Banos et al. [47] describe a framework and architecture for mobile health 

(mHealth) applications, and present an implementation for mobile devices called 

mHealthDroid. The framework consists of a set of layers designed to support new 

mHealth applications, including support for communicating with biomedical devices, 

storing and analyzing health data, and displaying information to the end user. The 

framework also describes “service enabler” components to abstract events such as 

alerts and notifications within the mHealth application. The Android architecture 

implements a portion of the framework, defining various adapters for 
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communicating with wearables, as well as a graphical interface for displaying sensor 

data. The framework places focus on the role of the developer in an mHealth 

ecosystem. However, beyond Android apps, the framework cannot be used directly 

on physical devices such as health sensors. 

 FIWARE [48] is a cloud platform developed under the European Commission 

to facilitate the creation and adoption of new cloud services. While the platform 

itself does not specifically target health, the Future Internet CHallenge eHealth 

(FICHE) accelerator program focused on its use in e-health applications. Celesti et al. 

[49] describe the creation of a health system and application using this platform. The 

system consists of a set of FIWARE components called “generic enablers” (GEs) that 

facilitate collecting and storing data, implementing service endpoints, and managing 

devices. Data can be collected from heterogenous devices and uses the Open Mobile 

Alliance (OMA) standard for transmitting information. In addition to the core 

components, the system also offers GEs for developers to create front-end 

applications, as well as widgets that end users can compose. However, while the 

system fulfills most of its needs through the cloud, it does not consider potential 

contributions or interactions from the devices themselves. 

2.5 SUMMARY 

This chapter presented a breadth of related works covering concepts related to 

digital health and IoT architectures. The design of a new specialized health 

architecture is likely to be influenced by a variety of factors, including present-day 

medical devices and existing standards, design patterns, and specialized applications. 

The needs of future health scenarios and even existing personal IoT architectures are 

also likely to play a role in the design of a new health IoT; the sections of this chapter 

elaborated on each these considerations.  

In terms of personal health, many existing devices stem from commercial 

products targeting end users, as presented in subsection 2.1.1. Such devices are 

usually tied to a proprietary cloud service, resulting in more closed-off systems that 
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focus mainly on integration with other products from the same company. Still, some 

of these devices have also brought about new standards that promote interoperable 

data and ease of use beyond their local ecosystems. Some of these standards and 

related efforts were discussed in subsection 2.1.2. 

Personal health also shares a close relation to traditional personal IoT; as 

such, it is likely that some needs and solutions would carry over. Section 2.3 

discussed concepts relating to more generalized thing architectures, such as 

programming models and device description languages, as well as the Atlas Thing 

architecture that this thesis builds on top of. Although not directly health-related, 

these features are likely to correspond to the solutions presented in the explicit 

health IoT architectures discussed in section 2.4. 

 

Table 2-1: Related works comparison. 

 Primary Use 
Case 

Architectural 
Layers/Focus 

Full Device 
Architecture 

Inter-Thing 
Interactions 

End-User 
Developers 

HiCH Hospital 
Environment 

Fog/Cloud 
Data Analysis 

No No No 

SHS Hospital 
Environment 

Sensor/Network 
Hardware 

Contiki OS No No 

mHealthDroid 
Personal & 
Home Use 

Android Apps & 
Paired Sensors 

Partial 
(Mobile Only) 

Partial 
(Mobile 
Only) 

Yes (App 
Services) 

FIWARE Remote 
Hospital Care 

Cloud Services No No Yes (Custom 
Widgets) 

Atlas Health Personal & 
Home Use 

Device-Local 
Needs & Utility 

Yes Yes Yes (IDE, 
DDL, etc.) 

 

 

These health architectures begin to answer some of the future needs 

presented in section 2.2. Although more generalized than the solutions discussed in 

subsection 2.1.3, these architectures still vary in their specific goals and intended use 

cases. Table 2-1 shows a comparison of these architectures, alongside the solutions 

presented in this thesis. One main point of comparison amongst these related works 

is their primary use case: many focus on scenarios such as hospital care and patient 

monitoring. Amongst the works above, only mHealthDroid shares a personal health 

target (that is, cases where healthcare professionals are necessarily involved). 
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The table also shows various differences in the architectural design and focus 

of each project. Partially due to their primary use case, many of the architectures put 

emphasis on the structure of their fog/cloud layers (along with their networking), 

using the thing devices more as simple sensors meant to collect and send data for 

further processing. The table expands on this further in the Full Device Architecture 

column, which considers the actual software running on devices. For example, HiCH 

and FIWARE do not specify an explicit device architecture, while SHS uses Contiki OS 

[50], a general purpose IoT middleware. Again, mHealthDroid offers the closest to a 

detailed device architecture, although it only targets mobile devices. Such an 

architecture is a primary component of the work in this thesis (described further in 

chapter 4), encompassing concerns such as direct interactions between thing devices 

(without using a cloud, fog, or gateway); amongst the compared works, similar 

features are not considered in the same depth.  

Interactions with stakeholders, such as developers (those who program a 

device but do not work for the vendor) are also a main point in this thesis—discussed 

throughout chapter 5—resulting in a variety of tools such as an IDE plugin and other 

graphical tools. While some of the other research systems are more rigid, some do 

present similar features: mHealthDroid services can be used in new mobile apps, and 

FIWARE allows developers and even end users to create “widgets” using its core 

functionality. Overall, though, this thesis and Atlas Health focus on a set of features 

in personal health that have received less attention in similar works. 



  

  

CHAPTER 3: REQUIREMENTS FOR HEALTH IOT 

As discussed in Chapter 1, the devices within a Health IoT ecosystem each have 

specific needs and unique functionalities that are either less likely to be found or less 

of a focus in other application domains. With the variety of emerging health IoT 

systems and devices in a highly fragmented and evolving market, special 

consideration must be taken to these unique needs: how can they be met fully, 

safely, and consistently using the functionalities available within a device and its 

surrounding smart space? This is the role of a specialized thing architecture; rather 

than offer its features in isolation, a focused architecture would help a device fully 

utilize its potential collective and safe use. Such an architecture plays a large role in 

guiding how a health IoT device performs its functions and interacts with the user 

and other things, features which are critical to a powerful and effective IoT system. 

The unique needs inherent to the digital health domain are requirements that 

represent areas of common concern amongst health IoT systems. Each requirement 

presents a set of features that must be addressed within the thing architecture to 

maximize the utility of a connected health device. These requirements are proposed 

from the perspective of the thing; they do not map directly to specific user needs or 

use cases, especially when considering the variety of health IoT application scenarios. 

Instead, a requirement helps structure the functionality of a thing architecture, 

providing core features that assist the device and developers in meeting these 

specialized needs of the end user, regardless of the specific scenario. 

This chapter describes a methodology to seek out these specialized needs, 

and presents a set of requirements that have been identified as integral to the 

implementation of an effective health IoT architecture. Section 3.1 breaks down the 

methodology into four main steps. Section 3.2 describes the four main groups of 

requirements that have been established, along with how they fit in amongst the 

variety of health IoT devices. Finally, sections 3.3-3.6 describe each requirement in 

full detail. 
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3.1 METHODOLOGY 

 

Figure 2-1: Stages of the chosen methodology, starting at the bold element. 

 

Identifying, implementing, and evaluating these requirements necessitate a variety 

of approaches. This methodology is broken into four stages, illustrated in figure 3-1. 

The first step, requirement identification, uses a research-based approach to select 

potential requirements for further evaluation. This process of choosing requirements 

for a thing architecture calls for careful consideration regarding the needs of the 

devices themselves, as well as the needs of their users and the spaces they reside in. 

Identifying such “system” and “ecosystem” concerns is discussed in the following 

subsections. The second step, prototype implementation, and the third step, 

prototype evaluation, focus on the system side of these concerns; these steps 

determine the feasibility of a newly chosen requirement. Health devices vary greatly 

in hardware and intended use, making an experimental approach with prototypes 

and example scenarios valuable in finding limitations and evaluating performance 

characteristics. The fourth step, stakeholder evaluation, considers the ecosystem 

surrounding the architecture: a requirement may be further validated through 

surveys and other user-facing studies with stakeholders. This relationship between a 

stakeholder’s needs and the features of the thing architecture is explored further in 

the following subsections. As these steps are followed, an iterative approach may be 

Requirement 
Identification

Prototype 
Implementation

Prototype 
Evaluation

Stakeholder 
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taken; the requirements are likely to be closely related, allowing one to be further 

refined as others are identified and evaluated. 

3.1.1 SYSTEM AND ECOSYSTEM NEEDS IN HEALTH IOT 

While a thing architecture directly influences how a device operates, it also provides 

the thing with the interfaces it needs to interact with the user and the devices of 

their smart space. This potential for interaction is critical within a successful IoT 

ecosystem; a well-designed system may make an effective medical device, but its 

capability for meaningful interactions makes it an effective medical thing. Therefore, 

the needs of the ecosystem are of equal importance to the needs of the system itself 

when considering potential requirements. As such, a variety of methods must be 

used to adequately research these needs, both system and ecosystem. This thesis 

makes use of literature review and market research in the first step of the 

methodology. 

 The literature review, reflected in Chapter 2, aims to reveal shared themes 

and patterns amongst various challenges and solutions within health IoT. A work may 

present a system in response to a specific problem, such as gathering and presenting 

data for obesity management or optimizing communication between wearable 

devices. Looking at these solutions across a variety of scenarios within the health 

domain reveals common ground amongst them, which can influence the 

specification of a new requirement. Other research using existing IoT architectures 

may reveal shortcomings in their use within the health IoT domain, that can be 

solved through a specialized architecture with its own set of requirements. Together, 

the literature review serves to identify the direction of future health IoT systems and 

the missing features that could enable them or enable them further. 

 On the other hand, market research aims to identify the trends and needs of 

commercial health IoT devices existing today. Looking at today’s devices helps reveal 

the features that are popular, desired, or useful from the perspective of both the end 

user and the vendor. This information may reveal requirements applicable to a 

broader set of health IoT devices and provide insight as to how problems in the 
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health domain are being solved with existing products. Commercial devices are 

especially important when considering the ecosystem of health IoT; in many 

offerings, the device is only one part of the full product. Cloud features, companion 

mobile applications, and other services all play a prominent role in commercial 

health IoT ecosystems and, by extension, their device architectures. Staying aware of 

how these services augment and extend the “IoT features” of a connected medical 

device is another important component of identifying requirements. In this thesis, a 

variety of commercial personal health IoT devices were requisitioned, analyzed, and 

compared. In addition to influencing the requirement selection, some of the results 

of this work are presented in Chapter 6. 

 Comparing these methods also provides insight; the disparity between the 

envisioned scenarios of research works and the present state of commercial health 

devices may reveal deficits that influence or create requirements. In this manner, a 

certain level of intuition and opinion is also necessary when considering these 

methods. While grounded in the research directions described above, narrowing 

down the needs of personal health and investigating these disparities likely involves 

an aspect of prediction and personal judgement; looking to the future of health IoT 

devices and systems also plays a role in identifying requirements. Each requirement 

category presented in this chapter is derived from a combination of the methods 

described above; specific instances of influence will be cited in each section. 

3.1.2 STAKEHOLDER ROLES 

When considering a new health IoT thing architecture, a variety of stakeholders 

stand to benefit. This includes the vendor, who uses the architecture to build a new 

device and service, the developer, who takes advantage of the architecture (and the 

vendors devices) to create new interactions and applications within a smart space, 

and the end user, who chooses these devices and applications to meet their personal 

health goals. These groups may sometimes overlap (for example, the developer may 

also be the vendor, or even the end user), but each brings different needs and 

expectations from the thing architecture. Extending the previous subsection, system 
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needs may be more important to the vendor’s implementation, while ecosystem 

needs are the focus in the developer’s applications. 

 Satisfying the end user’s needs is also critical to a thing architecture’s success; 

however, these needs may not map directly to the specification of a new 

requirement. For example, when purchasing a connected health device, although the 

end user is interacting with thing architecture, they expect their specific needs to be 

met by the actual device or IoT application. For the user, the architecture provides a 

base set of features enabling these needs to be met, “behind the scenes.” This is an 

important factor when identifying new requirements: end user needs may have to be 

considered from the perspective of the vendor or developer to determine how they 

may manifest at a lower level. The thing architecture itself can then provide a 

backend simplifying or enabling these features for the vendor and developer. 

Overall, when considering stakeholders, the needs of vendors, developers, and end 

users are likely to be closely related and codependent in terms of an architectural 

implementation, even when these needs do not map directly to the requirements of 

the thing architecture. In this thesis, such needs and considerations influence the 

design of various architectural features (described in chapter 4), as well as the 

experiments and metrics used to evaluate them (as shown in chapter 6). 

3.1.3 DISCUSSION 

While this thesis presents what is believed to be a core set of health IoT 

requirements, it is important to consider the possibility that new or extended 

requirements continue to be identified. For example, further stakeholder evaluation 

in the iterative methodology described above may reveal additional needs that could 

be best answered through the introduction of a new requirement. This may be the 

case when considering specialized health scenarios, such as those involving users 

with disabilities. Such stakeholders may require accessibility that call for additional 

requirements, specifically targeting the domain in question. This thesis does not 

claim to provide a complete list of these health IoT requirements; rather, the 

selection presented is believed to have a significant impact on a thing architecture 
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maximizing its potential in utilizing new digital health devices, along with the 

interactions and applications they enable. 

3.2 CHOOSING ARCHITECTURAL REQUIREMENTS 

When choosing the core set of architectural requirements, the entire landscape of 

health IoT must be considered. A single device can be placed along a spectrum 

depending on factors such as reliability, intended use (monitoring, diagnosis, 

treatment, etc.), and safety concerns. For example, the Food and Drug 

Administration (FDA) divides health devices into two categories: wellness and 

medical [47]. In this categorization, a given device is classified based on its potential 

risk to the user, as well as its claims towards specific conditions. Under these 

guidelines, a wellness device focuses on general lifestyle activities such as fitness and 

diet, while a medical device targets actual medical conditions and aims to diagnose, 

monitor, or treat the user.  

 The architectural needs and expectations of a device depend greatly on this 

classification, or position within the spectrum of health IoT. A medical device as 

described above, for example, may require secure transmission of measurements 

back to the healthcare provider’s systems. However, enforcing such security and 

connectivity requirements on a wellness device may make less sense; unverified 

fitness information would be of comparatively little use to a healthcare provider, if 

considered at all. To account for these differences, this thesis defines a set of tiers to 

organize the variety of health IoT devices as follows: 

 

• Wellness: Similar to the FDA definition above, these devices are intended for 

general use; their features would not be used for definitive diagnosis or 

treatment. This tier focuses on ease of use and often involves higher level 

information, such as a fitness band reporting steps taken or calories burned.  

• Personal Health: As the health IoT ecosystem expands, so do the capabilities 

of devices available for personal or home use. This intermediate tier 
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encompasses devices that are capable of more comprehensive or accurate 

functionality. For example, while these devices may not be used or prescribed 

directly by healthcare professionals, their readings may influence the user to 

seek further diagnosis (such as those from an electrocardiogram sensor 

within a smart watch). This includes devices like blood glucose meters that 

are intended for diagnosis or treatment management but are not usually 

controlled or managed directly by healthcare professionals.  

• Medical: At the highest tier, these devices are used directly for diagnosis and 

treatment by healthcare professionals, where incorrect use or erroneous 

readings can have a significant effect on the user. Such a device is likely to be 

prescribed to the user or owned by the healthcare provider, and is usually 

designed to operate without the support of additional devices (such as other 

things or the user’s phone). One such example is a cardiac Holter monitor, 

usually prescribed by a doctor and worn for a period of time before being 

returned for analysis. Sometimes these devices even come with their own 

mobile device, to prevent the patient from needing or involving their own.  

 

When defining a requirement, its properties can be positioned amongst these tiers 

to help clarify intentions and expectations within the health IoT ecosystem. This 

thesis organizes such requirements into four main groups (with variable relevance 

across the three device tiers). These requirements consider features needed to 

enrich interaction within devices (such as how a thing can expose its capabilities 

programmatically to application developers as well as cybernetically to the smart 

space) and with the user (by enabling an end user to properly and safely use a 

device), as well as their roles in each of the defined tiers. 

 This chapter covers four overarching requirement categories, each 

summarized below. Of these categories, requirements I and II are covered in the 

greatest detail and are the primary focus of this thesis. While all requirements play 

some role in an effective IoT architecture, each relates to a specific tier in which it 

has the greatest potential for impact. As this thesis primarily targets the wellness and 
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personal health tiers, Democratization and Device IoTility are likely to play the largest 

roles in terms of their influence on a thing architecture. This relationship between 

tiers and requirements is visualized in table 3-1. Still, the role of the other 

requirements cannot be discounted; each has the potential to influence the design of 

an IoT architecture at any tier. As such, requirements III and IV are still developed to 

a level that introduces the importance of their features, albeit in less detail. The four 

requirement categories are summarized below. 

 

I. Democratization: This requirement focuses on the compatibility and 

interoperability of various health IoT devices. While vendor-specific services 

and support are often an important part of a device’s offering, an over-

reliance on these features can limit a device’s effectiveness in the greater IoT 

ecosystem without some level of cross-compatibility and device ownership 

control. These features are most important at the wellness and personal 

health tiers, whereas a device in the medical tier is most likely to be owned 

by a health organization (a hospital or a clinic, for example) and for numerous 

reasons may not prioritize democratization. 

II. Device IoTility: This requirement introduces several powerful features a 

health IoT device could offer by utilizing its connectivity with other things—

such as another health device or the user’s smart phone or smart TV—to 

create meaningful interactions between devices. Similar to democratization, 

this requirement is most important at the wellness and personal health tiers, 

while medical devices are more likely to be protectively self-contained in 

their functionality. 

III. Safe Use: Within a health device, safe use refers to the ability to ensure 

correct and reliable input/output interactions with the user. This means an 

actuator thing should have limited ability to harm the user or its own 

hardware, while a sensor thing should have the capacity to detect erroneous 

readings and conditions. This requirement becomes increasingly important at 
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higher tiers (personal health and medical), where user-facing risk is higher 

and accurate functionality is critical. 

IV. User Identity & Privacy: While security and privacy are a major concern across 

all connected devices, these features are exceptionally important in health 

IoT devices when the data must be generated by or shared with a healthcare 

provider or other third party and even complying with mandated regulations 

such as the Health Insurance Portability and Accountability Act (HIPAA) [48] 

and the General Data Protection Regulation (GDPR) [49]. Information from a 

device must be trusted and secure as it is transmitted between things, 

spaces, and ecosystems. This is an important requirement for both the 

medical and personal health tiers, where the sharing of data is more likely to 

involve healthcare providers and protected health information. 

 

Table 3-1 shows the relationship between these four requirement categories and the 

three tiers presented earlier. Each requirement is ranked against its importance in 

each tier, represented by a number of checkmarks; for example, a single checkmark 

may imply only minimal focus is needed, while three checkmarks mean a 

requirement has a large influence within that tier. As shown in the table, the needs 

of the wellness and personal health tiers tend more towards Democratization and 

Device IoTility, while Safe Use and User Identity play larger roles in the medical tier. 

In the following subsections, further details are provided on these requirements. 

 

Table 3-1: Significance of requirements per defined tier. 

 Wellness Personal 
Health 

Medical 

Democratization ✓✓ ✓✓✓ ✓ 

Device IoTility ✓✓ ✓✓✓ ✓ 

Safe Use ✓ ✓✓ ✓✓✓ 

User Identity & Privacy ✓ ✓✓ ✓✓✓ 



Chapter 3: Requirements for Health IoT Wyatt Lindquist 

 46 

3.3 REQUIREMENT I: DEMOCRATIZATION 

In the context of health IoT architectures, the term democratization refers to a 

thing’s capabilities and functionalities outside of its "silo:" the software ecosystem 

created and supported by its manufacturer or vendor. Many present-day IoT devices 

tend towards a pattern of closed systems with limited capacity for inter-silo 

functionality; while support for and interactions between things within the same silo 

may be extensive, compatibility with other devices is often limited to select 

manufacturers or nonexistent. These concerns extend across many aspects of the 

thing’s software, from communication and data storage to the behavior of their 

relevant smartphone apps. For all of these aspects, a balance must be found to 

maximize the level of health IoT democratization without being too aggressive and 

undermining the business strategies of the vendor.  

When considering such a balance, democratization is most important and 

most useful to the core functionalities of a health device. Features such as recording 

a measurement or configuring settings make up the lowest level of what could be 

considered "using" the device; at this level, the user should not have to worry about 

how a thing fits in with their existing digital health ecosystem. If each device or 

ecosystem requires, for example, its own companion smartphone app to function, a 

user with many things could quickly experience "app overload" [50], making it 

difficult to effectively use and manage these devices. 

 While many connected health devices such as fitness bands and other smart 

watches are expected to exist with a tightly-coupled companion app, health IoT has 

also introduced new connected variants of many traditional health devices where 

this is arguably not the case. Things such as blood pressure and heartbeat sensors 

look like their traditional counterparts, but may require additional apps, accounts, 

and ecosystems that are not immediately apparent. Consider a pulse oximeter thing, 

which has an integrated screen as well as a companion app. After purchasing the 

device, the user attempts to take a measurement but discovers the device must first 

be set up through the app; despite having the physical capabilities to function 
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immediately, the device is tied tightly to its silo (many present-day commercial 

devices, such as the Withings temporal thermometer [51], follow this pattern of 

requiring at least setup before independent use). On the other hand, a user’s 

glucometer (e.g., the iHealth Gluco+ meter [52]) can take readings even if the 

companion app is never installed or set up. While companion apps often provide a 

variety of additional features and conveniences, they should not be required if the 

user only needs basic functionality or can use another app of their choice (such as 

one they know well and are accustomed to). 

3.3.1 SHARED APIS 

Considering how these companion apps communicate with their devices highlights 

another aspect critical to true health IoT democratization: shared APIs. Even if a 

device’s hardware can be operated independently, it cannot act as a thing without 

connectivity to a smart space or other smart devices. Of course, eliminating these 

silos through a single standardized API is unlikely; vendors will always want to 

prioritize interactions between their own devices. However, even a limited subset of 

API compatibility, such as that defined by the Personal Connected Health Alliance 

(previously, the Continua Alliance) guidelines [9], could greatly improve a thing's 

ability to interact with its smart space. Imagine a patient with a low-power, 

connected body temperature sensor. Such a device is meant to be attached directly 

to the body, meaning it likely has little in terms of a physical interface (such as no 

integrated display to show the current temperature), and limited capacity for 

physical interaction (such as a sole button for toggling power). 

 The temperature readings and any needed configuration are instead exposed 

through a companion mobile app. Unlike the previous two examples, however, the 

device cannot be used properly without the app, even though the hardware itself is 

functioning. This could be problematic in certain cases where the app cannot be 

used; imagine a patient with disabilities and an unsupported, specialized device. 

Luckily, in this case, the device exposes a minimal standard API with basic 

functionality. Perhaps the user holds their mobile device near the sensor and 
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receives usage instructions as well as the ability to perform a basic read from the 

sensor (thereby receiving their body temperature as desired). More advanced 

configuration features are not exposed through this API, but the user is still able to 

use the device, despite using a different app.  

 Introducing more open APIs, however, does have implications regarding the 

safety and security of these smart devices [53]. Such concerns must also be carefully 

addressed; once a device provides data and receives commands more openly, the 

thing architecture must “pick up the slack” and ensures these APIs are not misused 

or abused. Even when the API is being used properly, health devices must consider 

identity, or who is using the API; a primary user may be able to see readings from a 

device through its API, but these readings should not be available freely. 

3.3.2 USER INTERFACE 

Many devices follow the trend of the temperature sensor described in the previous 

section; the hardware is physically quite minimal, with a limited number of small 

buttons or information displays. This subjects them to a variety of usability and 

accessibility concerns, even when considering them along with their companion 

apps. While simple functionality can be exposed to other devices or controllers 

through standardized APIs, this may not work as well for more unique or advanced 

features. Instead, a common set of user interface-focused API endpoints could help 

alleviate these issues, allowing a user’s preferred or specialized application/device to 

manage the display logic and interface with more complex behaviors.  

Accounting for a wide range of accessibility requirements is a difficult task; 

however, democratization has the potential to simplify this issue. Consider an API 

that manages rendering a desired accessible interface. Such an API could take in 

accessibility elements as parameters and output a device-agnostic markup to be 

managed by the mobile app, specialized device, or other means of output. This splits 

the requirement more evenly amongst the thing, the output device, and the user. 

Markup languages such as UsiXML [54] attempt this, allowing an interface 

specification to be used across multiple UI contexts (such as graphical, auditory, etc.) 
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XIS-mobile [55] is another UI language to describe mobile device interfaces in 

specific. In simple cases, a UI may even just reflect the thing’s underlying API. 

3.3.3 CHANNELING 

Note that many of these devices mentioned above likely offer limited support for 

data sharing with other ecosystems (for example, information may be exported as a 

file from the cloud, such as CSV or XML). Within health IoT, channeling describes the 

right and ability of the user to share data from a device to the greater healthcare 

ecosystem. Many health things collect measurements and store data either locally 

on the device, or in a cloud service managed by the device vendor. In either case, the 

data is likely stored mainly for use within the ecosystem, with little provision for 

external transfer. The user, however, may want to share this information with their 

healthcare provider (for example, as external notes or as an addition to their 

electronic health record), emergency services (such as when the data represents a 

dangerous condition requiring immediate attention or intervention), or even 

themselves (in personal storage or a private cloud). Because data on many of these 

health devices can be sensitive and must be protected, access cannot be given out 

freely; instead, an effective health architecture must assist in this obligation and 

consider the data access rights before sharing it with various third parties.  

For example, a user’s smart fitness band may be a part of the Apple Health 

ecosystem [6]. This platform attempts to democratize the storing and channeling of 

health data, allowing users to collect data from supported health IoT devices and 

permit specific parties access to this data. On the device side, this is achieved 

through HealthKit [56], a set of common APIs used by vendors to share data and 

events from their supported apps. To channel the data generated by these 

supported apps, the platform uses the Fast Healthcare Interoperability Resources 

(FHIR) [57] standard to integrate with supported healthcare providers’ electronic 

records. While this is a step towards health IoT democratization, the user is still tied 

to an ecosystem at a larger scope: the data is not truly cross-platform. A user 
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wanting to switch to Android and Google Fit [7], for example, would not be able to 

transfer their data directly through first-party services. 

3.3.4 REQUIREMENT SPECIFICATION 

Section 3.3 introduced a variety of user-facing democratization features that aim to 

improve the compatibility and functionality between thing devices and the interfaces 

through which they may be interacted with. These features are summarized into the 

following requirement specifications: 

 

• Shared APIs: A health thing should expose its core functionality through a set 

of open, well-defined API endpoints. 

• User Interface: A health thing should consider the possibility for alternative or 

new user interfaces, both physically and in software. 

• Channeling: A health thing should ensure its data is available to and shareable 

by its owner or end users. 

 

As these requirements focus more on the thing’s interaction with the end user, they 

are likely be significant considerations in the design of specific health devices and 

applications. Still, these requirements contain a variety of aspects that guide the 

design of the generalized thing architecture described in chapter 4. For example, the 

IoT-DDL specification (subsection 4.2.1) revolves around the Shared APIs 

requirement, and the DIY Health IoT Apps project (section 4.3) works towards the 

User Interface requirement. The concept of Democratization remains a consideration 

throughout the Atlas Health Architecture, and guides the experimental design and 

validation described in section 6.3. 

3.4 REQUIREMENT II: DEVICE IOTILITY 

As discussed previously, a device’s ability to effectively participate as an IoT thing is 

influenced largely by how it is prepared to interact with users, other devices, and the 
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smart space as a whole. This ability to enable meaningful and safe interactions is 

referred to as a thing’s IoTility within this thesis. The concept of IoTility covers a 

number of related requirements (individually described in this section) that center 

around utilizing a health device’s connectivity features: taking full advantage of the 

information and functionality available within its surroundings to augment and 

improve the services the device may offer. 

 These capabilities are very relevant to many digital health scenarios, where 

devices monitor or interact with the user directly and share closely related goals 

involving management of the owner’s health. For example, consider a patient that 

has an elevated risk for diabetes and related complications. Following consultation 

with their physician, suggestions are made for the patient to make lifestyle 

adjustments in an effort to reverse this risk. The patient begins an exercise regimen, 

purchasing a smart body-weight scale, fitness tracker watch, and pulse oximeter, and 

downloading their associated smart phone applications. Each of these devices take 

related measurements and aim to assist the user in reaching and maintaining a 

healthier lifestyle. A short time later, the patient becomes more invested in their 

health and potential risks, and purchases a blood glucose meter and blood pressure 

cuff to more accurately monitor for symptoms of prediabetes. As the patient’s health 

and treatment requirements change, they may continue to acquire more devices to 

provide further measurements and features supporting their health goals. 

 While these devices—many based on traditional healthcare instruments—

each fulfil a specific purpose, considering them independently means the user must 

manage and make sense of their information to see their bigger health picture. 

Introducing a high-IoTility health architecture, as described above, increases the 

potential of these devices to better meet the needs of the user and their health 

goals. Allowing these thing devices to work together and share data can open up 

many application possibilities on the principle that “the whole is greater than the 

sum of its parts.” 

However, before these devices can interact meaningfully, it must meet some 

basic requirements to communicate with and understand its smart space. To enable 
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interaction with an entire smart space, a device must communicate despite language 

or protocol differences, such as through a "translator" thing [43]. To understand 

various opportunities for interaction, a device must learn about the available APIs, 

services, and semantics of other things (as well as share its own) through information 

exchange. To act on these opportunities, a device must also be able to infer various 

cooperative and competitive relationships with the other things in the smart space 

[44]. Together, these features lay the groundwork for the formation of meaningful 

interactions and IoTility in a health IoT smart space. 

 Beyond direct data sharing, the interactions and events generated by a health 

device can be used to infer pieces of user context. This refers to information that 

helps a device describe "when" it should be used; critical when considering health 

devices that require use in specific intervals throughout the day or after certain 

events. For example, a glucose monitor must be used two hours after eating a meal 

to achieve the most accurate readings. Traditionally, the user may need to 

remember or manually set an alarm; however, if the smart space is aware of when 

the user eats, the timing and reminders could be managed by the glucose monitor 

device itself. This kind of context usually cannot be deduced from a single device; 

instead, it must be "built up" over time using a combination of events from different 

devices and measurements.  

Continuing on the previous example, it is unlikely that the glucose monitor 

can detect when the user eats on its own. However, the user may enter their meal 

information into a diet-tracking app, or use a smartwatch app that automatically 

detects eating movements [66], which can then share this contextual information for 

use by the glucose monitor. Measurements from multiple devices can also allow the 

users or their caregivers see a bigger health picture; while a single abnormal data 

point may not be a concern, unexpected readings across multiple devices might point 

to a larger issue. Achieving these goals through meaningful interactions with fellow 

smart space things is especially important when considering the variety of 

constrained or low-power health IoT devices that feature limited independent 

capabilities. 
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3.4.1 RELATIONSHIPS BETWEEN THINGS 

Communication between things is a substantial part of an IoT ecosystem. The 

advantages brought by democratization (as described in section 3.3) are less 

impactful when considering only interactions between a thing and the user. Once 

things are able to "speak" some level of a common language, they can interact not 

only with the user and edge, but also with each other. This thing-to-thing interaction 

is another critical part of a functional health IoT system: a thing with the potential to 

cooperate and directly utilize the capabilities of the smart space increases the 

capacity for meaningful interactions to occur. This is especially true in an 

environment with a wide variety of health sensors and devices. Even if these devices 

share a common interface, they still must be individually considered and 

programmed for, which quickly becomes unreasonable when considering a large 

number of devices and the various potential synergies between them.  

Relationships, or logical links between functionalities offered by two or more 

things, allow for the creation of implicit and opportune interactions between smart 

space devices. A relationship may allow a thing to become a conditional element 

within a logic matrix, its output used as an input or to control another thing, as in 

IFTTT [29] and TTEO [31]. A thing's ability to form these types of relationships 

(especially when they can be formed as suggested by the thing, rather than explicit 

user intervention, such as the Social IoT [32]), can help users focus on the high-level 

functionality of their smart space, leaving the low-level details to be taken care of by 

the architecture itself. These kinds of relationships are especially useful in a personal 

health environment, where sensors may only record a part of a larger metric (such as 

how body temperature, blood pressure, etc. make up a patient's general vital signs), 

or may record the same measurement in conjunction with other sensors (such as 

reading pulse in different places on the body). Such grouping of information can be 

handled or specified between things through relationships, reducing the need for 

explicit programming and simplifying the use of the smart space at the edge, 
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especially for personal health scenarios where the user may not want or know how 

to effectively manage their array of smart devices.  

Consider a patient with a blood pressure measuring device and pulse 

oximeter. Both of these devices are capable of recording, amongst their other 

measurements, the patient’s pulse. In the traditional case, the user would be 

presented with two pulse readings, and would likely choose to use one over the 

other, possibly hiding or removing the second measurement. Imagine instead that 

these devices look to form relationships with other devices (whose specific form may 

not be known) that provide a pulse reading, allowing them to combine readings or 

keep each other in check. Such a situation improves usability and allows for a form of 

reliability across devices taking the same measurement (where services only need to 

be aware of the measurement itself, not the source device). Handling these 

relationship-based behaviors within the architecture itself can help supplement and 

simplify the creation of meaningful interactions without relying on specific 

knowledge from the thing app or software. 

3.4.2 THING-LIKE MOBILE APPS 

In many IoT scenarios, the mobile app plays a prominent role in the interaction. The 

number of these apps targeting digital health is significant: over 300,000 as of 2017 

[67, 68], and still growing. In addition to self-contained health apps, many health IoT 

devices require a mobile device to host their companion app. However, despite their 

close interaction with things and the smart space, these mobile apps are not utilized 

fully: this thesis argues that they can be further integrated as things themselves. 

Considering mobile applications as "software things" (as opposed to hardware 

things, such as sensors, actuators, or other personal health devices) can open up new 

potential for meaningful interactions within a smart space. In most situations, the 

mobile app either acts as a controller for other smart things, such as requesting data 

or sending commands, or manages information for the user, such as the 

aforementioned diet app. In terms of a smart thing, this is only half of the picture. 

Other things in a smart space cannot consider the app for any interactions beyond 
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what it is programmed to do. Even if a health app's information could be used by 

another thing (especially one un-related to the purpose of the app), the app most 

likely lacks a way to channel data to that thing. The app is missing a concrete API like 

those of other physical things, simply because most mobile apps are not designed to 

work this way.  

For example, consider a patient with a dieting app and a smart fitness band. 

The user eats a meal, enters the information into their app, and receives an updated 

exercise plan. The user then must use another mobile app or other method to 

update their fitness band’s configuration, to reflect the exercise parameters they 

were given. Even though all of the information is available implicitly within the smart 

space, the user must manually “transfer” parameters between the apps and the 

things, because the developer of the app did not necessarily consider all potential 

interactions. If the diet app had a thing-like API, the interaction could have 

progressed differently: after the user enters their information into the app, the 

fitness band sees that the exercise plan has changed, updating its parameters 

automatically. In this case, the thing becomes the driver of the interaction, where it 

asks the mobile app for information through its thing-like API. Although the app was 

not developed with the fitness band in mind, it was able to provide its information to 

the smart space and enable this transfer of parameters.  

Compared to a normal hardware thing, a mobile app is likely much more 

capable in terms of features and the ability for the user to interact. Things in the 

smart space can potentially utilize a wide variety of sensors (for example, 

accelerometer and GPS) or engage the user through a touchscreen interface. This is 

especially interesting for lightweight hardware things with minimal physical inter- 

faces, like the body temperature sensor example mentioned in section 3.3. Such 

functionality makes higher-level interactions available to things without the need for 

physical interfaces or a specially programmed app (thereby reducing the need for the 

"silos" created by many existing companion apps). Used with the concepts from the 

previous section, mobile apps could even form thing-like relationships with other 
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devices or even other apps, allowing users to “combine” app functionalities, or easily 

create new app-like behaviors with the exact functionality they desire. 

3.4.3 PROXY INTERFACES 

Many health IoT devices offer relatively minimal physical interfaces, deferring many 

of their interactions to a companion mobile app. While this is usually convenient or 

even preferred, it is also important to consider times when a user does not have 

their mobile device on their person; such a situation may occur while charging the 

device, or with an elderly patient that does not use their device frequently. Even 

without a mobile device nearby, other smart things may be able to convey 

information to or accept input from the user. With the appropriate context and 

shared information, any device could act as a proxy for interactions with other 

things, either through their APIs, hardware user interface elements, or both.  

In this case, a proxy interface describes a device used as a host for another 

thing’s functionality. In fact, a mobile companion app can be considered a proxy 

interface for its respective health IoT device. Some devices may use a proxy interface 

in addition to a basic physical interface, while others may use this external interface 

exclusively (such as in simple sensor devices without displays). In these cases, 

loosening the relationship between a device and its mobile app controller could help 

enable new simplified interactions or allow information to be shown with greater 

precision, relevance, or availability within the smart space. 

The efficacy of these proxy interfaces hinges on the democratized capabilities 

of their device APIs, as described in section 3.3. In addition to offering its own 

services, a device may want to discover the capabilities of other things in the smart 

space, to search for potential proxies or to offer its features to less capable devices. 

Similarly, a proxy interface may even exist solely between two devices; for example, 

a Z-wave device’s services may be proxied as REST endpoints by a separate device 

that also has WiFi hardware. An architecture must support this ability to share 

capabilities and form such relationships to fully enable this potential for meaningful 

interactions. 
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3.4.4 NOTIFICATIONS AND REMINDERS 

Notifications, including reminders, device and health information, and other forms of 

non-transactional incentives, are another important set of features that can support 

and empower the user. Many health IoT devices, such as fitness bands and other 

sensors, are meant to be used passively: most interaction is done in retrospect to 

view collected data over time. In these cases, different forms of notifications are 

especially useful to convey data in situations involving abnormal readings, contextual 

data, and other time-sensitive information. Under normal use, the user might not 

receive such information until far after the fact; a notification allows the device to 

capture the user’s attention at the time of occurrence. Such notifications are already 

a well-understood interaction in the mobile application space, making them very 

useful for communicating important information from things.  

 In addition to traditional thing-to-smartphone notifications, alerts may be 

transmittable between health devices. Even if two devices do not interact through 

their APIs directly, a generalized event may be broadcast by one, allowing the other 

device to react despite not explicitly supporting the source device. This is powerful 

when considering proxy interfaces and the scenarios described above, where a user 

away from their mobile device may miss an important notification. A capable device, 

such as a fitness band with LEDs or a speaker, could pick up this notification and gain 

the user’s attention where not normally possible without a smartphone.  

Reminders, a subclass of notifications, extend these concepts and focus on 

empowering the user through specifically timed notices. These types of notifications 

are especially important within a health IoT ecosystem, where they may help ensure 

a user continues to use a device as required, such as maintaining a schedule or taking 

measurements at specific times. For example, a typical blood glucose meter requires 

the user to take a measurement two hours after eating: the device could schedule a 

set of reminders on the user’s phone, describing this requirement and triggering a 

notification at the appropriate time. The ability to meaningfully react is especially 

important for this type of notification: the glucometer, for example, may not be 
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programmed with time-tracking functionality, and instead requests another device 

(the user’s smart phone) to set up an alarm with its desired parameters.  

3.4.5 INCENTIVES 

Compliance and adherence when using personal health devices faces issues 

resembling problems with medicine compliance [69]; that is, taking medicine on 

time, consistently, and taking the proper dose). Patient empowerment is an effective 

strategy to achieve compliance or at least convergence (where attempts to influence 

or change behavior begin to have an effect), especially in patients with long-term 

conditions [70]. However, a persistent problem in this form of empowerment is the 

lack of a roles model: “who does what and when?” The concept of device IoTility 

argues that the connected health device itself can contribute and play a role in 

patient compliance and empowerment. Evidence would be needed to establish that 

such a device contribution could make a difference, however, this would only be 

possible after an implementation of the requirement feature is included in at least 

some health devices. 

 The three key elements of empowerment and successfully engagement are: 

recall (reminders), reward (incentives), and maintaining capacity and context 

(encouraging actions that are possible and doable by the user) [71] [72]. Measuring 

and operating within user capacities is difficult, and although it may be approximated 

under the context of how empowerment attempts are delivered, this element is not 

addressed in this thesis. Recall is well addressed under the IoTiity requirement, as 

shown in subsection 3.4.4. The last element, incentives, also remains important even 

through it is a broad concept and difficult to architect; implementations would be 

likely to use external elements and assets such as credit, passes, discounts, or 

anything of value to the end user that could be provided by healthcare systems or 

providers. Given this generality, the IoTility requirement for incentivization would 

likely follow a cooperative process that places the device in the pathway of managing 

these incentives. For example, a device may report usage statistics periodically to a 

democratized app or server (such as those described in section 3.3). This could 
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include data on timing and accuracy (using concepts from section 3.5), such as when 

the device was used and if it was used properly over a period of time. The receiving 

end may accumulate this information and “score” it to convert into incentives; this is 

where the unknown external possibilities would fall into place. Interfacing with these 

unknown possibilities could occur through smart contracts [73] (connected to by 

external organizations or businesses) or a form of digital wallet (such as Apple Wallet 

or Google Pay). 

3.4.6 REQUIREMENT SPECIFICATION 

Section 3.4 introduced a selection of system and device-focused IoTility features that 

aim to facilitate local interaction and cooperation between things in a smart space. 

These features focus on the vendor and developer stakeholders, describing behavior 

that can enrich IoT interactions without direct involvement or contribution from the 

end user. These features are summarized into the following requirement 

specifications: 

 

• Relationships Between Things: A health thing should be prepared to interact 

with other devices through some shared protocol. 

• Thing-Like Mobile Apps: Mobile applications and software should be able to 

interact with a smart space in the same manner as hardware things. 

• Proxy Interfaces: A health thing should be able to act as an intermediate for 

other devices or alternative communication methods. 

• Notifications and Reminders: A health thing should be able to utilize 

notifications and reminders in the same manner as a mobile app. 

• Incentives: A health thing should consider the role of empowerment and 

engagement in the design of their behavior and features. 

 

As described above, these requirements represent a variety of features that can be 

provided by the thing architecture and utilized in a variety of health applications. As 

a result, some of these features are implemented directly in chapters 4 and 5 (such 
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as Mobile Apps As Things in section 4.4 and Proxy Interfaces in subsection 5.4.3). 

Other architectural features provide more flexible support for a variety of 

requirements, such as Tweets (subsection 4.2.2) and the relationships provided by 

the Atlas Thing Architecture (subsection 4.1.1). Together, these requirements also 

represent the bulk of the experiments and validation in this thesis, resulting in 

evaluations described in sections 6.1 and 6.2, as well as a portion of section 6.4. 

3.5 REQUIREMENT III: SAFE USE 

Safety and accuracy are both primary concerns in healthcare environments in many 

regards, from correctly taking a measurement to administering a proper dosage. 

While the influx of connected medical devices has helped make these actions easier 

and more accessible than ever before, safe use remains a prominent interest. 

Especially when considering the number intended for use by inexperienced end 

users, health IoT devices must not only become easier to operate correctly, but also 

harder to use in a wrong or unsafe manner. For a health IoT architecture, safe use 

refers to a thing’s ability to correctly and reliably interact with the user using both its 

inputs and outputs.  

 For sensor devices, safety manifests through the capacity for detecting 

proper use: ensuring the user is taking a measurement the right way, at the correct 

time, etc. To achieve this, an architecture must have some built-in capacity for error 

detection on its inputs; depending on the device’s function, this may be possible 

solely through software, or may require the assistance of additional hardware. For 

example, a smart watch EKG device may use software signal processing to determine 

the quality and validity of its readings. On the other hand, an automated blood 

pressure device may require state from additional hardware elements such as 

accelerometers to determine proper cuff placement. Once erroneous input is 

detected, an architecture must be able to use this information to guide and correct 

the user. While data can be marked as valid or invalid for further processing within 

the device or other things, the user is likely to continue providing this bad data 
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without feedback on adjusting their interactions. Depending on the device, this may 

involve conveying a binary value, an accuracy (analog) rating, or more traditional 

feedback such as additional instructions. For example, the Kardia EKG device [58] 

displays a real-time "signal-strength" graphic to guide the position of the user’s 

fingers, while the A&D Medical wrist blood pressure monitor [59] controls LEDs 

signaling the user to move their wrist lower or higher.  

 For some devices, this feedback may be provided in real-time, allowing the 

user to adjust their behavior and prevent an invalid reading from occurring in the 

first place. Even in devices (especially those with "dumb" components, such as the 

test strips of a user’s glucometer) where this is not possible, an invalid reading may 

be detectable such that it is discarded, and the user presented with additional 

guidance or coaching to repeat the process correctly. This simple form of input safety 

becomes valuable when considering users who own many devices or are less familiar 

with a device (which may even be prescribed by a physician rather than personally 

chosen), especially compared to more traditional assistance such as physical 

instructions [60].  

 Compared to sensor devices, safety for actuator devices mainly involves 

detecting behavior or commands that could harm the user or physically damage the 

device itself. While input safety can process an invalid reading and discard it after the 

fact, output safety must always handle potential errors before the action actually 

occurs. Health IoT devices cannot stop all improper use, but an architecture can 

consider and manage how a device is being used through its software APIs; for 

example, an impatient user pressing a button five times does not necessarily 

correlate to five sequential or simultaneous requests to the thing’s functionality. 

While actuator devices are less common amongst health IoT devices, they are often 

"high-risk," higher-tier (medical) devices; for example, output safety would be critical 

in closed-loop insulin pumps (which can provide more personalized treatment 

regimens [61] while still boasting an impressive safety profile [62, 63]) or other 

dosing devices. Similar safety features are still important in lower-risk actuators, such 

as a blood pressure monitor preventing over-tightening or damage to the air pump. 
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Due to their inherent risk, many of these actuator devices are likely to have similar 

safety features in place already; however, further integration with health IoT 

ecosystems will likely bring about new forms of interaction that require additional 

precautions and considerations in regard to the safety of these devices.  

 An architecture may validate these requests through constraints [64], or 

additional validation on the conditions of an action. In actuator devices, this includes 

limitations on aspects such as the frequency of invocation, the range of a parameter, 

or the times when an invocation is allowed. For sensor devices, constraints focus 

more on the results of the process, considering output value ranges or the states of 

components within the device. In either case, a triggered constraint may then be 

used to provide additional feedback to the user, as described above. Such 

enforcements help ensure a device stays in a functioning and expected state, 

regardless of how the user interacts with it. This type of safety also extends to "fail-

safe" modes [65] for actuator devices, where a malfunction or loss of power, such as 

a health IoT wearable running out of battery, would not leave the device in a state 

that could cause harm. How an architecture offers and manages these safety 

features is critical when considering the effective use of various health IoT devices. 

3.6 REQUIREMENT IV: USER IDENTITY AND PRIVACY 

User identity is another critical component of a health IoT ecosystem; many personal 

health devices will need some concept of an active or owning user. Most obvious are 

the larger or home-based devices, such as blood pressure monitors and body weight 

scales, that are shared between members of a family or household. If the device 

intends to share its readings with the smart space or a user’s app, it must first know 

how to associate this information with the correct user. Such a device may rely on 

the user or the connectivity of other devices in the smart space to determine this. 

For example, a glucometer may prompt the user to select their profile, or the 

companion app (specific to each user’s mobile device) may share this information 

during use automatically.  
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 When considering the connectivity features described in section 6, identity 

becomes a prominent consideration even in single-user wearable devices, since such 

potential interactions should usually be limited to devices owned by the same user. 

For example, the glucometer scenario above should not set reminders based on a 

family member’s dieting app. In this case, while a device may not track multiple user 

profiles, it must still associate identity with broadcast measurements, or remember 

which devices share ownership and are clear for interaction. These concepts of user 

data and ownership are therefore critical within an architecture, as they directly 

affect how a device can discover and interact with its smart space. 

 Privacy is also a primary concern when considering user identity and how 

health IoT devices share information: the data and functionality offered by many 

devices should not necessarily be shared freely with an entire smart space. In 

addition to ownership, a health IoT thing must also consider who else (if anyone) a 

given piece of data should or could be made available to. This is especially true when 

considering devices that support democratized channeling, as described in 

subsection 3.3.3. Data made available to third parties or healthcare providers may 

also become protected health information, increasing security requirements and 

complicating matters for a thing that shares its information within a smart space. In 

this case, a strong and secure user identity is essential to the health IoT device. 

 These concepts play a role when integrating incentivization features as well, 

such as those described above. These features and their associated measurements 

will likely require some level of verification (in terms of the user and device identity 

of the data) that a platform can trust when calculating how to administer a reward. 

For example, a user receiving incentives for consistent use of a glucometer should 

not be rewarded when a family member wants to take a reading for themselves. In 

addition to the forms of detection described above, a health IoT device may 

integrate some form user authentication; this could involve a biometric challenge or 

defer to the hardware present in the user’s mobile device, such as fingerprint 

scanning and facial recognition. Such authentication features also bring into 

consideration how health IoT things are provisioned in a new smart space. For many 
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single- and multi-user health devices, identity is a main focus during the setup 

procedure. A health device may require a variety of identifying features to function; 

these can be specified manually, or even sourced automatically from parameters in 

the smart space [20]. The way an architecture handles this procedure is critical in 

determining how a device may be used; some devices may require a configured 

identity before use, while others function even in an un-provisioned state (this 

scenario is also discussed in section 3.3). 

3.7 SUMMARY 

This chapter introduced a set of requirements intended to meet the specialized 

needs of health IoT. First, a high-level methodology was presented, describing the 

process of identifying, implementing, and evaluating a new requirement. This 

methodology also highlights some of the considerations taken during the selection of 

the presented requirements. One such consideration is the difference between the 

“system” and the “ecosystem;” while the main concern of the IoT architecture 

involves the hardware it controls, the device’s interaction with other devices, 

applications, and services also plays a large part in influencing the architecture’s 

design and features. The methodology also considers the role of the end user in 

relation to the device architecture: while the needs of the user set the goals of the 

architecture overall, they may not map to individual system features and 

requirements. Instead, requirements may also stem from stakeholders such as 

vendors and developers, who create applications using the architecture. 

 This chapter also introduced the concept of IoTility, or the ability to increase 

the collective utility of a group of smart things. This concept relates closely to the 

potential functionality of many health IoT things, and represents one major grouping 

of the identified requirements (alongside Democratization, Safe Use, and User 

Identity and Privacy). The chapter then considers these requirements across the full 

spectrum of health IoT, considering their use in wellness, personal health, and 

medical scenarios. As each of these “classifications” are likely to present different 
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needs and use cases, the requirements are discussed mainly in the context of 

personal health: devices that may contain more advanced health features but are 

meant to be used by individuals outside of a hospital setting. 

 The chapter then investigated each requirement grouping in more detail, 

focusing especially on Democratization and Device IoTility. These two requirements 

are broken down further into individual features and concepts that may be 

integrated into a health IoT architecture. Democratization focuses on how users may 

control or decide how to use the thing, arguing for features such as common user-

facing programming APIs, additional focus on user interface capabilities (especially 

when considering accessibility), and data transfer and ownership between users and 

their healthcare providers. On the other hand, Device IoTility focuses on how a 

device may enrich the user through the combined capabilities of other things, 

without requiring explicit command or intervention. This includes concepts such as 

creating thing-like mobile applications, proxying interactions between dissimilar 

thing devices, and integrating incentivization features and interactions. 

 These requirements are used to guide the design and implementation of the 

architecture described in chapters 4 and 5, especially those related to the IoTility 

requirement. Still, while these requirements introduce a variety of powerful features 

prepared to meet the needs of health IoT, the chapter notes the possibility of 

additional or modified requirements as the architecture evolves. Potential limitations 

of the selected features, as well as directions leading to new or modified 

requirements, are discussed further in chapter 7.



  

  

CHAPTER 4: A HIGH IOTILITY HEALTH ARCHITECTURE 

Fully supporting the requirements described in chapter 3 calls for careful 

consideration of their impact and position within the lower levels of an IoT device; 

that is, the thing architecture. While it is possible to address some of these needs 

within an individual IoT application, a focused architectural implementation can 

position the thing to more easily and consistently offer these important 

functionalities across a variety of devices and scenarios; points that are critical when 

considering the fragmented and evolving nature of the personal health ecosystem. A 

health IoT application may then utilize or build on top of the functionalities provided 

by this groundwork to better meet the specific needs of their end users. To this end, 

the architecture presented in this thesis uses such requirements to guide the 

implementation of core features that can facilitate new meaningful interactions with 

users and other things in a health IoT ecosystem. 

 While all of the previously defined requirements play a role in forming these 

features, those related to the concept of IoTility (detailed in section 3.2) are 

especially significant in the context of an IoT architecture: they influence how a thing 

is prepared to interact with the rest of the smart space. Considered on its own, a 

health device is mainly concerned with performing its physical functions (sensing or 

actuating); here, an architecture may be able to provide hardware abstractions or 

other utilities. Expanding to a traditional ecosystem silo, where the device 

communicates through a mobile application or the cloud, an architecture may 

become more involved, managing safe use, networking, and security concerns. 

Beyond this, much of a thing architecture’s potential stems from how a device can be 

programmed (by the vendor, developer, and even end user) to support new “high 

IoTility” interactions that specifically target the specialized needs of health IoT. 

 This chapter presents an overview of the developed thing architecture and its 

prominent components, each of which aims to provide new features that satisfy one 

or more of the requirements identified in chapter 3—especially those related to the 
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concept of IoTility. Section 4.1 introduces the Atlas architecture, and describes the 

modifications made to support new health IoT requirements. The remaining sections, 

4.2 through 4.4, focus on individual components that work within or alongside the 

architecture to further enable the meaningful interactions described above. 

4.1 THE ATLAS HEALTH IOT ARCHITECTURE 

The Atlas Health IoT Architecture described in this thesis builds off the structure of 

the Atlas Thing Architecture [41, 40]. This earlier architecture aims to better enable 

things to self-discover their characteristics and capabilities, which can then be shared 

within a smart space with other things. Such “social” thing-to-thing interactions are a 

core focus, versus an architecture that communicates through a single point such as 

a cloud service. The new health architecture modifies these components to better 

support IoTility features and other health IoT requirements, while also introducing 

new capabilities that work towards this same goal. The following subsections provide 

an overview of the original Atlas Thing Architecture, as well as a detailed description 

of the new Atlas Health IoT Architecture. 

4.1.1 THE ATLAS THING ARCHITECTURE 

The Atlas Thing Architecture is a set of software operating layers that provide 

functionalities a thing requires to engage and interact meaningfully within a smart 

space, first introduced by Khaled [39]. The Atlas platform (the upper block of figure 

4-1) itself exists on top of a set of base thing operating system services, abstracted by 

a host interface layer that provides portability and interoperability. These layers 

manage the interactions between the Atlas platform and device features such as 

networking, memory management, I/O interfaces, etc. Building on top of this, the 

architecture consists of several elements focusing on different issues in IoT, each of 

which are represented through the individual blocks within the Atlas platform. 
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Figure 3-1: Overview of the Atlas Thing Architecture [39]. 

 

At the lowest level, the API Engine manages a device’s service behaviors and 

endpoints. The structure of these services is derived from the IoT-DDL Manager, 

which loads thing information from a structured device description (described in 

section 4.2.1). The manager also provides metadata information that can be shared 

through messages (described in section 4.2.2) formatted by the Interactions and 

Tweeting Engine and sent to other devices in the smart space. Messages received 

from other things can then facilitate new interactions and relationships [44] through 

the Knowledge Engine. Additionally, the Security Engine manages authorization and 

encryption of active thing interactions, and the Interface and Communication Engine 

manages converting any messages to various protocols such as REST and MQTT [43]. 

 Together, these components create a powerful thing architecture targeting 

the traditional personal IoT domain. It is important to note that the Atlas Thing 

Architecture mainly focuses on more powerful thing devices, including boards that 

can run full-featured operating systems (such as the Raspberry Pi [74]) and 

microcontrollers with more advanced networking and data storage features. On a 

Interactions and Tweeting Engine

IoT-DDL Manager

API Engine Identity 
Parser

Attachment 
Manager

Interface and Communication Engine

Identity and Knowledge
Tweets

API
Tweets

A
tla

s I
oT

 P
la

tfo
rm

DDL
Sublayer

Tweeting
Sublayer

Interface
Sublayer

Host Interface Layer

Network 
Manager

Process 
Manager

Memory 
Manager

Device Secure 
Elements

Services 
Interfaces

Main Controller and Messaging Backbone

Io
T 

O
S 

Se
rv

ic
es

Device 
Manager

Meaningful 
Interactions

Security Engine and
Application Run-Time

Knowledge 
Engine



Chapter 4: A High IoTility Health Architecture Wyatt Lindquist 

 69 

more constrained device, some features may not be feasible: for example, a thing 

lacking a WiFi radio cannot share metadata information in the same manner as a 

more capable thing, and a device without flexible storage may be unable to load its 

device description at runtime. These constraints are an important consideration 

when adapting to the personal health domain, where devices represent a large 

variety of capabilities and may vary in their ability to support a specific health IoT 

requirement. 

4.1.2 ADAPTATIONS FOR HEALTH IOT 

 

Figure 4-2: Block diagram of the Atlas Health IoT Architecture. 

 

The Atlas Health Architecture utilizes and augments the features of the Atlas Thing 

Architecture to better target the goals and requirements of health IoT, as shown in 

figure 4-2 (where blue outlines represent modified components and green outlines 

represent new ones). In the Lower Layer, the Atlas Platform components are built 

upon to provide the base for the IoTility features described in chapter 3. For 

example, the API (Service) Engine and Entity Manager are adapted to a microservices 



Chapter 4: A High IoTility Health Architecture Wyatt Lindquist 

 70 

architecture (expanded on in chapter 5) that supports a variety of API and IoT 

interactions. Some new components are also introduced, such as the Keyword 

Manager to handle information collected from tweets (described in section 4.2.2) 

and mobile apps acting as things (described in section 4.4). Above these 

components, the Higher Layer utilizes these core platform features to extend and 

adjust interactions as they are passed to and from the Communication Engine above. 

In this layer, the components provide self-contained IoTility capabilities that can be 

utilized directly in specialized Health IoT interactions. As shown in figure 4-2, these 

components are named after the architectural requirements they target: 

• The Safe & Proper Use component manages a set of pre- and post-conditions 

for each API endpoint. For example, a received API call (an IoT interaction) 

may be prevented from reaching the API Engine if a parameter value is 

outside of its expected range. Such “constraints” may also depend on the 

physical characteristics of the device or environment, the state of other 

things, and the time and frequency of interaction. This component is 

described in further detail within chapter 5. 

• The User Identity & Privacy component manages any user identifiers and, 

along with information from the Device Identity, packages this data with 

service outputs as needed. The component also provides basic security 

features, such as enabling the encryption of inter-thing communications. Like 

Safe Use, this component works closely with the API Engine, but can still be 

managed independently. 

• The Health Device IoTility component contains a variety of features that 

support the IoTility concepts described in chapter 3, including managing 

notification-style communications and exposing endpoints and capabilities 

for incentives-based reporting. The component also allows a device to proxy 

service calls to other devices with different capabilities, allowing a greater 

variety of devices to participate in the interactions enabled by the 

architecture. The details of these IoTility features are expanded on alongside 

the discussion of their implementation in chapter 5. 
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Above the Health IoT layer exists the Interface and Communication Engine, which 

contains the democratization component of the requirements. This layer manages 

the communications received by the health thing, including IoT interactions (such as 

service calls) and user interactions (such as notifications). The democratization 

component manages representations of the API endpoints from the API Engine, 

allowing standardized services to interact with the device, and enabling effects such 

as an authorized, user-approved "redirect" of a native health device companion app 

to a separate democratized one. Together, these components enable many of the 

requirements presented in chapter 3—creating a foundation for a variety of personal 

health IoT applications. 

 The separation between the Lower and Higher Layers is also an important 

feature of the architecture. While most of the Lower Layer components are closely 

integrated and related, the Higher Layer features offer greater “standalone” 

capabilities; they may still be useful even in scenarios where the complete Atlas 

Platform components are not supported. Imagine a scenario similar to the one 

described in section 4.1.1, where a minimal thing platform, such as a low-power BLE 

device, cannot offer the IoTility features integrated within the Lower Layer (such as 

IoT-DDL loading or tweeting over WiFi). Even without this support, Higher Layer 

features such as Safe & Proper Use may still be important requirements for the thing. 

Defining this separation ensures the utility of a requirement can be maximized across 

a variety of health IoT device classes. 

 Another important feature of the new health architecture components is 

represented by the addition of the Software Platform Support block, positioned next 

to the Device Operating System Services in figure 4-2. In addition to traditional thing 

devices, this thesis highlights the “software thing,” such as a mobile application, as 

an important part of a health IoT ecosystem. In such a scenario, the thing is no longer 

represented only by physical hardware, but possibly by an ephemeral application 

that exists as a part of a larger system as well; the architecture interfaces less with 

low-level features and acts more as a software library providing IoT functions to the 
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application. Like the hardware device services, these features are abstracted by an 

interface layer sitting below the core architecture. These services are significant for 

such software things, as their needs and functionality likely differ from a similar 

hardware device: for example, a mobile app thing might manage interactions and 

offer services defined by the state of the application rather than a manually created 

device description (IoT-DDL). Here, while the higher-level health IoT requirements 

are similar, the Atlas platform features are used in a different capacity. Similar 

situations relating to mobile apps are explored further in sections 4.3 and 4.4. 

4.2 EXPANDING IOTILITY IN THE HEALTH IOT LOWER LAYER 

Present-day IoT platforms and architectures [75, 76] often revolve around 

communication through a central point (such as cloud platforms or an edge) where 

users can control things and access data. This type of architecture is highly effective 

for cloud-based application development; however, it is often vendor-specific and 

ignores the potential for direct communication between things. These silo-

constrained connections limit the capabilities of the smart space, preventing things 

of different type or vendor from fully engaging. To truly realize the potential of an 

IoT ecosystem, things should be able to seamlessly integrate with clouds, edges, and 

devices across a variety of vendors and developers: features that are a primary focus 

of the Atlas Architecture. The following subsections expand on two components that 

are central to this potential, the IoT-DDL Manager and the Interactions and Tweeting 

Engine, and present aspects that have been developed further to better enable core 

IoTility features and increase democratization and interaction between health IoT 

things within the Atlas Health Architecture. 

4.2.1 THE INTERNET OF THINGS DEVICE DESCRIPTION LANGUAGE 

While democratized communication is important, simply connecting devices that 

“speak the same language” is not enough to fully realize the potential of the IoT. 

Rather, this also depends on how a thing’s services, resources, and capabilities are 
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described and made known to the smart space, and how a thing can utilize that 

information to support promising IoT scenarios. The main constraint in achieving this 

centers on the wide heterogeneity of communication technologies, environments, 

generated data, and measurement capabilities that may be found on a device. Such 

variability introduces a significant challenge in integrating these things with a 

surrounding smart space and IoT ecosystem. 

 

 

Figure 4-3: Generalized thing structure and major IoT-DDL components. 

 

The Internet of Things Device Description Language (IoT-DDL) defines a human- and 

machine-readable schema to structure and address some of these democratization 

requirements. This schema builds on top of the previous Atlas DDL specifications [38, 

40], shifting focus from discovering hardware services directly to enabling ad-hoc 

connections between the various capabilities within a set of thing devices. To 

achieve this, a structure must be identified that represents not only the potential 

characteristics of the thing, but also the variety of forms and purposes it may take. 

For example, a thing may be hardware-based (such as a sensor or actuator), 

software-based (such as a mobile app), or even a hybrid that offers a variety of 
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services to the smart space. From another perspective, a thing may be a single low-

power sensor, a powerful interactive device, or a collection of different thing-like 

entities. These types and roles influence the kinds of meaningful interactions a thing 

can be involved in, as well as their suitability to interact with other things in a smart 

space. 

 

 

Figure 4-4: The components of an example hybrid thing. 

 

With these differences in mind, the IoT-DDL defines a set of major components that 

can represent a given thing, and uses them to structure the top-level format of the 

description itself. The components, illustrated in figure 4-3, are: 

 

• Resources: the shared components that a thing requires to be a part of the 

IoT, such as the networking hardware, storage device, etc. Each resource can 

be described by a set of attributes and properties that dictate the operation 

of essential internal functions. 

• Entities: individual hardware and software components that represent a core 

set of functionalities within the thing device. An entity defines properties that 

control how the component operates when used in external interactions. 
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• Services: functions that use the features of their parent entity. A service 

represents a single point of interaction with the thing; it is a well-defined 

interface (public API) that can be utilized by users or other things. 

• Attachments: a (potentially shared) external resource that can offer 

additional services to the thing. This resource likely exists on the cloud or 

edge, as it is too heavyweight for a constrained device or requires resources 

that are not available internally. For example, an attachment may represent a 

log server, database, or dashboard. 

 

As an example, consider a smartphone acting as a hybrid thing in a smart space. The 

thing, illustrated in figure 4-4, contains internal storage and WiFi radio resources, a 

set of hardware sensor entities (such as the accelerometer), and a software timer 

entity that can provide a variety of services to the user. The phone also receives 

occasional operating system updates from the vendor through a cloud attachment. 

Together, these components make up a complete IoT-DDL description that the thing 

can use to self-identify and better prepare for meaningful interactions. 

 This description language assists in bridging the gap between the needs and 

wants of health device vendors, and those of developers and end users. While the 

vendor has full control over the initial features and behavior of a device, the DDL 

keeps the thing open to changes by other stakeholders as well. A developer can 

tweak a vendor behavior without needing to completely reconfigure the device; user 

stakeholders gain more control over their things without cutting out the vendor’s 

influence or creating additional work in developing a new device.  

 The IoT-DDL specification has continued to evolve alongside changes 

introduced by the Atlas Health IoT Architecture. For example, the architecture uses 

microservices for thing functionality on capable platforms, matched by a more 

explicit service definition model within the description file. This allows behavior to be 

specified within the DDL and created or changed at runtime. The specification also 

introduces new concepts such as actionable keywords (described in section 4.4) and 

structures for declaring proxy interfaces to external devices, including BLE sensors. 
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To simplify the creation of these descriptions for vendors, developers, and end users, 

an HTML builder tool capable of creating, editing, and validating IoT-DDL files is also 

introduced. These components are discussed in detail in chapter 5. 

4.2.2 THING TWEETS 

Once a device is positioned to interact effectively with its smart space, it must 

understand how to communicate with other things; the Atlas Health IoT Architecture 

manages this inter-thing information sharing through interactions called tweets. 

Devices can share available information and metadata (collected from the IoT-DDL 

description) by distributing these small messages to all things in the smart space. 

Each tweet contains an identifier for the originating thing, along with a payload such 

as device information, a service name and API, keywords, etc. Tweets are flexible and 

adaptable to new health architecture features, such as a smartphone application 

thing searching for services to integrate into its interface (as described in section 

4.4). Together, these “broadcast” tweets represent the first stage of a meaningful 

interaction between thing devices. 

 In addition to the broadcast tweets described above, a device may send a 

tweet interaction directly to a single thing. In this case, the tweet contains an 

identifier for the target thing (likely acquired from a previous metadata tweet) in 

addition to the payload and source information. Such tweets allow devices to invoke 

services or respond to requests from other communicating things. This tweet type is 

also used in new architecture features, such as carrying inter-thing notifications or 

formatting proxy interactions. This class of “unicast” tweets represents the second 

stage of a meaningful interaction—allowing things to utilize the information they 

discover and receive from other things in the smart space. 

4.3 DIY HEALTH IOT APPS 

As discussed in chapter 3, the concept of mobile companion applications that control 

and enrich their devices is exceptionally important in the personal health IoT domain. 
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Combined with the software thing features introduced in section 4.1.2, mobile apps 

have the potential to integrate further with traditional health things and participate 

in their high IoTility interactions. However, even amongst software things, mobile 

apps are quite different from normal devices in both form and function. An app’s 

detailed and flexible interface (the smartphone’s screen) opens up a variety of 

interaction possibilities, but utilizing these unique features requires rethinking how a 

mobile app with thing features can interact with other devices in the smart space. 

This section describes an initial attempt at better integrating mobile apps with 

democratized thing devices. 

In present-day health IoT ecosystems, many companion apps are tailored to 

specific environments and things that force the user to stay within the bounds of 

their silo if the app’s full functionalities are to be taken advantage of. Future 

ecosystems could be much different, where these IoT apps are built by the end user 

in an easy do-it-yourself (DIY) fashion, tailored to their own smart space and devices. 

Such capabilities could help limit the “app overload” described in chapter 3 as well; a 

user with many health devices from different vendors (and therefore many 

companion apps) could effectively “concatenate” the information they are most 

interested in, creating a single DIY app containing only this focused information. To 

achieve this, a variety of questions must first be answered, such as how the app 

interface can be defined and how the user can design and build a new app directly 

from their mobile device. 

 First, consider the following example of a simple DIY health app. A user owns, 

among others, two health devices: a connected body weight scale and a fitness 

tracking mobile app acting as a thing. The app contains functionality to calculate the 

user’s body mass index (BMI)—under normal circumstances, this requires the user to 

manually input their current weight (their height is stored within the app’s profile) 

after taking a reading on the connected scale. Both devices sport thing capabilities, 

but there are no pre-existing integrations between the two, limiting their combined 

use. Instead, imagine the user defines a DIY app relating the scale’s API to the BMI 

functionality of the wellness app. The new app presents a simple interface showing 
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the calculated BMI after the scale is used, without requiring the user to open the 

apps for the scale or fitness tracker. 

 Using the Atlas Thing Architecture, things can tweet to share identities, 

services, and potential relationships [44] that provide hints as to how devices may be 

related and capable of working together. These relationships empower the user, 

allowing them to discover new interaction possibilities or create their own while 

charting out the functionality of a new DIY app. To enable generation of this app 

without involving the user further, a description of these functions can be sent to an 

external attachment (a cloud or edge server) capable of converting such information 

into actual mobile code. The attachment builds an application package, using the 

APIs of the involved things to create a simple interface, before sending the binary 

back to the user’s smartphone; the end result is a native application (versus a 

“bookmark” or web app link) enabling interactions unique to that user’s smart space. 

 These concepts were utilized in a prototype implementing the DIY health app 

scenario described above [77]. This prototype partially served as a guide while 

developing features of the Atlas Health IoT Architecture; it begins to show the 

potential of more generalized app-thing interactions, but also highlights some issues 

with these simpler interactions.  For example, the above works best with sensor 

things and APIs that take no input parameters—complex thing services demand 

complex user interfaces that are harder to generate dynamically. Additionally, the 

concept depends on the generated app superseding the use of its components. If a 

user likes or wants other features from the fitness tracker app described above, for 

example, they cannot easily access these capabilities within the newly generated 

application. The next section builds on this concept and its shortcomings, introducing 

more direct thing-like behavior and better integrating dynamic opportunities into 

existing mobile applications. 
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4.4 MOBILE APPS AS THINGS 

Imagine a user downloads a mobile app within their smart space full of personal 

health things. For example, consider a COVID-19 tracking and information app that 

provides advice and contact tracing. Surrounded by a variety of devices with the 

potential to track symptoms such as body temperature or coughing, the app could 

offer feedback beyond “do you feel ill?” or “have you been tested?” prompts. The 

presence of such things may drive the app to adjust its interface, creating a new 

button that requests the devices check for a high temperature or listen for 

continuous coughing, and provide deeper feedback to the user. 

 While a vendor may be able to achieve this within their own ecosystem silo, 

imagine the interaction taking place without programming the specific interaction—

the app simply advertises a set of capabilities and interests that allow thing devices 

to create new engagement opportunities. The thing devices described above are 

looking for these capabilities, allowing them to drive a new interaction on the mobile 

app without the original developer implementing or even considering this specific 

case of a “COVID check” button. However, this raises a variety of concerns: how 

should the app present these dynamic opportunities to the user, and how can the 

developer prepare their app logic and interface for such opportunities? 

 To act as a thing, a mobile app must react to the capabilities and 

opportunities of a smart space, and change at the will of its user within the context 

of its own interface and functionality. This calls back to introspective programs [78], 

or programs that "self-reference" their own information. However, instead of 

performing tasks like copying itself or print out its source code, a mobile app must 

use this information for far more practical purposes, such as adjusting their services, 

appearance and functionality on the fly to take advantage of and utilize the services 

of another smart thing. Before such modifications can occur, two pieces of 

information must be known: the target functionality (from the smart thing), and the 

control to give it (from the mobile app). Once both of these are known by one of the 

devices, the interaction and app augmentation can occur. 
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 Receiving potential functionalities from the thing through the transmission of 

its APIs, as was done in a previous apps-as-things demo [79], provides an app with all 

the information it needs to form new meaningful interactions. However, this method 

also leaves a lot of work for the app developer, in terms of determining how to 

integrate this new behavior and display it to the user. If the developer does not know 

exactly which smart things to support, it becomes impossible to determine what 

context (when and where in the app) an interaction should be made available. In this 

manner, the app developer may want to leave some "placeholder" space for a new 

interaction’s UI elements; however, anticipating the extent of the requirements 

(mainly where to place this placeholder and how to link it logically with the created 

new behavior) would prove difficult. Instead, a UI in this manner would likely find 

most use in pop-ups (such as a toast notification [80]), or a new interface in its 

entirety (such as a “Chromeless” in-app web browser view [81]), where the context 

of the interaction can be entirely contained. This moves the information requirement 

to the thing, which can now manage interactions through its own interface, using the 

mobile app only as a display. Unfortunately, in these cases, this context is disjoint 

from the rest of the interface: the UI exists "on top" of the app and cannot easily 

interact with or extend the app’s developer-created elements. 
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Figure 4-5: Contextual information available within a mobile app. 

 

True integration of a thing’s functionality into a mobile app, therefore, becomes 

difficult. While handling “simpler” interactions this way may be possible, such as 

when a sensor value should be displayed or when a button can trigger a service with 

no arguments (as in the above example), it becomes less feasible when handling 

services that require input from the user. Here, both the thing and the app lack the 

full picture of the interaction; the app does not know what information is needed by 

the thing (in terms of an API call), but the thing cannot pull arbitrary information 

from the app. Instead, more complicated interface decisions would have to be 

provided directly by the thing (in the Chromeless web view, for example), asking for 

information that may already be available within the app. If the app developer only 

knows about what information can be provided to potential things, and the thing 

only knows the services it can offer, how can interactions between these devices be 

more closely integrated?

4.4.1 USING CONTEXT IN MOBILE APPS 

Consider, for example, a pain management app and its developer. The app presents 

a variety of tips and instructions for the user to manage different forms of chronic 
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pain, including a one layout with sleep tips such as “use a firm mattress” and “sleep 

with a room temperature between 20-24˚ Celsius.” Imagine that, like the concepts 

above, the app reacts to the user’s smart space, showing new buttons to set the 

firmness of the user’s smart mattress or schedule a temperature on their thermostat. 

Rather than explicitly program these interactions, the app developer merely exposed 

key concepts, such as “firm mattress” or “22˚ C” to the smart space, and the 

engagement opportunities are initiated by the things that could use this data if they 

existed in the smart space. 

 In this manner, various “contextual” data from the app can be quite useful in 

integrating new smart thing interactions. Even without knowing what devices to 

interact with, the developer already knows where interesting data comes from (such 

as a specific UI element), and, by extension, how such data may be used in a new 

interaction with an interested thing—this relation is shown in figure 4-5. In a 

situation targeting a specific device, the app developer indirectly identifies such 

“interaction-capable” contextual information to pass to the known API. For example, 

if the app developer works for a smart bed manufacturer, they know “firm” is the 

value to pass to the device. When the target functionality is unknown, the developer 

can still identify this information, effectively saying, “the user is interested in a firm 

bed” rather than “the user wants to set their smart bed to firm.” While they cannot 

give this information directly to a thing that will use it, the app developer can still 

provide this input information if a thing can relate its services and complete the 

other half of the engagement. 

 From the thing’s point of view, the app reveals not only a potential place 

where it may be used, but also the data needed to use it. Even with the right 

information, however, the thing does not know when to use it. For example, the pain 

management app should not set the bed’s firmness immediately upon starting; the 

user must see the suggestion and explicitly ask for the change to be made. The app 

also needs the context of the interaction, or where in the app’s logical flow the data 

will enter and be made available. In the case of a mobile app with many views and 

functionalities, such context is critical in enabling meaningful interactions; at times, a 
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service or a piece of data may not even be relevant or accessible, depending on the 

state of the app and the actions of the user. Conveniently, knowing where the data 

comes from provides the contextual information needed: the source UI element is 

always tied to a specific point in the app’s logical flow. For example, the ability to set 

the mattress to firm only makes sense when the user is looking at the sleep tips view. 

Therefore, the final “trigger” for the interaction (a UI element; a button in the 

example) must be located in the same context as the data that will be provided. 

 This concept is similar to the more traditional Android URI Intent [82]. Here, 

the developer specifies a format that arbitrary text can be matched against, creating 

a “hyperlink” to a different app that can use the matched text to perform a service. 

For example, Android can detect common date and time formats in plain text, which 

are automatically underlined to create a link. When the user taps on this link, they 

are given the option to add the event to their calendar, amongst other operations. 

Here, the original writer of the text was not concerned with this functionality; they 

did not write HTML tags to specifically allow the time to be used in the calendar. Like 

the concepts above, the “consumer” of the interaction (the thing, or the Android OS 

in this example) decided how to use the data. 

 Unlike a date URI, however, useful app information is unlikely to follow a 

standard format. Instead, collecting and presenting this per-component information 

poses a significant challenge to the developers of both thing devices and mobile 

apps. Making such fine-grained interaction a reality will require mobile app 

developers to truly consider the role of their app in an IoT system, manually 

identifying pieces of information that could be used, for some purpose, in a smart 

space. Likewise, thing developers must support a wider range of potential 

interactions, looking for key pieces of data that are compatible with their services, 

making their things more usable and accessible through relevant mobile apps. 

Through a new programming construct introduced in the next subsection, this thesis 

aims to limit such apparent complexity by minimizing requirements placed on the 

mobile app developer—where a mastery of IoT should not be required to create an 

app with these thing capabilities. A solution also should impose only minimal 



Chapter 4: A High IoTility Health Architecture Wyatt Lindquist 

 84 

changes to the app development process; even with IoT knowledge, app developers 

are less likely to go out of their way in making their apps things. Rather, the 

capabilities introduced should exist as a first-class citizen within the standard 

development ecosystem. 

4.4.2 ACTIONABLE KEYWORDS 

For a mobile app to better realize its functionality as a thing, the roles of a mobile 

app and normal thing device are reversed. Rather than search for potential 

interactions through service/API information broadcast from things, the mobile app 

advertises its available input data back to the smart space. A thing can then match 

this input against its available services, discovering new potential interactions that 

can be shared with the mobile app. With knowledge of the input data, the mobile 

app developer can directly design an appropriate interface (versus leaving space for 

the Chromeless web view described above) while remaining flexible for various 

potential interactions. This also enables other thing devices to make the decision on 

actual matches and have more means to interact with the mobile app. 

The actionable keyword (AKW) concept and programming construct can be 

used to represent this input information and facilitate a link between the logic of an 

engagement opportunity and the mobile user interface. An AKW—as shown in figure 

4-6—is a structure present within a mobile app that contains the following: a 

description of some input data, a set of keywords to represent the purpose and 

source of that data, and information on the UI elements that data is tied to (the 

context of the interaction). Portions of this information from the AKWs are then 

broadcast to the smart space, where thing devices compare keywords and data types 

against their available services. If a match is found, that service’s API is sent back to 

the app to be invoked by the user. Note that a single AKW may represent multiple 

instances of such a UI context (like the rows of a list view); the actionable keyword 

represents the type of information available, not a specific piece of data—all 

instances of that data are valid inputs to a thing service that matches with the AKW. 
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Figure 4-6: The interaction between an app's actionable keyword and a thing service. 

 

The AKW also handles another important aspect discussed in the previous 

subsection: once a relationship is formed, when should the data be used to invoke 

the bound thing’s functionality? To address this, an actionable keyword also 

represents an input control (also called a widget [83]) within its context that allows 

the user to trigger the formed relationship. The developer defines a "placeholder" 

element (a button in the current implementation) that is initially blank and hidden—

it is not known what service, if any, will respond to the AKW (if nothing responds, the 

element will stay hidden indefinitely). Once a relationship is established, the button 

pops into view with a label or styling specified by the binding thing. At this point, 

interacting with the element (such as tapping the button) invokes the received thing 

service with the data from the relevant UI context as input. 

 To illustrate this entire process, consider the pain management app described 

above. The app developer believes smart things could help the user better act on the 

various suggestions within the app, and decides to transmit the ideal temperature 

for sleeping. They create a new AKW, specifying the temperature as an available 

integer, and relating it to the keywords “temperature”, “air conditioner”, and 

“heater,” among others (since the user may have central air, a radiator, or even a 
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fan, the developer does not know exactly how temperature can be controlled). 

Within the app’s UI, the developer specifies the text view as the context of the 

potential interaction and positions a placeholder button next to the text itself. All of 

this information is compiled into the app, and broadcast to the smart space while the 

app is open. These broadcasts can then be evaluated by other things in the smart 

space, which attempt to match the keywords and data types with the capabilities of 

their own services. 

 A thermostat thing finds a match and responds to this AKW to create a new 

relationship with the app, providing information about itself, its “set temperature” 

service, and a new label for the placeholder button within the app. The app can then 

concatenate its ability to provide a temperature with the thing’s service, enabling the 

placeholder button and changing it label to “Set Target Temperature.” When the 

button is tapped, the service provided by the thermostat is invoked with the 

temperature specified in the sleep tips. Note that in this scenario, multiple services 

may vie for an AKW, but only one may attach and create a relationship—this, 

however, is not permanent; the bound service may be removed, disabled, or 

swapped out, allowing another to match. 

 In the given scenario, all information needed by the thermostat service is 

available from the app immediately, and the user can complete the interaction with 

the single tap of a button. The interaction involves a thing requiring a specific input 

type, receiving the relevant AKW, and instructing the mobile app to integrate its 

service. However, this kind of back-and-forth may not always be able to satisfy a 

thing service’s requirements, especially with more complicated services, such as 

those requiring multi-stage interactions or user confirmation. Handling such 

interactions is likely to drastically increase the complexity of the solution, therefore, 

the proposed systems focus only on "simple" interactions utilizing a single button. 
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4.5 SUMMARY 

This chapter described the design of a health IoT architecture influenced by the 

requirements presented in chapter 3. The Atlas Thing Architecture, focused on 

personal IoT applications, was used as a base for introducing new, health-specific 

features and requirement implementations. The Atlas Health IoT Architecture, 

whose structure was broken down in this chapter, reflects the accumulation of these 

new features. Most of these features reside in one of two major subsystems: the 

Lower Health IoT Layer and the Higher Health IoT Layer, resting between an 

abstraction layer and a communication interface. The higher health IoT layer 

provides self-contained implementations derived from the requirements (such as 

IoTility and Safe Use), and augments interactions that occur in the lower health IoT 

layer—which focuses on core functionality such as handling API calls received from 

other things—as they are sent and received throughout the smart space. 

 This chapter also introduced some features utilized by the architecture to 

better support democratization, including “tweet” communications and the IoT 

Device Description Language (IoT-DDL). Tweets are text-based messages that are 

used to transmit information about a thing’s services and capabilities, invoke 

functionality on a device, or flexibly enable new health interactions. The IoT-DDL is a 

human-readable configuration schema that allows vendors, developers, and end 

users to configure and describe the capabilities of their various devices. Like tweets, 

the IoT-DDL is also extensible and has adapted to new health IoT features and 

requirements alongside the thing architecture. 

 Lastly, the chapter introduced some IoTility concepts that play a role outside 

of the core thing architecture, defining new interactions with mobile device apps. DIY 

Health IoT Apps allow end users to combine functionality from independent thing 

devices (utilizing their public APIs) into a simple interface that can be installed as a 

native app. Mobile Apps As Things (MAAT) evolves this concept further, allowing 

developers to specify individual “placeholder” UI elements that can be linked to new 

thing device behaviors. These placeholders are created in the same manner as 
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normal interface elements and associated with actionable keywords (AKWs)—

containing keywords and potential arguments for an IoT service call—that allow the 

developer to specify potential behaviors/features without programming for a specific 

thing or class of devices. Instead, the thing makes this matching decision, shifting 

responsibility and simplifying the mobile developer’s role in new IoT interactions. 

 Overall, this chapter outlined the structure of the complete Atlas Health IoT 

Architecture, especially the components related to Device IoTility and 

Democratization. This also included considerations for these ecosystem components, 

such as external services and companion mobile applications. The implementation of 

the architecture and ecosystem is explored in further detail in chapter 5, and then 

evaluated through a set of experiments in chapter 6. Some architectural features 

that received less focus in this chapter, such as those relating to User Identity and 

Privacy, are also a part of the limitations and future work discussed in chapter 7. 



  

  

CHAPTER 5: IMPLEMENTATION 

This chapter presents the implementation details of the health IoT architecture and 

supporting components detailed in chapter 4, each aiming to satisfy features of the 

requirements presented in chapter 3. While the requirements cover a wide area of 

concerns regarding personal health, this implementation focuses mainly on the 

issues of democratization and IoTility features (although some parts of the 

architecture begin to address the other requirements). Section 5.1 implements the 

Internet of Things Device Description Language, a key element in addressing 

democratization concerns. Section 5.2 implements the DIY Health IoT Apps concept, 

making use of some of these democratization capabilities. Section 5.3 implements 

the various components of Mobile Apps As Things and actionable keywords, a 

significant enabler of IoTility. Finally, section 5.4 implements a variety of 

miscellaneous thing architecture components that are relevant to the requirements. 

5.1 INTERNET OF THINGS DEVICE DESCRIPTION LANGUAGE 

The Internet of Things Device Description Language (IoT-DDL), introduced in chapter 

4, is an XML-based schema used to describe the capabilities of a thing’s hardware to 

the health IoT architecture. This includes metadata and behavioral details that, in 

addition to internal use, can be broadcast to the smart space to share information 

and set up new interactions. The IoT-DDL is a core element of the democratization 

features discussed in chapter 3. Providing a base for many IoTility concepts, it is used 

to configure the various architectural components detailed in this chapter, such as 

proxy interfaces, constraints, and MAAT. The following subsections detail the 

structure of the IoT-DDL, along with a user-facing tool designed to simplify the 

development of new description files. Additionally, the complete underpinning 

schema is presented in appendix A. 
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5.1.1 STRUCTURE 

At the top level, the IoT-DDL begins by defining various sets of metadata, as shown in 

figure 5-1. The first section, Descriptive Metadata, describes the thing’s 

manufacturer properties, such as make, model, and vendor that can be shared with 

other devices, along with user-specific details such as location and smart space 

information. This section also defines the thing’s Atlas Thing ID (ATID), specific to the 

device, and Smart Space ID (SSID), shared within the user’s smart space, to facilitate 

communication between things. The combination of these identifiers provides a 

unique address to specify the device when sharing information or making service 

calls within the smart space (as used in the tweet communications described in 

subsection 5.4.1). On the other hand, the Administrative Metadata section exposes 

information that can be used to initialize the OS components of the thing device 

internally. For example, this includes networking hardware (such as WiFi or 

Ethernet), access information (for example, SSID and password for WiFi), and 

protocol information (such as the multicast group for IP-based communication). Note 

that not all fields of these metadata sections must be defined, and some may not be 

used depending on the environment of the thing device. 

The top-level IoT-DDL also defines two lists: one of entities and one of 

attachments. An attachment, as introduced in chapter 4, defines a service or feature 

that requires resources and capabilities less likely to be present within a thing device. 

In this thesis, an attachment represents a specific type of resource (such as the app 

generator described in section 5.2) that can be interacted with through a well-

defined API already understood by the thing architecture. Within the schema, an 

attachment is represented by its type and URI endpoint (such as an IP address). 
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Figure 4-1: The high-level structure of the IoT-DDL sections. 

 

An entity, the other list element, is a flexible concept describing a single unit of 

hardware, software, or hybrid functionality that is part of the thing device. For 

example, a hardware entity may represent a single temperature sensor built into the 

device. Each entity holds a section of Descriptive Metadata, similar to that of the top-

level Atlas thing, containing properties such as name, description, model, and 

vendor. Additionally, entities may declare a proxy interface (detailed in subsection 

5.4.3), such as an external BLE address and its attributes of interest, for interacting 

with low-power devices and exposing their features to the smart space. Mainly, 

however, an entity declares the structure of its APIs and the interactions it can take 

part in, though sets of the following elements: 

 

• Services: A service defines a single API endpoint for interacting with its 

respective entity. This section also defines metadata, including name, 

description, and keywords, which can be used to filter services when 

searching (such as the case in MAAT) or with unbounded services (described 

below). To declare its API, the service also defines its input and output types, 
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each with a name and optional description. Finally, the service declares a 

“formula,” or short set of instructions to be invoked with the service. The 

implementation represents this as a C-code excerpt, which is compiled at 

runtime on a capable thing device to formulate its API. This “just-in-time API-

ing” (discussed further in subsection 5.4.2) is important to the IoT-DDL’s 

flexibility; rather than the API being part of its compiled firmware, the device 

uses basic information (input, output, etc.) to create a service definition 

appropriate for the smart space it exists in. An example is shown in figure 5-2. 

• Relationships: A relationship represents a logical bond between two services, 

relationships. While relationships are not acted upon directly by a thing 

device, they act as metadata guiding the creation of new IoT interactions and 

applications, such as the DIY Health Apps described in section 5.2. A 

relationship can represent a variety of cooperative or competitive 

interactions [44], such as control, a basic trigger-action linkage, and drive, 

which additionally passes the output of one service as the input of another. 

• Unbounded Services: With the above elements, a thing can only define 

relationships between services within its own entities—however, most 

interesting interactions likely exist as relationships with other thing devices. 

To allow an element to reference services that may not exist, an unbounded 

service can be defined. Such a service represents a “wildcard” that can be 

matched to a concrete service at runtime based on its metadata. These 

match requirements can be unique, such as a service from a specific vendor 

or one with a specific identity, or generic, using keywords along with input 

and output parameters (similar to MAAT’s method in section 5.3). In this 

case, the required similarity is defined as a “match value” threshold. 
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Figure 5-2: The basic structure of an IoT-DDL service definition. 

 

The IoT-DDL also defines various constraint fields to enable safe and proper use 

within the thing device. At the entity level, these specify temporal constraints, or the 

time periods when the device can be used (for example, a sleep sensor should only 

operate in evening hours). Services offer similar constraints, defining the minimum 

period of time between consecutive API calls and the ability of the API to accept 

simultaneous invocations, in addition to per-input minimums and maximums to 

validate passed API parameters. Together, these checks must execute successfully 

before a service’s actual behavior can be run. This can protect against the various 

scenarios described in chapter 3, such as unexpected behavior or damage to the 

device due to user error, programming bugs, or malfunctions. 

5.1.2 IOT-DDL BUILDER WEB TOOL 

In practice, an IoT-DDL description is most likely to be first created and shipped by 

the thing’s creator; that is, the original equipment manufacturer (OEM) or vendor. By 

the time the device is in the hands of the user (or developer), its IoT-DDL contains a 

default set of metadata, services, and constraints that it can use to interact safely 

and effectively in a smart space. This is not necessarily the end of the IoT-DDL 

lifecycle, though: as the format is open and human-readable, it can be expanded and 
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modified by third-party developers or end users to meet more specialized needs. 

However, using the schema directly may be a daunting task for the average end user 

without documentation or external help. Instead, the IoT-DDL Builder tool aims to 

simplify the creation and modification of these IoT-DDL descriptions by organizing 

the schema’s fields and options into a user-friendly web form GUI. 

 

 

Figure 5-3: The IoT-DDL Builder tool interface.

 

The builder tool is a single-page HTML and JavaScript web app developed using 

Semantic UI [84] that can use its form data to create, validate, and export IoT-DDL 

files. The tool, shown in figure 5-3, consists of four main “tabs” representing each 

top-level element (Descriptive Metadata, Administrative Metadata, Entities, and 

Attachments). Each tab organizes its fields to emulate the structure of the schema, 

providing a mostly one-to-one mapping. The fields reflect their expected data types 

(for example, token fields for keywords, pickers for dates, and dropdowns for 

enumerations), and set up hover tooltips next to each label to provide additional 

help, descriptions, or examples. The Entities tab is the most complex, using an 

accordion-style nested list to allow users to create new instances of entity, service, 
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and relationship fields as needed (depicted in figure 5-4). Device APIs can also be 

written directly in the builder tool: in addition to metadata, a service section allows 

the user to define inputs, outputs, and functional behavior using an integrated Ace 

[85] code editor. 

 

 

Figure 5-4: A new entity section in the builder, with service and relationship sections. 

 

Once the user fills out the form, the tool can validate elements of the description 

before generating the final file. Required fields are marked as such, and will raise an 

error if left empty by the user—some of these checks may also be conditional, such 

as an SSID and password being needed only when “WiFi” is selected as the 

networking module. Similarly, the builder can ensure the formatting of special fields 

is correct, including numbers and IP addresses. After validation, the IoT-DDL is 

generated by collecting the form fields into a JSON object and converting it to the 

proper XML format, presenting the completed downloadable file to the user. 

5.2 DIY HEALTH IOT APPS 

The DIY Health IoT app development concept, introduced in chapter 4, utilizes the 

democratization features of the health architecture along with the IoT-DDL (detailed 

in the previous section) to create new Android apps utilizing existing thing services 
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on the fly. These apps offer a simple interface allowing the user to “concatenate” 

functionalities from different thing devices, specially tailored to their smart space 

and needs. To maximize utility and ease of use, the user should be able to define this 

functionality and generate the app directly from their mobile device. This section 

describes an implementation that meets this goal, focusing on a cloud-based service 

that can compile new IoT apps from a simple description provided by the user. 

 

 

Figure 5-5: The interface of a simple generated app. 

 

 Before choosing functionalities for a new app, the user must first be able to 

identify interaction possibilities in their smart space. Utilizing the service and 

relationship metadata tweets described in subsection 5.4.1, the user can visualize 

the capabilities of their smart space (through a special app implemented alongside 

the demo [77]) and select a subset to be made accessible and usable in their new 

app. These selected services will be executed in parallel, returning all results to the 

user (for example, the measurements from a pulse oximeter and temperature sensor 

will be concatenated into a single result, but the two devices do not interact with 

each other). More advanced functionalities are represented by relationships, which 

chain services together by executing them in series and passing their results along. 
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Consider the example from chapter 4, where the results of the body weight scale’s 

service are passed as one of the inputs to the fitness app’s BMI service. These 

combinations of services and relationships allow users to represent a wide range of 

potential IoT apps and interactions. 

 

 

Figure 5-6: The XML manifest of the app shown in figure 5-5. 

 

Once the user selects the interactions to be included in their app, this information is 

transferred to a cloud-based service where an Android application binary (.apk) is 

compiled. The generator service accepts an XML-based manifest (an example is 

shown in figure 5-6) describing the desired services and relationships, and uses it to 

modify an IoT app skeleton (a basic Android application project). The implementation 

achieves this through a Python-based templating engine that fills in the needed parts 

of the app, including the Android manifest (the application name, etc.), the user 

interface layout, and the main activity logic that invokes the services in the proper 

order. Note that, as relationships are handled as metadata on thing devices, the app 

itself handles calling the inner services based on the rules of that relationship type 

[44]. The interface is represented within an Android LinearLayout [86] (for a single 

column form-style input) and uses an appropriate widget type (text field, slider, etc. 

based on the input type) with a label specified by the IoT-DDL input descriptions for 

each input. The app functionality is initiated with a button placed below the fields, 
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while results are displayed in a popup. A generated app, such as that shown in figure 

5-5, can then be built, downloaded, and installed directly to the user’s mobile device. 

5.3 MOBILE APPS AS THINGS 

Treating mobile apps like traditional thing devices is another important concept that 

can facilitate high IoTility interactions within a smart space. This section describes 

the implementation of the actionable keywords (AKW) programming enabler 

introduced in chapter 4, which directly works towards this goal. In addition to new 

inter-thing interactions, fully supporting this concept requires careful consideration 

of how a mobile app’s interface might expose such new features, as well as how a 

mobile developer can empower their non-IoT apps with minimal difficulty or 

confusion. The following subsections discuss the AKW framework from each of these 

perspectives, detailing the thing runtime, mobile application framework, and a utility 

that assists ordinary developers in adding these thing capabilities to existing app 

development projects. Amongst the wide variety of mobile frameworks and 

development environments available today, the implementation below focuses 

specifically on the Android platform and the Android Studio IDE [87]. 

5.3.1 THING ARCHITECTURAL COMPONENTS 

Within the Atlas Architecture health IoT layers, supporting thing-like mobile app 

interactions requires a thing device to listen for AKWs from the smart space and 

compare them against the services it offers. If a service matches the purpose and API 

parameters specified in the actionable keyword, the thing device can request that 

the mobile app “bind” to its service; this results in the appearance of new user 

interface elements within the app and allows the user to invoke the bound service 

directly. The mobile app is responsible for collecting the required input parameters 

of the service, which is called through a normal service invocation tweet (detailed in 

subsection 5.4.1). By utilizing the same method as a normal service interaction, any 

additional complexity on the thing side is minimized, and the AKW lifecycle is 
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contained within the mobile app logic (for example, if an actionable keyword is “un-

bound,” no additional action needs to be taken from the perspective of the thing 

device). These steps of advertising, binding, and invoking are illustrated in figure 5-7. 

 

 

Figure 5-7: The interactions between a traditional thing and an app-as-thing. 

 

In this interaction, the main responsibility of the thing device involves comparing 

keywords and input parameters with its available services. A received AKW, whose 

simplified JSON structure is shown in figure 5-8, contains a set of input types and 

names along with a set of keywords that relate to the desired interaction; these 

correspond to the service keywords and input descriptions defined in the IoT-DDL of 

traditional thing devices (specified in section 5.1). On initial receipt, the architecture 

uses the input types to filter out incompatible service APIs, and then compares the 

remaining services’ metadata with the AKW’s descriptive keywords. On sufficiently 

powerful devices, the two sets of keywords are compared with WordNet [88, 89], a 

lexical database that groups words into sets of synonyms and can provide a semantic 

similarity measurement between a pair of keywords. The required level of similarity 

can be controlled through a “match threshold” value specified in the service’s IoT-

DDL information: the architecture uses the Inverse Document Frequency (IDF) [90] 

measure to quantify the uniqueness or importance of individual keywords. Other 

more constrained thing devices can still participate in AKW interactions by directly 
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comparing keywords for equality. With the assistance of the developer plugin and 

keyword repository detailed in subsections 5.3.3 and 5.3.4, the chance for exact 

matches is greater: the developer can select keywords that are already present in the 

IoT-DDLs of existing thing devices. 

 

 

Figure 5-8: The abbreviated JSON Schema definition of an actionable keyword. 

 

Once a match is successful, the thing device prepares an AKW response for the app. 

The response contains the information needed to call the selected service—namely, 

the thing identifier and the service name. Additionally, the response specifies a 

descriptive label that can be displayed within the app interface (in the current 

implementation, this becomes the label of the placeholder button described in the 

next subsection). This label can be specified with an additional XML tag in the 

relevant IoT-DDL service block. Once the response is sent back to the source of the 

AKW, the MAAT-specific behavior of the thing device is complete; the thing is already 

prepared to respond to service invocations from the mobile app (or other devices). 

5.3.2 MOBILE APPLICATION LIBRARY 

To behave like a thing device and support the actionable keywords concept, a mobile 

app must be able to communicate with the smart space, interact with other devices, 

and bridge these elements with its non-thing components such as the user interface. 

Additionally, with the possibility of multiple apps acting as things, the mobile device 

itself becomes a “thing-of-things,” and must manage distributing interactions to its 
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child things (apps) as appropriate. To meet these needs, this implementation 

introduces an Android background service [91] to run the thing architecture 

components (to broadcast and receive AKW information), and a supporting 

framework allowing developers to expose these new capabilities in their apps (to 

augment the user interface with available thing services). 

 On the mobile device, the background service assumes the role of the 

Communication Engine in the traditional architecture. With the possibility of multiple 

apps-as-things on a device, a single application should not monopolize interaction 

with the smart space by networking on its own. Instead, one instance of the 

background service is shared between all apps, listening for incoming tweets and 

routing interactions to their appropriate destinations as Android IPC calls. In the 

context of actionable keywords, this service maintains a list of an app’s active AKWs, 

listens for binding responses, and sends API invocations when requested. However, 

the service is also capable of collecting metadata from the smart space or forwarding 

incoming service calls in more generalized app-as-thing interactions. The lifecycle of 

the service process is tied to the longest-living MAAT app; that is, it does not need to 

provide thing functionality once no thing-like apps are running. 

 

 

Figure 5-9: The components of the Android actionable keyword library. 
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Within the apps themselves, the actionable keyword library provides a custom 

“Actionable Layout” UI component that controls the appearance of the AKW input 

control, as well as an “AKW Manager” class that handles connecting to the 

background service and tracking the state of the layouts. These roles are illustrated 

in figure 5-9; Actionable Layouts register themselves with the manager, which uses 

their information to create AKWs and set up tweets with the background service. 

Note that the relationship between AKWs and Actionable Layouts may not be one-

to-one in some scenarios (such as the list view described in chapter 4). To handle 

this, the AKW Manager maintains an Android Observable [92] per AKW that is 

notified when a binding response is received from the background service. New 

layouts are automatically subscribed to the appropriate Observable as they are 

registered with the manager. 

 In the app’s interface, the actual context of an AKW interaction is 

represented by an Actionable Layout object. This custom view component extends 

the Android ViewGroup class [93] (similar to the standard Android classes 

FrameLayout and LinearLayout) and is intended to wrap around an existing view or 

widget that can expose thing-like functionality. Each layout requires the following 

information from the developer: 1) a list of keywords, 2) the descriptive names of the 

provided data, 3) the AKW input control (a button component), and 4) a data 

formatting callback (which converts layout info into JSON arguments), all of which 

can be specified either programmatically or through an Android XML layout (such as 

in figure 5-10). The layout places no restrictions or requirements on its child 

elements beyond the button component specified in the attributes. 

 

 

Figure 5-10: An ActionableLayout XML definition with its data formatting callback. 
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When initialized, the Actionable Layout passes these keywords and input 

descriptions (whose types can be deduced from the formatting function) to the AKW 

Manager singleton and sets the child button’s visibility to false. The invisible button 

still takes up space in the layout, meaning the rest of the interface remains 

unchanged. The layout also sets the button’s onClick callback to a stub function that 

invokes the specified formatter (shown in figure 5-10) and uses its JSON result to 

initiate a service call through the AKW Manager. This behavior is important, as the 

contextual data of an AKW is not necessarily constant, especially when multiple 

layouts represent the same keyword. The formatter function allows the developer to 

pull the data from their application logic without needing to interact with any 

internal AKW states or behaviors. Once initialized, the layout waits to receive a 

binding notification from the AKW Manager, before making the button visible and 

setting its label to the string specified in the request. 

 

 

Figure 5-11: The states over time (left to right) of a successful AKW search and match. 

 

The manner in which this button appears is also an important consideration. Given 

the relatively unusual form of interaction, user understanding is another important 

part of the actionable keyword concept—especially since the signs of an AKW are 

mostly invisible before a match is made. Depending on when the match is made, the 

user may miss interaction opportunities by navigating throughout the app too 
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quickly, or become confused when a UI element has changed since the last time it 

was viewed. Even when the user notices the moment of “pop-in,” such an event 

could easily lead to a feeling of “where did this button come from, and why?” 

To combat this, the implementation offers an alternative button behavior 

that overlays a progress bar-style animation on top of the button. In this case, the 

button is not hidden at the start (but still has no label) and can raise awareness to 

the ongoing search for compatible interactions. If enough time passes without a 

match and the progress bar fills completely, the button can then fade away to 

convey that no AKWs were found. While this method hints to the user that there is 

additional potential in an area of the UI, it comes with its own set of concerns. For 

example, a quick match may cause the progress bar to appear only briefly, confusing 

the user or making them feel like something was missed. Similarly, a completed 

progress bar (when no match is found) leading to the disappearance of an element 

may also be unexpected or confusing. While the progress bar has some advantages, 

this implementation focuses mainly on the simple “pop-in” behavior. Both methods 

are illustrated in figure 5-11: the first two list elements represent the “pop-in” 

behavior, and the third shows the stages of the progress bar. 

5.3.3 DEVELOPER PLUGIN 

 

Figure 5-12: The Android Studio plugin interface and keyword search view. 

 

Compared to the first apps-as-things demo [79], which used an app-wide set of 

keywords and capabilities along with interface elements provided by the thing, the 

actionable keywords concept places greater importance on the role of the app 



Chapter 5: Implementation Wyatt Lindquist 

 105 

developer. The app initiates these interactions (rather than the thing device as in the 

demo), meaning the mobile developer must consider in detail which elements can be 

used by the smart space while also describing the keywords and data they offer. 

Similarly, while the purpose of an app overall may not change over time, individual 

AKW requirements may need to be added or removed as features change or the UI is 

altered. These aspects increase the burden on the developer, who may not be very 

familiar with adding IoT functionality—a serious concern when one of MAAT’s goals 

focuses on simplifying these interactions. 

To ease the developer’s role and facilitate the creation of actionable 

keywords, the MAAT framework introduces an Android Studio IDE plugin. This plugin 

provides support in: 1) creating an Actionable Layout and specifying its fields, 2) 

choosing appropriate keywords and data formats, and 3) implementing the data 

formatting callback. To open the dialog, the developer simply selects an existing 

component with the layout XML that will be converted into an AKW. The plugin 

registers an Intention action [94] (the “lightbulb” pop-up menu shown in figure 5-13) 

that provides the option to convert the selected layout to an Actionable Layout. In 

addition to accessing the dialog, the Intention also provides context (a position in the 

file), allowing the plugin to retrieve buttons within the layout (for the “With Button:” 

field in figure 5-12) and insert new XML tags in the correct location automatically. 

 

 

Figure 5-13: The ActionableLayout intention action provided by the plugin. 

 

Within the plugin dialog, the developer can fill out the needed AKW information 

using text fields or dropdowns as appropriate. The fields for keywords and data types 
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may also create an additional dialog (using the “Choose” button in figure 5-12), 

allowing the developer to search a repository of existing keywords (described fully in 

the next subsection) within the plugin and select directly from this information. 

Accepting the dialog wraps the selected layout element in an ActionableLayout tag 

with appropriate attributes, and creates a skeleton function for the data formatting 

callback within the specified Activity/Fragment class. This skeleton function initializes 

a JSON object with key names from the input data format, leaving the values to be 

filled in by the developer. 

5.3.4 KEYWORD REPOSITORY 

As mentioned above, the developer’s choice of keywords and data descriptions is 

critical to the successful functioning of the actionable keywords concept. For 

example, consider an extension of the scenario from chapter 4—the developer of the 

wellness app creates an actionable keyword with a “firmness” parameter, but a 

certain smart bed device is looking for a “softness” value instead. As long as the app 

developer is unaware of this specific smart bed and its parameters, a match cannot 

be made, even though both sides represent an interaction that is effectively 

equivalent. The keyword search of the AKW plugin aims to resolve these scenarios: 

imagine the developer searches for bed-related thing interactions, sees smart beds 

using the “softness” value, and adjusts their AKW definition to accommodate and 

enable the interaction. The keyword search can increase this probability of apps 

finding successful matches (compared to the developer making up keywords or 

choosing randomly). 

 The plugin’s search is backed by a cloud-based “keyword repository:” a 

simple database and web service that indexes thing services, keywords, and API 

parameter information. To populate this database, the repository is capable of 

scraping fields from existing IoT-DDL files (as described in section 5.1) that are 

uploaded to it, each containing fields that correspond directly to the information 

needed by an AKW, as well as human-readable metadata and long-form descriptions 

for the device and its services. Combined, this information allows developers to 
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search through existing thing information with their own terms and ideas (as shown 

in figure 5-12), while choosing keywords and data formats that are guaranteed to 

work with some variety of devices. While the repository does not inform the 

developer exactly which things should be supported by their app, it offers insight 

into potential thing interactions that may influence their keywords, the structure of 

their app, or the data they provide to better support a wide range of IoT devices. 

5.4 THING ARCHITECTURE COMPONENTS 

The Atlas Health platform integrates the concepts and features described above into 

the thing architecture and runtime introduced in chapter 4. The full feature set of 

the architecture, written mainly in C++, targets higher-capability embedded devices 

and single board computers (such as Raspberry Pi [74] or Intel Edison [95]), but also 

includes provisions for mid-power devices (such as ARM Mbed [26]). Various 

compilation flags can disable features such as IoT-DDL file loading (for devices 

without persistent storage) or microservices (which normally requires dynamic 

loading), instead using alternatives more appropriate for these constrained devices. 

This allows the architecture to support a wider range of devices without 

compromising on its more powerful features. 

 When an Atlas Health thing is initialized, the runtime begins by loading and 

parsing its IoT-DDL. This description, usually loaded from a file on the device, defines 

keywords and attachments, sets up API services, describes the device identity, and 

configures the various higher layer architecture components. A complete IoT-DDL is 

capable of fully initializing the thing device without needing additional information or 

intervention from the user. For devices without persistent storage (as mentioned 

above), the IoT-DDL may be embedded directly into the architecture during 

compilation; in this case, the build script selects a subset of information from a given 

IoT-DDL file and uses it to replace the parsing procedures with statically generated 

initialization code. This allows these devices to use an IoT-DDL in the same manner as 

more powerful things (at the expense of recompilation after any changes). 
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 While a thing device is running, many of its smaller architectural components 

also work towards enabling the requirements described in chapter 3. For example, 

the Interface and Communication Engine layer can further facilitate democratization, 

allowing services to be advertised and invoked through REST and MQTT protocols in 

addition to the native methods provided by the tweeting system. The following 

subsections expand on some of these smaller components and their roles in the 

requirements, focusing on tweets, microservices, and proxy interfaces. 

5.4.1 TWEETS 

Introduced in chapter 4, tweets are the main method of communication between 

Atlas Health things. An individual tweet is represented as a JSON object that can be 

sent within a UDP packet over the network. The different tweet types extend from 

the basic format shown in figure 5-14; this includes a tweet type, the sending thing, 

and a timestamp. The sender information consists of the thing’s ATID and SSID, as 

well as an optional thing name and smart space name for easy identification. The 

remaining tweet fields are dependent on the specific tweet type, which falls into one 

of two general categories: “broadcast” information-based tweets, and “unicast” 

request- or result-based tweets. 

 

 

Figure 5-14: The abbreviated JSON Schema definition of a generic tweet. 
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An information-based tweet sends thing metadata to the smart space over a 

multicast IP group. This includes vendor information, descriptions, and keywords 

parsed from an IoT-DDL, and can refer to the thing itself, its services and 

relationships, or an actionable keyword on a mobile device. On the other hand, a 

request-based tweet is sent directly to an individual thing over UDP to initiate or 

complete an interaction, including invoking a service, receiving the results of an API 

call, or binding to an actionable keyword. This category of tweet also includes a 

Receiver object for verification, which follows the same format as the Sender field. 

5.4.2 MICROSERVICES 

 

Figure 5-15: The structure of an entity bundle and its interactions with the runtime. 

 

The concept of “just-in-time API-ing”—enabling a service to be dynamically created 

based on its specification—is an important part of the IoT-DDL design. This decouples 

the thing’s behavior from its low-level implementation, allowing service logic to be 

defined and changed in the description without recompiling the architecture. To 

support such a feature, the architecture adopts a microservices pattern using the 

CppMicroServices [96] library. With this pattern, the services listed within an entity 

are compiled at runtime (directly on the thing device, assuming an appropriate 

compiler is available) into a bundle: a dynamically linked binary that exists 
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independently from the main thing architecture executable. This bundle can be 

loaded, unloaded, and reset on demand, allowing new behaviors to be created on 

the fly. Each entity bundle, shown in figure 5-15, follows a simple template that 

ensures the thing architecture is able to locate and execute its offered services. 

During generation of a given entity, each service defined in the IoT-DDL is 

translated to a complete C++ function (using its name, parameter info, and 

behavior), along with a separate “initializer” function defined in the entity’s top-level 

description; when a bundle is started, this initializer can perform one-time setup or 

configure an update loop as necessary. The generator also defines templated logic to 

register each service with the CppMicroSerivces context, such that incoming services 

calls can be dispatched to the appropriate function. Once this code is generated, the 

architecture invokes a build script that compiles the bundle before loading it into the 

runtime. After starting the new bundle and creating a thread to run its initializer 

function, the contained services are ready for interaction; service call tweets are 

forwarded to an entity bundle based on the received API name, where they can be 

validated (through another generated function created using the specified 

parameter ranges in the IoT-DDL) or executed as needed. Note that in scenarios 

where microservices are not supported, similar behavior can still be achieved by 

specifying an IoT-DDL at compilation time (as described in the beginning of this 

section). In this case, code is generated on the build machine in the same manner—

allowing it to be statically linked into the architecture binary before loading onto the 

thing. 

5.4.3 PROXY INTERFACES 

Proxy interfaces, introduced in chapter 3, allow a thing device to act as an additional 

host for another device’s behavior, exposing and augmenting their APIs or interface 

elements in a way that could not be achieved alone. This concept is especially 

important in the context of digital health, where many constrained devices use 

Bluetooth Low Energy (BLE) and thus only interact with a paired device (such as a 

smart phone). In the Atlas architecture implementation, a proxy interface 
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component allows BLE devices to advertise their services to an IP-based smart space 

through a more powerful thing with multiple radios or network interfaces. 

 

 

Figure 5-16: A proxy interface with one endpoint specified in an IoT-DDL. 

 

Within the IoT-DDL (detailed in section 5.1), an entity may represent this kind of 

external device. In this case, a proxy interface can be defined as part of its 

description, shown in figure 5-16. Within the interface, the device’s MAC address is 

specified along with a list of GATT attributes that should be made accessible to the 

entity. Each attribute defines a service-like name and the access mode (read, write, 

etc.), and can be specified by their handle or UUID. During service generation 

(described in the previous section), the proxy attributes are made into stub functions 

that interact with the BLE methods of the architecture’s interface layer. Integrated 

this way, normal services inside the entity can then call these methods like normal 

functions, re-exposing them to the smart space or integrating their functionality. 

5.5 SUMMARY 

This chapter detailed the implementation of the architectural components 

introduced in chapter 4, as well as the tools created to support them. First, the 

structure of the IoT-DDL XML description format was discussed, along with the 

functionality of the IoT-DDL Builder web application. Together, these components 

allow vendors, developers, and end users to describe their devices and define new 

services and behaviors in a standardized format that is flexible and open for later 

modification. A similar format is utilized in the implementation of DIY Health IoT 
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Apps, which allows an XML manifest created by the user to be converted into a 

native Android app through an external web service. 

 The chapter also described the implementation of MAAT and the actionable 

keywords programming enabler, both on the device side and the mobile application 

side. The app developer begins by creating a special layout element around the 

placeholder elements and context, using the MAAT IDE plugin. This defines the 

potential input arguments, the descriptive keywords (which can be selected from an 

online repository built from existing IoT-DDL information), and the interface element 

that will appear once a thing matches and makes a connection. A runtime library and 

service then handle the rest of these interactions and logic while the app is in use. 

On the device side, potential AKW interactions are transmitted as tweet messages, 

and established interactions are handled in the same manner as normal API calls. 

 Finally, the chapter elaborated on some individual features within the thing 

architecture itself. This includes the JSON format of the tweet messages and the IoT-

DDL fields involved in specifying a proxy interface, as well as the details of the API 

and service subsystem. On powerful platforms, services are represented as 

microservices, generated from the IoT-DDL and bundled with their parent entity (the 

hardware or software element that provides their functionality). This allows services 

to be both specified dynamically and managed independently. On more constrained 

platforms, the architecture also supports the static compilation of these service 

behaviors without additional effort from the developer. These implementations, 

along with those of the IoT-DDL and mobile app features, are used as the basis for 

the experiments described in chapter 6. 



  

  

CHAPTER 6: EVALUATION 

This chapter evaluates of a selection of the feature implementations presented in 

chapter 5. Each experiment described below considers an implementation detail of 

the architecture from a different point of view, from performance evaluation to user 

acceptability. Overall, the experiments aim to use these architectural components in 

analyzing the relevance and feasibility of the requirements presented in chapter 3. 

Section 6.1 evaluates a selection of performance metrics relevant to the actionable 

keyword feature. Section 6.2 presents a developer case study evaluating the tooling 

developed for the Mobile Apps As Things concept. Section 6.3 investigates a variety 

of commercial health devices in order to develop a representative scenario 

evaluating democratization concepts. Finally, section 6.4 focuses on the performance 

feasibility of the remaining safe use, IoTility, and identity requirements through a set 

of representative behaviors running on a prototypical thing device. 

6.1 EXPERIMENT I: AKW LATENCY AND RESPONSIVENESS 

The actionable keyword programming enabler, detailed in chapter 5, introduces a 

new way to integrate arbitrary thing capabilities into existing mobile app interfaces 

to realize the concept of Mobile Apps As Things (MAAT). When an actionable 

keyword is bound, the app’s interface adjusts dynamically to expose a new thing 

interaction opportunity to the user. As this occurs simultaneously with normal use of 

the app, metrics such as the processing time of the adjustment become significant: 

can these interface changes (which may not be anticipated) resolve quickly enough 

to be effective as the user navigates throughout the app? This section presents a set 

of measurements to quantify this concept of responsiveness, along with experiments 

to evaluate an app using AKWs in a variety of representative scenarios. Finally, these 

results are analyzed to determine the feasibility (in terms of runtime performance) of 

these dynamic interface changes and the actionable keyword concept as a whole. 
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6.1.1 GOALS 

As mentioned above, the elapsed time between broadcasting an actionable keyword 

and the appearance of its corresponding interface element is critical. While metrics 

such as battery usage and processing power are important in all mobile applications, 

this latency measurement has the greatest effect on the immediate user experience: 

as each AKW is tied to a specific piece of the app UI (local to a single “view”—an 

Activity or Fragment [97] in Android), the overall visibility of a MAAT interaction is 

temporary (and possibly brief) depending on how the user navigates throughout the 

app. In a given scenario, an interface change with high latency may be at best 

confusing or annoying, and at worst missed entirely. Therefore, the time needed to 

broadcast and process an AKW should be minimized for an optimal interaction. 

 However, defining a maximum acceptable latency is not straightforward; the 

exact duration that constitutes “too long” or “fast enough” will likely vary depending 

on an individual user’s perception as well as the design of the app itself (such as how 

much information is present in each relevant interface). For the following 

experiments, this thesis considers latencies below one second to be acceptable; in 

this range, changes occurring within 100 milliseconds are perceived to be 

instantaneous, and larger delays are noticeable but well within tolerable times [98] 

[99]. Note also that a default Android transition lasts for 220 milliseconds [100]—

therefore, any interaction occurring within this time will have no perceived delay. 

Using these metrics, the experiments below attempt to answer the following 

questions: 

 

• Is the time needed to discover and activate a single AKW acceptable? 

• Can an app effectively support multiple AKW opportunities simultaneously? 

• Do AKW broadcasts originating from other apps affect overall latency? 
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6.1.2 SETUP 

To perform these experiments, a set of benchmark scenarios were developed using 

two representative thing devices—one a platform for hosting MAAT apps, and the 

other a physical device that resembles a “real-life” hardware thing. A Nexus 9 tablet 

(2.3 GHz CPU and 2GB RAM) running Android API 23 was used as the MAAT platform, 

while an Intel Edison development board (500 MHz Atom CPU and 1GB RAM) [95] 

was chosen as the physical thing. These devices were connected to the same WiFi-

based private network, with the hardware thing running the Atlas architecture and 

configured to offer a single service described by three keywords. Using this 

configuration, each device performs no additional tasks—the smart space network 

activity consists only of AKW interactions and standard metadata tweets. 

 On the MAAT platform, three simple AKW-enabled apps were developed to 

evaluate different use cases. Each app presents a unique configuration of AKWs to 

best fit the goals of a specific scenario, defined as follows: 

 

• The Simple App consists of a single AKW (a layout containing a text view and a 

button) represented by two descriptive keywords, designed to bind 

successfully with the service offered by the physical thing.  

• The List App uses the same AKW as the Simple App, but instantiates it within 

a list view. Here, the app displays between 2 and 10 rows of the same AKW 

layout—when the AKW is bound, all rows update in response.  

• The Complex App sets up a large number of unique AKW layouts (between 4 

and 20 following the format of the Simple App AKW) organized in a grid, each 

targeting a separate service instance on the physical thing. 

 

Each benchmark scenario aims to calculate the overall latency, referred to as 

activation time, under these conditions. In the following subsection, this activation 

time is broken into three measurements based on the lifecycle of an AKW: 1) 

Opportunity Discovery, a summation of the network transmission times needed to 
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send an AKW tweet and receive a bind response, 2) Keyword Match, the time 

required by a thing to compare an AKW’s descriptive keywords with those of its 

services, and 3) UI Update, the period an Android app spends between invalidating 

an AKW layout and redrawing its interface elements. These values are measured 

directly (using System.nanoTime [101] on Android and std::chrono::system_clock 

[102] on Atlas), except for Opportunity Discovery, which is equivalent to the app’s 

network round trip time for an AKW interaction minus the target’s Keyword Match 

time. 

6.1.3 DATA 

The first scenario uses the Simple App to calculate the activation time of a single 

AKW. This aims to determine a lower bound for the latency of a potential MAAT 

interaction, where each device performs the minimum amount of work necessary to 

treat an app as a thing. Such a lower bound represents the most ideal perceived 

delay a user may experience. Figure 6-1 shows the average activation time over 100 

AKW events: here, Opportunity Discovery is responsible for a majority of the time 

taken, while in comparison, the Keyword Match and UI Update times are minimal. 

 

 

Figure 5-1: Segmented activation time for a single actionable keyword. 
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Figure 6-2: UI update time for multiple instances of the same actionable keyword. 

 

The next scenario focuses on the performance of the MAAT Android library; namely, 

the ActionableLayout logic and behavior. Using the List App, the UI Update time is 

recorded while varying the number of active list rows. This represents the time 

needed for a layout to register its binding and to draw any new elements (the 

buttons). Since a single AKW is always used, only the UI Update time will increase as 

more instances are shown. Figure 6-2 shows the average update time over 100 

interface bindings for each row count—as the number of active layouts increases, so 

does the time taken, until leveling off at around 8 list rows. This is because rows 8-10 

reside outside the list’s view bounds and will only update once visible to the user. 

 

 

Figure 6-3: Processing multiple actionable keywords with only one match.
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The third scenario considers the effect that “background” tweets (that is, other AKW 

messages that will find no matches within the user’s smart space) have on a thing 

device and on activation time. This scenario configures the Complex App such that 

only one AKW will match on the physical thing device, while the others must still be 

received and compared before being rejected. As with the previous figures, figure 6-

3 shows the averages of 100 AKW events for varying numbers of broadcast tweets. 

The additional network load has a reasonable effect on the thing device, increasing 

Opportunity Discovery times as well as Keyword Match times. These increases are 

somewhat limited, however, as the Atlas architecture multithreads the receipt and 

comparison of AKW messages. 

 

 

Figure 6-4: Processing multiple actionable keywords where all are matched. 
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Complex App is configured to match all of its AKWs evenly across four physical things 
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that because each physical thing receives and processes AKWs independently, only 

the total activation time of the set is shown; this represents the time between 
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also show a steady increase as more AKWs are activated, with each taking slightly 

more time than the equivalent configuration in figure 6-3. 

6.1.4 CONCLUSION 

Overall, the latency actionable keyword concept remains acceptable (under one 

second, as defined in subsection 6.1.1) across a variety of situations. The first 

scenario shows a basic AKW interaction takes about 370 milliseconds at best, or 

about 150 milliseconds in addition to a regular Android view transition (rather close 

to being perceived as instantaneous). The networking capabilities of the thing 

devices play a significant role in this benchmark—the speed at which tweets can be 

exchanged has the greatest effect on perceived latency. The second scenario shows 

that Android AKW library is also quite performant; changes received from the smart 

space can be reflected within the interface almost immediately. For example, AKW 

layout changes propagate in about 2 frames (33 milliseconds) at 60 frames per 

second, even with many active instances. 

 This performance persists even under more demanding conditions, such as 

those described in the remaining scenarios. The third scenario shows that latency 

remains under 500 milliseconds even when many AKWs are being broadcast to the 

smart space (such as those from other apps or devices). Here, the thing device again 

plays a large role in the perceived latency, as the Keyword Match time steadily 

increases in addition to the Opportunity Discovery. The final scenario shows that 

even in an unlikely scenario (20 AKW layouts filled almost the entirety of the Android 

tablet’s screen), latency remains around 500 milliseconds—while an app may define 

many keywords, the number visible in a single interface is likely to be less. Since 

offscreen AKWs have less impact as they update at a slower rate (described in the 

previous subsection), latency is likely to remain reasonable across most loads. 
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6.2 EXPERIMENT II: MAAT PLUGIN EVALUATION AND USER STUDY 

In addition to the user-facing performance of the MAAT framework and its 

interactions with thing devices (as evaluated in section 6.1), this thesis also places 

emphasis on the app developer’s role in the creation of mobile app things. The 

Android Studio IDE plugin, described in chapter 5, derives from this emphasis and 

attempts to simplify the process of adding IoT features to existing mobile app 

projects. Here, Android developers without extensive IoT experience are the primary 

target: how useful is such a plugin in this case? This section presents a user study to 

evaluate how developers use the plugin in a variety of mock IoT scenarios, which are 

then quantified into a set of usability metrics to describe the utility of the plugin in 

more objective terms. Finally, a survey is used to assess developers’ personal 

satisfaction with the plugin and the concept overall. 

6.2.1 GOALS 

As described in chapter 4, the MAAT concept places higher expectations on the app 

developer compared to previous designs; to be effective, individual interface 

elements must be manually identified as IoT interactions and paired with carefully 

chosen descriptive keywords. With these more specific requirements, simplifying and 

integrating the concept into normal app development processes becomes critical 

when considering ease of use and adoption amongst app developers. The IDE plugin 

aims to fill this role, prompting the developer for structured information and 

keywords, which are used to generate appropriate logic and interface code 

automatically. All of the steps needed to create a new AKW and associated layout 

are contained within this plugin, such that developer can add MAAT features to an 

app without missing or forgetting components. 

 While the plugin sets up this streamlined process, it still requires developers 

to understand all of the information needed for an AKW interaction—not much can 

be deduced or inferred by the system. For example, even with the keyword 

repository detailed in chapter 5, developers must still accurately search for relevant 
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thing devices when choosing keywords. Considering this, the following experiment 

presents a set of development tasks involving AKWs and MAAT, along with metrics 

based on the time taken and number of errors made, to evaluate how effectively 

developers use the plugin while creating a thing-like app. A second part of the 

experiment complements these tasks, using a survey to quantify developer 

satisfaction and plugin usability. Overall, this experiment attempts to determine how 

well the plugin fits into a typical app developer’s development process. 

6.2.2 SETUP 

To perform this experiment, eight participants with varying levels of experience in 

Android development and Android Studio were recruited. These developers, mainly 

coworkers and acquaintances, all had at least some experience with developing 

traditional android apps in a either a personal or professional capacity. Prior to the 

experiment, each participant was given a short explanation the MAAT framework 

along with some brief plugin documentation. For the study itself, each participant 

was asked to complete three timed development tasks with increasing complexities, 

summarized in table 6-1. The first task provides the developer with a pre-made app 

and interface, a portion of which must be converted into an AKW layout. The second 

task requires the developer to create a new interface with two separate AKWs of 

their choice. Finally, the third task introduces another pre-made app, this time with a 

list view and data adapter. Here, the developer must integrate an AKW into the list, 

such that each row contains its own instance. After completing these tasks, each 

participant was asked to complete an online survey, with metrics ranging from how 

easily the plugin is used, to how well the plugin fits into an existing workflow. 

 

Table 6-1: MAAT usability study task descriptions. 

Task Description Expected Duration (minutes) 

1 Create a simple AKW 5 

2 Create two AKWs in a single interface 10 

3 Use list data to create an instanced AKW 15 
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To evaluate the experience of each participant, the time taken to complete each 

task, along with any questions or errors encountered, was recorded. These 

measurements are then converted into three usability metrics derived from the 

ISO/IEC 9126-4 Usability Standard [103]: 

 

• Effectiveness represents the accuracy and completeness with which the 

developers were able to achieve the specified goals. This calculation is 

reflected below. 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑎𝑠𝑘𝑠	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑎𝑠𝑘𝑠	𝑢𝑛𝑑𝑒𝑟𝑡𝑎𝑘𝑒𝑛 	𝑥	100										(1)	

• Efficiency describes the resources expended in relation to the effectiveness of 

the developers. Efficiency is measured in terms of task time (the time in 

minutes a participant takes to complete a task successfully). This can be 

computed either as the time-based efficiency or the Overall Relative Efficiency 

(ORE), both shown below. ORE represents the ratio of the time taken by 

participants who successfully complete a task to the time taken by all users. 

𝑇𝑖𝑚𝑒	𝐵𝑎𝑠𝑒𝑑	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 	
∑ ∑

𝑛@A
𝑡@A

B
@CD

E
ACD

𝑁𝑅 				𝑎𝑛𝑑				𝑂𝑅𝐸 = 	
∑ ∑ 𝑛@A𝑡@AB

@CD
E
ACD

∑ ∑ 𝑡@AB
@CD

E
ACD

		(2) 

Where:  
N = the total number of tasks 
R = the total number of users 
nij = the result of task i by the user j; where success = 1, else = 0 
tij = the time spent by user j to complete task i successfully, or until quitting 

 

• Satisfaction represents the comfort and acceptability of the plugin. This is 

measured through a standardized questionnaire administered after the tasks 

are completed. 



Chapter 6: Evaluation Wyatt Lindquist 

 123 

6.1.3 DATA 

The results of the tasks, measuring effectiveness and efficiency, are shown below in 

table 6-2. Apart from Task 1, the tasks were completed either within the allocated 

time or much sooner. The discrepancy with Task 1 can be attributed mainly to the 

initial unfamiliarity with the MAAT framework in general. While participants 

understood the initial documentation, some hands-on guidance with the concepts 

was often needed initially. However, once the developers gained this intuition, few 

issues were encountered in future use. This is especially prevalent in Task 2, where 

the concepts from Task 1 could be applied directly. Task 3 was the most complex, 

introducing a new concept and mixing in some traditional Android development, but 

overall was completed around the expected time. The participants encountered 

eight errors total, for an average of one error per three tasks. Most errors in Task 1 

resulted from the unfamiliarity described above, while Task 3 errors related to the 

one-to-many AKW concept and “connecting” this to the list data. 

 

Table 6-2: MAAT usability study task results. 

Participant Task 1 Time (# Errors) Task 2 Time (# Errors) Task 3 Time (# Errors) 

1 8 minutes (1 error) 4 minutes (0 errors) 10 minutes (0 errors) 

2 12 minutes (1 error) 7 minutes (0 errors) 14 minutes (1 error) 

3 10 minutes (0 errors) 5 minutes (0 errors) 10 minutes (0 errors) 

4 10 minutes (0 errors) 6 minutes (0 errors) 14 minutes (1 error) 

5 5 minutes (0 errors) 4 minutes (0 errors) 12 minutes (1 error) 

6 10 minutes (1 error) 6 minutes (0 errors) 16 minutes (0 errors) 

7 6 minutes (0 errors) 5 minutes (0 errors) 15 minutes (1 error) 

8 10 minutes (1 error) 4 minutes (0 errors) 11 minutes (0 errors) 
 

All of the participants were able to complete their tasks successfully; therefore, only 

the tasks done without error are considered successful when calculating the 

effectiveness of the MAAT plugin—these results are shown in table 6-3. This same 

metric is used when calculating the efficiency of the plugin; using the Overall Relative 



Chapter 6: Evaluation Wyatt Lindquist 

 124 

Efficiency method described above, the efficiency equals (119/214), or 56%. This 

figure is relatively low due to treating tasks with any error as unsuccessful, especially 

considering the need for familiarity mentioned previously. For example, if the errors 

from Task 1 are discounted, the ORE jumps to 74%. 

 

Table 6-3: Calculated effectiveness of the MAAT plugin. 

Task Computation Effectiveness Average Effectiveness 

1 4/8 50%  

2 8/8 100% 67% 

3 4/8 50%  

 

 

Figure 6-5: MAAT satisfaction survey results.

 

Finally, figure 6-5 shows the average results of the participants’ responses to the 14 

questions of the developer satisfaction survey. Almost 88% of the participants felt 

the plugin was easy to use, and a similar number felt they could complete their work 

effectively using the plugin. Importantly, most participants believe they would not 

have to significantly alter the way they worked to use the plugin. Only two questions 

on the survey received a weighted score less than 4 out of 6; most participants felt 

0 1 2 3 4 5 6

It	was	simple	to	use	this	plugin

I	can	effectively	complete	my	work	using	this	plugin

I	feel	comfortable	using	this	plugin

It	was	easy	to	learn	to	use	this	plugin

I	believe	I	became	productive	quickly	using	this	plugin

The	plugin	gives	error	messages	that	clearly	tell	me	how	to	fix	problems

Whenever	I	make	a	mistake	using	the	plugin,	I	recover	easily	and	quickly

It	is	easy	to	find	the	information	I	needed

The	information	provided	for	the	plugin	is	easy	to	understand

The	information	is	effective	in	helping	me	complete	the	tasks	and	scenarios

I	like	using	the	interface	of	this	plugin

This	plugin	has	all	the	features	and	capabilities	I	expect	it	to	have

I	do	not	have	to	alter	the	way	I	normally	work	in	order	to	use	this	plugin

Overall	I	am	satisfied	with	this	system

Weighted	Average	Satisfaction	Scores



Chapter 6: Evaluation Wyatt Lindquist 

 125 

that the plugin did not provide clear error messages or facilitate quick recovery from 

mistakes. Overall, however, participants indicated they were satisfied with their use 

of the plugin. 

6.2.4 CONCLUSION 

Overall, most participants were able to successfully use the plugin, and reacted 

positively to the concept as a whole. However, the MAAT library has a noticeable 

“onboarding” period, highlighted by the times of Task 1. The lack of proper error 

handling and help messages (reflected in the results of the survey) likely contributed 

to this; while the plugin was mainly in the prototype stage, features such as proper 

error messages and in-plugin guidance should be a focus of the experience, and may 

have limited questions and task errors at this stage. Still, even with these roadblocks, 

most of the participants were able to get up to speed quickly over the span of three 

tasks and 30 minutes, and rated the interface and features of the plugin highly. 

 While the effectiveness and efficiency results are lower in comparison, this 

can be partially explained by the strict definition of a task error. During the tasks, 

participants could ask questions that would be marked as an error if the needed 

guidance was significant enough. Again, this is mainly seen in Task 1, where the most 

“hands-on” assistance was required. As described in the previous subsection, 

ignoring these errors results in a positive change to the overall effectiveness and 

efficiency results. Taking this into consideration, while still requiring some initial level 

of IoT and framework knowledge, the MAAT plugin appears to generally improve a 

developer’s ability to create new AKW interactions and enable thing-like features 

within their mobile apps. 

6.3 EXPERIMENT III: DEMOCRATIZATION IN MOBILE HEALTH APPS 

Democratization, introduced in chapter 3, refers to a thing’s ability to interact 

outside its vendor-supported software ecosystem. While a variety of open health- 

and IoT-related standards exist, many devices tend towards their own “siloed” 
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ecosystem, utilizing vendor-specific interactions and cloud services. This effect is 

most noticeable in mobile companion apps, where a user with many thing devices 

may begin to experience “app overload” [50] if they buy into a variety of 

manufacturer ecosystems. While these silos do come with some advantages 

(especially from the vendor’s point of view), how do they compare to an ideal 

democratized app? This section analyzes the behavior of commercial wellness and 

personal health IoT devices from a variety of manufacturers, recording a set of 

performance metrics. Similar measurements are then performed on a custom 

democratized app with the same capabilities, such that the results can be compared 

to assess the potential benefits of improved democratization in companion apps.  

6.3.1 GOALS 

Democratization is one of the four overarching health IoT requirements presented in 

this thesis. The requirement focuses on enabling flexible interactions across thing 

devices, but is also an important part of an effective companion app: even if a thing 

device supports democratized communication, an app with the same capabilities 

must exist to take full advantage of its features in a typical health IoT ecosystem. In 

practice, some vendors may utilize a low level of democratization by supporting their 

entire device lineup, along with a limited selection of third-party devices, within a 

single app. However, many follow a one-app-per-thing pattern that forces users to 

maintain a variety of mobile applications; here, a true democratized app has the 

greatest potential to limit this issue, even across vendors. 

 Democratized apps may also play a role when considering their resource 

consumption (such as memory usage, storage space, or background activity) 

compared to multiple vendor-specific apps. While this is likely not an issue on most 

modern mobile devices, other metrics such as battery usage may still be at a 

premium—especially when considering health apps are more likely to be used 

multiple times per day, or even continuously. In addition to the perceived benefits 

described in chapter 3, the following experiment attempts to quantify any 
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performance benefits that can be derived from a democratized mobile app versus 

multiple siloed apps. 

6.3.2 SETUP 

The following experiment uses a set of commercial health and wellness IoT devices, 

shown in table 6-4, to serve as the basis for comparison. These devices, each from a 

different manufacturer and with their own companion app, include a blood pressure 

cuff, a pulse oximeter, an electrocardiogram (EKG) device, and a sleep tracking mat; 

together, they cover a variety of health IoT ecosystems, functionalities, and 

communication methods. To prepare the devices, each was set up as a normal 

user—charging fully (when applicable), downloading the companion app, and 

creating an account if required—and paired with the experimental mobile device (a 

Google Pixel 3a running Android 10). 

 

Table 6-4: A breakdown of a sample of commercial health IoT devices. 

 

    

Device Pulse Oximeter Blood Pressure Cuff Sleep Tracker Electrocardiogram 

Brand iHealth Labs [104] A&D Medical [59] Withings [105] AliveCor [58] 

Model Air PO3 UA-651BLE Sleep Analyzer KardiaMobile 

Connectivity Bluetooth Low Energy Bluetooth Low Energy WiFi BLE/Microphone 

Proper Use Signal Strength Cuff Position N/A Signal Strength 

Device API Proprietary PCH Alliance [9] Proprietary Proprietary 

Mobile App iHealth MyVitals A&D Connect Health Mate Kardia 

Login Yes Optional Yes Yes 

Cloud API Yes Partners Yes No 

 

To represent an equivalent democratized app, a simple Android application capable 

of Bluetooth Low Energy (BLE) and WiFi communication was developed. This app is 

designed to interact with the same commercial devices as above, or with an 
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analogous simulation for those using proprietary interfaces. In this manner, the app 

implements the following interactions: 

 

• A blood pressure reading, obtained directly from the A&D Medical blood 

pressure cuff, as it conforms to the PCH Alliance guidelines [9]—readings are 

accessible through a standard BLE Health Data Profile (HDP) [11]. 

• An SPO2 reading, obtained via a simulated HDP “PLX Continuous 

Measurement,” as the iHealth pulse oximeter uses a proprietary BLE profile. 

This simulated reading models a previous interaction with the real device. 

• Sleep data, through a REST service that returns a chunk of simulated data 

based on the Withings service. The sleep mat is unique in that it passively 

records data overnight, using the app mainly for review on the next day. 

• An EKG reading, through a unique simulation: in addition to BLE, the Kardia 

device transmits the actual EKG as high-frequency sound decoded by the 

mobile device’s microphone. To simulate at least the collection of this data, 

microphone activity is recorded during the measurement, which is actually 

simulated by an HDP heart rate characteristic. 

 

Note that all apps (except for A&D Connect) also require the user to initially log in 

through their respective cloud services; however, the democratized app does not 

replicate these features. In both the commercial and democratized cases, each 

measurement is recorded for 30 seconds; this is the time required for the 

electrocardiogram and a reasonable average for the blood pressure monitor, while 

the pulse oximeter can operate continuously for any amount of time. The sleep mat 

again is an exception, connecting to the REST service only momentarily; however, 

this still represents a substantial amount of communication. Once measurements are 

obtained for all four services, performance and battery usage can be measured with 

the Android Debug Bridge batterystats [106] command. This command provides a 

dump of system events and a breakdown of power usage across the device’s 

hardware and applications, tracked by the Android operating system itself. 
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6.3.3 DATA 

For the commercial apps, each trial measured the power usage of a typical un-

democratized “session:” a single use of each device and its companion app, in 

sequence. Each vendor app was opened, used to perform and review a 

measurement (taking about 45 seconds total), and immediately closed, confirming 

any background processes were killed as well. For the democratized case, a similar 

pattern was followed—the app was left open for 3 minutes while its four 

measurements were performed in sequence. This ensures a similar amount of 

screen-on time for both cases, such that the display’s power usage does not skew the 

results. Additionally, the device was fully charged and set to 75% display brightness 

before each trial. 

 

 

Figure 6-6: Battery consumption in commercial and democratized health apps. 

 

Figure 6-6 shows the average results of 10 trials for each case, as well as the base 

“idle” consumption of the mobile device (screen off). These results show that under 

the same measurement conditions, the individual commercial apps consume about 

50% more energy than the single democratized app. In both cases, the energy usage 

of the communication hardware and screen is similar: most difference comes from 

the software itself. To further investigate, additional trials were performed using 
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each commercial app individually over 3 minutes. Figure 6-7 again shows the results 

across 10 trials—the energy consumption of each app, while similar, shows a 

correlation with the amount of additional network traffic performed. Therefore, the 

lack of cloud communication features must also play a role in the energy savings of 

the democratized app.  

 

 

Figure 6-7: Battery consumption and network traffic in individual commercial apps. 

 

6.3.4 CONCLUSION 

Overall, the democratized app exhibits a reasonable decrease in energy usage 

compared to the equivalent set of commercial apps. Much of the individual apps’ 

additional usage is likely due to the overhead of loading and switching between the 

four applications, whereas the democratized app only needs to be loaded once. 

Networking and cloud requirements also play a part, especially when interacting with 

three separate services in a single session. This is particularly evident when 

comparing the A&D Medical app in the second part of the experiment—without any 

user accounts or cloud services, the app consumes the least energy of the four. 

 While these differences are relatively small (about 5mAh between the two 

scenarios), these devices are meant to be used multiple times throughout the day (or 
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even continuously in some cases), where such numbers can begin to add up. For 

example, a user may take a set of readings five times a day; assuming the user is not 

perfectly efficient and takes an additional 2-3 minutes per use, this process would 

consume about 5% of the Pixel 3a’s 3000mAh battery. In another example, a user 

could be monitoring for potential COVID symptoms throughout the night using a 

continuous ring oximeter (such as Wellue O2Ring [107]) that repeats measurements 

automatically. Additionally, considering users with older phones containing batteries 

that are smaller or more worn out (unable to hold a full charge), this could easily 

account for over 10% of their daily use. Therefore, even with this relatively small 

difference, democratized apps can help limit any future impact as health IoT things 

become more common. 

6.4 EXPERIMENT IV: OVERHEAD OF HEALTH DEVICE REQUIREMENTS 

While the requirements introduced in chapter 3 present a variety of features with 

potential to increase the overall utility of a health IoT thing, many also come with 

new needs or expectations from the devices. For example, such expectations may 

come in the form of additional resources, communication capabilities, or software 

logic. While many of these are likely to be easily supported by the architecture, they 

still come with their own impacts and overheads. Especially when considering the 

variety of low-power things within a health IoT ecosystem, how does the overhead of 

these requirements compare to their presented advantages? This section presents 

and evaluates minimal implementations of three requirements—safe use, user 

identity, and IoTility (while the democratization element is evaluated in section 

6.3)—and benchmarks them against a basic health IoT device without these features. 

The impact of these performance measures can then be weighed against the 

potential benefits of the requirements. 
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6.4.1 GOALS 

As mentioned above, each of the architectural requirements introduce some form of 

additional behavior. For example, safe use requires extra logic when sensing and 

actuating, or even additional hardware components to detect improper use. User 

identity must manage multiple sets of data through software logic or storage space. 

IoTility, focusing on interactions between things, requires a variety of specialized 

networking and communication features from the architecture. Additionally, these 

requirements are likely to have varied impacts, depending on the needs and goals of 

the specific health device. With this in mind, the following experiments attempt to 

quantify the base performance overhead of the requirements, using a representative 

low-power health thing to benchmark an implementation of each. 

 When considering constrained devices, power usage is a primary concern in 

terms of performance metrics. This is especially true when considering the overhead 

of IoTility features, as network radios are often a major component of energy 

consumption. To collect these metrics, the experiments of this section consider each 

requirement in isolation, layering a representative implementation on top of a 

simple health IoT system (the low-power device described above, simulating a basic 

measurement service). This allows the impact of each to be measured without 

involving the other features of a complete health IoT architecture in the results. 

6.4.2 SETUP 

The following experiments use a Nordic nRF52840 [108] ARM-Cortex microcontroller 

dongle to represent the target low-power health thing. This family of devices is used 

in various smart watches and fitness bands, and offers connectivity and power-saving 

features that are common amongst similar systems-on-a-chip used in commercial 

health IoT devices. The device was programmed to act as a basic BLE continuous-

monitoring health thing, which performs a simulated reading at the rate of twice per 

second. Each of these readings is collected with minimal processing or validation 

before being sent out—this represents a device with minimal IoT architecture and 
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requirement support, and is used to record the baseline power usage. Each of the 

following representative requirements was then integrated into separate instances 

of the device firmware: 

 

• Safe Use: when considering safe use with continuous measurements, the 

reliability of a reading may change in real-time as the user shifts and moves. 

To ensure the accuracy of the measurement overall, the device may share 

additional parameters as feedback. For example, an EKG device may report 

the amount of skin contact on the electrodes, while a pulse oximeter may 

detect when the finger is not inserted far enough. To represent this scenario, 

algorithm 1 is used to simulate the collection of “proper use metrics” from 

the device’s hardware inputs (line 3). These additional values must be 

converted to an accuracy or validity measurement (line 4) by applying 

comparisons or calculations. These measurements are different from the 

actual readings offered by a device (obtained through get_measurement() in 

line 5). Finally, the proper use metrics can be packaged and displayed 

alongside the actual reading (line 5) or transmitted (line 6) to a companion 

app for further handling. In this experiment, and analog GPIO reading 

represent the safe use metric. 

 

 

Figure 6-8: The representative safe use algorithm. 

 

• User Identity: similar considerations must be made for the user identity 

requirement: before measurements begin, a device may need to be informed 
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about the active user. For example, a blood pressure monitor may accept a 

profile handle to store the user’s measurement history, while a body weight 

scale may request the user’s height to calculate BMI. Algorithm 2 implements 

an additional BLE service characteristic, allowing the user to provide 

additional information before the reading takes place (line 2). This may be 

used to verify the user, or to augment and associate the reading with more 

details (line 3). Once an identity is verified (likely for a limited time), 

subsequent device measurements (line 5) are “stamped” with the verified 

user info before transmission (lines 6 and 7). 

 

 

Figure 6-9: The representative user identity algorithm. 

 

• IoTility: device IoTility, on the other hand, is a much more demanding 

requirement in the context of a low-power Bluetooth device. For this case, a 

more blue-sky is adopted, where the device periodically searches for other 

BLE services it can use in addition to its normal capabilities. For example, 

instead of asking for identity parameters as in algorithm 2, the device can 

independently search for services offering these values. This scenario is 

represented in algorithm 3: the device initially acts as a BLE central, scanning 

for related services (line 2) and pulling identity information from any matches 

(line 3 and 4). Device readings can then be shared normally as a BLE 

peripheral (lines 5 and 6). This represents a simple IoTility scenario compared 

to those offered in chapter 3. 
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Figure 6-10: A potential device IoTility interaction. 

 

Finally, energy measurements for each experimental scenario are taken by powering 

the device with an external 5V source in series with a low-value shunt resistor. The 

voltage drop across this resistor—converted into a current measurement using 

Ohm’s Law—can then be used to calculate the power usage of the device over a one 

minute period. Note that unlike a real device, there is no additional load from 

supporting circuitry or measurement devices; the microcontroller is used with only a 

single on-board LED. 

6.4.3 DATA 

The results of these simulations over 10 trials are shown in figure 6-11. In this figure, 

each scenario is represented in two “states:” one where the device is actively 

advertising or scanning for the entire duration, and one where a discovery and 

connection occurs immediately. In all cases, the power consumption is less once a 

connection is established due to the properties of the BLE radio; broadcasting to the 

smart space requires more energy than sustaining a single connection. This 

difference is most significant in the IoTility scenario, which performs additional 

advertising procedures. 
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Figure 6-11: Power consumption in the different device requirement scenarios. 

 

Compared to the baseline, the impact of the safe use and user identity requirements 

is minimal in their respective scenarios. Together, these requirements represent 

potential for increased usage in hardware, processing, and networking; however, 

within the experiments, the increases due to additional service writes and analog-to-

digital conversions are only a small contribution. On the other hand, the impact of 

the IoTility scenario is more significant; the power cost of performing a BLE scan is 

greater in comparison to the baseline measurements. However, once a valid service 

is discovered, power usage decreases to better match the other scenarios. 

6.4.4 CONCLUSION 

Overall, these results show that the potential costs of the safe use and user identity 

requirements can be acceptable in low-power health devices. In fact, some of these 

features can already be found in some commercial devices (as noted in section 6.3). 

Still, this impact may be greater in real-life scenarios, depending on the components 

required to meet the goals of the thing. For example, a device using complicated 

calculations or additional power-hungry hardware (while monitoring proper use, for 

example) would experience a greater impact to power usage. Overall, however, the 
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minimal impact of these experimental scenarios leaves ample room for any 

additional overhead. 

 In comparison, device IoTility has a relatively high cost on such devices; 

searching for potential interactions requires significant energy unless performed 

sparingly (the experimental scenario uses a scanning duty cycle of 50%). In this case, 

inter-thing communications may not be feasible—beyond direct interaction with a 

paired controller or companion app—in low-power health devices. However, such 

devices may still support IoTility through other means, such as the proxy interfaces 

described in chapter 3. Alongside these low-power devices, more capable health 

things (such as mobile phones) are also common, and capable of “picking up the 

slack” with high-overhead features. 

6.5 SUMMARY 

This chapter presented a set of experimental evaluations designed to evaluate the 

architectural implementations of the overarching requirements, as well as the 

Mobile Apps As Things concept and actionable keyword programming enabler. One 

experiment considered the energy impact of the Democratization requirement in the 

context of companion mobile apps, comparing an idealized shared app against a set 

of individual commercial applications. While power consumption is low in both cases, 

the democratized app showed reduced energy usage and network activity for an 

equivalent workload. Another experiment investigated the performance impact of 

supporting the Safe Use, User Identity, and IoTility requirements on constrained 

hardware. While the representative Safe Use and User Identity behaviors had little 

impact on the power consumption of the device, that of the IoTility behavior was 

more significant; constrained devices would likely need other devices (such as smart 

phones) to assist in the support of this requirement. 

 For MAAT, this chapter considered the time latency involved in a complete 

AKW interaction: that is, the time between broadcasting keywords from the app and 

the new user interface element appearing. In all cases, involving a varying number of 
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devices and active AKWs, this latency remained within defined reaction times. These 

results showed that the user will be presented with new interactions quickly, 

reducing the potential for confusion or missed opportunities. Within MAAT, the IDE 

plugin was also evaluated through a small user study with Android developers. After 

creating a set of sample applications, each developer answered a questionnaire and 

was evaluated based on a set of success- and time-based metrics. Reception to the 

plugin was generally positive, although efficiency and effectiveness varied depending 

on the specific task. 

 The experiments in this chapter evaluate the overall impact that the 

requirements presented in chapter 3 have on a representative Atlas Health IoT 

device, along with some key ecosystem features that integrate closely with the thing 

architecture. These features and requirements have the potential to play a core role 

in a variety of health IoT scenarios and applications, bringing significance to their 

performance and usability aspects alongside the architecture itself. Still, many of the 

individual architectural features introduced in chapter 3 are open to additional focus 

and experimentation; this potential is discussed in the future work of chapter 7.



  

  

CHAPTER 7: CONCLUSION 

Health IoT is preparing to be a prominent force in the future landscape of personal 

health and wellness. Traditional medical devices with smart and connected features 

are opening up new opportunities in disease prevention and treatment, and 

empowering users outside of traditional healthcare settings. However, treating these 

devices as traditional IoT things is unlikely to utilize their full potential; a variety of 

healthcare scenarios introduce functional requirements that are unique or less of a 

focus in other IoT domains. To fully achieve the vision of health IoT and its role in 

future healthcare transformations, the influence of these requirements must be 

carefully considered from the perspective of stakeholders (including end users, 

developers, vendors, and healthcare providers), thing devices and services, and the 

greater healthcare ecosystem. 

7.1 THESIS REVIEW 

 This thesis focused on the role of a thing architecture—the firmware running 

on and interacting with these connected health devices—in this health IoT vision: 

what features and capabilities must a health IoT device provide to best support the 

specialized needs of personal health and healthcare delivery integration scenarios? 

To answer this research question (RQ2), alongside the other research questions 

presented in chapter 1, the thesis presented a set of requirements, or overarching 

features and concepts that reflect needs and priorities common amongst health IoT 

systems (answering RQ1). These requirements were considered from the perspective 

of a device’s software functionality, and then used to identify features that could 

contribute to the creation of effective health IoT applications and scenarios. Once 

identified, the thesis further investigated a selection of these requirement features, 

implementing and integrating them into a modern thing architecture and ecosystem 

(answering RQ3). Finally, these features were evaluated through a set of experiments 

to determine performance characteristics and other metrics (also answering RQ3) 
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that are likely to be relevant to future stakeholder groups (based on section 3.1.2’s 

discussion of RQ4). 

 Four overarching requirements were identified in this thesis: 

democratization, safe use, user identity and privacy, and a new concept called 

IoTility, describing a thing’s ability to enable safe and meaningful interactions with 

other things, devices, and users. The thesis focused particularly on democratization 

and IoTility, identifying a set of software features that could contribute towards 

meeting these requirements (RQ2). For example, shared APIs, flexible user 

interfaces, and data channeling were identified as important features within 

democratization, while IoTility introduced concepts on thing-like mobile apps, proxy 

interfaces, and incentivization (among others) as key components. 

Additionally, some of these features were integrated into the Atlas Thing 

Architecture—forming the Atlas Health IoT Architecture—to investigate a device 

architecture’s role in a health-ready IoT ecosystem (RQ3). In addition to the 

architecture itself, the concept of Mobile Apps As Things (MAAT), along with the 

actionable keywords programming enabler, was also introduced to better integrate 

and enable the capabilities of companion mobile apps. These apps, which control the 

behavior of a thing and interface it with the cloud, are ubiquitous in the context of 

present-day connected health devices. However, most of these apps are quite 

limited in the scope of the devices they support, and rarely allow for additional 

integration. The MAAT concept introduced in this thesis allows app developers (one 

group of important health IoT stakeholders) to easily integrate similar features and 

thing-like behaviors without requiring specific knowledge of the target devices. 

The thesis then described the implementation of these components in detail. 

This includes internal runtime features such as inter-device communication and a 

dynamic service model, the complete MAAT ecosystem, including an Android 

support library and IDE plugin, and modifications to the IoT Device Description 

Language (IoT-DDL). A new web-based tool was also introduced, allowing developers, 

vendors, and users (three main health IoT stakeholders) to visually create IoT-DDL 

files without requiring knowledge of the schema or its implementation. The self-
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documenting effect of the presented GUI-based tools (both the IoT-DDL Builder and 

the MAAT plugin) aims to simplify and encourage use amongst the stakeholders that 

can enable these new requirements (RQ4). 

Next, this thesis presented a set of studies and experiments to evaluate the 

concepts described above. One experiment evaluated the performance 

characteristics of actionable keywords and the MAAT concept, investigating how an 

end user may perceive the new UI functionalities and their overhead. Another 

experiment introduced a group of Android developers to the MAAT IDE plugin, 

evaluating its effectiveness and providing insight on its ease of use in creating new 

mobile apps with advanced thing-like functionality. Across all cases, the performance 

of MAAT remained promising, with latencies remaining well within the bounds of 

target reaction times, even with many active actionable keywords. Similarly, 

reception of the IDE plugin was quite positive amongst the participant developers. 

Given the prevalence of smartphones and companion mobile apps in the 

health IoT domain, MAAT represents an important component of the IoTility 

requirement while also showing some advantages of improved democratization. 

Mobile app developers can integrate new thing capabilities without programming 

around a specific device or ecosystem, potentially allowing vendors to design device 

interactions targeting specific apps (rather than the other way around), improving 

compatibility and flexibility between stakeholders. 

In a broader experimental scope, an additional evaluation aimed to 

determine the general feasibility of the four proposed requirements, in terms of 

performance (RQ3). This involved comparing the performance characteristics of 

commercial health IoT companion apps with a representative democratized app, as 

well as those of thing devices running structured implementations of the privacy, 

safe use, and IoTility requirements. Within a mobile device, the democratized app 

revealed potential for decreased power consumption compared to similar use of 

multiple, device-specific apps. On the other hand, while the safe use and privacy 

cases had limited influence on performance, the IoTility scenario displayed a greater 
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impact, dependent on the capabilities of the thing device and how it communicates 

with the smart space. 

These experiments reveal that democratization can also play a role in device 

performance, in addition to the perceived end user and ecosystem benefits. Such 

benefits provide additional reasoning for increased democratization, and may help 

further encourage these patterns amongst vendors. On the other hand, the impact of 

the safe use, privacy, and IoTility requirements is likely to be specific to individual 

thing scenarios, especially on more resource constrained devices. However, with 

increasingly powerful devices—such as smartphones—acting as the “center” of many 

interactions, IoTility can also be achieved through effective integration with the 

smart space and other thing devices. Overall, these considerations are likely to be 

critical to vendors and developers attempting to meet the specialized needs of 

health IoT through these requirements. 

7.2 LIMITATIONS AND FUTURE WORK 

Overall, this thesis presents a set of requirements that are believed to have a 

significant impact on a thing architecture’s potential within health IoT. While these 

requirements are argued to be an important base, one must again note the potential 

for additional requirements; the thesis does not attempt to provide an all-

encompassing set. For example, specialized health scenarios may reveal the need for 

additional or modified requirements alongside those presented previously; such a 

possibility opens up one avenue for future work, especially when considering 

accessibility and other scenarios where the end user’s needs may differ significantly. 

Similarly, when reflecting on the health device “tiers” presented in chapter 3, this 

thesis focuses on the needs of personal health devices: while the other tiers may 

utilize similar features, they may also necessitate additional requirements (especially 

when considering medical devices and their use cases).  

Additionally, the implementation does not provide the full scope of features 

described in chapter 3. Although all of the requirements are considered in the design 
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of the architecture, the final result focuses mainly on features relating to 

Democratization and Device IoTility, while providing a more general framework for 

other requirements such as Safe Use. Future work in this area may continue to build 

on the Atlas Health IoT architecture, introducing more concrete implementations of 

features such as User Identity and Privacy or Incentivization. Similar consideration 

extends to the evaluation, which is split between requirement performance metrics 

and an investigation into Mobile Apps As Things. New or existing requirements may 

be further validated through future work involving limited user studies with 

stakeholders such as patients and healthcare providers; such user-facing needs may 

not map directly to the requirements of a thing architecture like the ones presented 

in this thesis but would still provide insight into the needs and future of health IoT. 
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APPENDIX A: IOT-DDL SCHEMA DEFINITION 

<?xml version="1.0" encoding="UTF-8" ?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 
    <xs:annotation><xs:documentation> 
        This document describes the schema for the IoT Device Description 
        Language (IoT-DDL). This includes functional attributes (services, 
        network properties, etc.), as well as a variety of metadata fields. 
    </xs:documentation></xs:annotation> 
 
    <xs:simpleType name="identifier"> 
        <xs:annotation><xs:documentation> 
            An identifier is used to specify the machine-usable name of the 
            thing and space, as well as services, unbounded services, and 
            relationships. An identifier is almost always paired with a human- 
            readable identifier, called the "Name". 
        </xs:documentation></xs:annotation> 
        <xs:restriction base="xs:string"> 
            <xs:pattern value="[a-zA-Z0-9_]+" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="range"> 
        <xs:sequence> 
            <xs:element name="Lower_Bound" type="xs:integer" /> 
            <xs:element name="Upper_Bound" type="xs:integer" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:simpleType name="ipAddress"> 
        <xs:restriction base="xs:string"> 
            <xs:pattern value="((25[0-5]|2[0-4][0-9]|1?[0-9][0-9]?)(\.|$)){4}" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:simpleType name="address"> 
        <xs:union memberTypes="xs:anyURI ipAddress" /> 
    </xs:simpleType> 
 
    <xs:simpleType name="port"> 
        <xs:restriction base="xs:positiveInteger"> 
            <xs:maxInclusive value="65535" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="endpoint"> 
        <xs:sequence> 
            <xs:element name="Address" type="address" /> 
            <xs:element name="Port" type="port" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="authEndpoint"><xs:complexContent> 
        <xs:extension base="endpoint"><xs:sequence> 
            <xs:element name="Username" type="xs:string" /> 
            <xs:element name="Password" type="xs:string" /> 
        </xs:sequence></xs:extension> 
    </xs:complexContent></xs:complexType> 
 
    <xs:simpleType name="path"> 
        <xs:restriction base="xs:string"> 
            <xs:pattern value="(\/[a-zA-Z0-9_])+" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:simpleType name="keywords"> 
        <xs:annotation><xs:documentation> 
            Descriptive keywords are a core part of the IoT-DDL functionality. 
            These keywords are used to match service and relationship 
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            functionality, as well as to enable features such as MAAT. Because 
            a full keyword match looks for similar words and uses IDF, this 
            list should usually be short (less than 4). 
        </xs:documentation></xs:annotation> 
        <xs:restriction base="xs:string"> 
            <xs:pattern value="([a-z]+(\.|$))+" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="interval"> 
        <xs:sequence> 
            <xs:element name="Start_Time" type="xs:time" /> 
            <xs:element name="End_Time" type="xs:time" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:simpleType name="dataType"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="integer" /> 
            <xs:enumeration value="float" /> 
            <xs:enumeration value="string" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="parameter"> 
        <xs:sequence> 
            <xs:element name="Description" type="xs:string" /> 
            <xs:element name="Type" type="dataType" /> 
            <xs:element name="Range" type="range" minOccurs="0" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:simpleType name="hexadecimal"> 
        <xs:restriction base="xs:string"> 
            <xs:pattern value="0x[0-9A-F]+" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="metadata"> 
        <xs:annotation><xs:documentation> 
            Most types contain some form of metadata - therefore, many fields 
            extend from this type. That is, entities, services, relationships, 
            etc. will all require a name, ID, and optional description. Note 
            that any references to other elements (such as in relationships) 
            will always refer to the ID, not the Name. 
        </xs:documentation></xs:annotation> 
        <xs:sequence> 
            <xs:element name="ID" type="identifier" /> 
            <xs:element name="Name" type="xs:string" /> 
            <xs:element name="Description" type="xs:string" minOccurs="0" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="partMetadata"><xs:complexContent> 
        <xs:annotation><xs:documentation> 
            Physical parts (the thing and its entities) use this metadata. 
        </xs:documentation></xs:annotation> 
        <xs:extension base="metadata"><xs:sequence> 
            <xs:element name="Owner" type="xs:string" /> 
            <xs:element name="Vendor" type="xs:string" /> 
        </xs:sequence></xs:extension> 
    </xs:complexContent></xs:complexType> 
 
    <xs:simpleType name="thingType"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="Platform Thing" /> 
            <xs:enumeration value="Sensor Mote Thing" /> 
            <xs:enumeration value="Bit Thing" /> 
            <xs:enumeration value="Soft Thing" /> 
            <xs:enumeration value="Edge Thing" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:simpleType name="thingOS"> 
        <xs:annotation><xs:documentation> 
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            This enumeration represents the current platform support (full or 
            partial) the architecture offers. 
        </xs:documentation></xs:annotation> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="Raspberry Linux" /> 
            <xs:enumeration value="Debian Linux" /> 
            <xs:enumeration value="mbedOS" /> 
            <xs:enumeration value="Android" /> 
            <xs:enumeration value="Arduino" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="thingMetadata"><xs:complexContent> 
        <xs:extension base="partMetadata"><xs:sequence> 
            <xs:element name="Model" type="xs:string" /> 
            <xs:element name="Release_Date" type="xs:date" /> 
            <xs:element name="Type" type="thingType" /> 
            <xs:element name="Operating_System" type="thingOS" /> 
        </xs:sequence></xs:extension> 
    </xs:complexContent></xs:complexType> 
 
    <xs:complexType name="spaceConstraints"> 
        <xs:annotation><xs:documentation> 
            Space constraints currently are mostly metadata/descriptive. 
        </xs:documentation></xs:annotation> 
        <xs:sequence> 
            <xs:element name="Temperature" type="range" /> 
            <xs:element name="Humidity" type="range" /> 
            <xs:element name="Voltage" type="range" /> 
            <xs:element name="Interference_Radius" type="xs:positiveInteger" /> 
            <xs:element name="Temperature_Radius" type="xs:positiveInteger" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="spaceMetadata"><xs:complexContent> 
        <xs:extension base="metadata"><xs:sequence> 
            <xs:element name="Constraints" type="spaceConstraints" /> 
        </xs:sequence></xs:extension> 
    </xs:complexContent></xs:complexType> 
 
    <xs:complexType name="atlasMetadata"> 
        <xs:sequence> 
            <xs:element name="Thing_Metadata" type="thingMetadata" /> 
            <xs:element name="Space_Metadata" type="spaceMetadata" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:simpleType name="networkModule"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="WiFi" /> 
            <xs:enumeration value="Ethernet" /> 
            <xs:enumeration value="Bluetooth" /> 
            <xs:enumeration value="Bluetooth Low Energy" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:simpleType name="networkType"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="Built-In" /> 
            <xs:enumeration value="Attached" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:simpleType name="networkProtocol"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="IP" /> 
            <xs:enumeration value="MQTT" /> 
            <xs:enumeration value="REST" /> 
            <xs:enumeration value="CoAP" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="networkMetadata"> 
        <xs:sequence> 
            <xs:element name="Module" type="networkModule" /> 



Appendix A: IoT-DDL Schema Definition Wyatt Lindquist 

 158 

            <xs:element name="Type" type="networkType" /> 
            <xs:element name="Protocol" type="networkProtocol" /> 
            <xs:element name="WiFi_SSID" type="xs:string" minOccurs="0" /> 
            <xs:element name="WiFi_Password" type="xs:string" minOccurs="0" /> 
            <xs:element name="Multicast_Group" type="endpoint" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="atlasThing"> 
        <xs:sequence> 
            <xs:element name="Descriptive_Metadata" type="atlasMetadata" /> 
            <xs:element name="Administrative_Metadata" type="networkMetadata" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="protocolTopics"> 
        <xs:sequence> 
            <xs:element name="Root" type="path" /> 
            <xs:element name="MQTT_Client" type="path" /> 
            <xs:element name="Private_Broker" type="path" /> 
            <xs:element name="Tweet_ThingIdentity" type="path" /> 
            <xs:element name="Tweet_EntityIdentity" type="path" /> 
            <xs:element name="API" type="path" /> 
            <xs:element name="Interaction" type="path" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="protocolTranslator"> 
        <xs:sequence> 
            <xs:element name="Broker" type="authEndpoint" /> 
            <xs:element name="Topic" type="protocolTopics" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="attachments"> 
        <xs:annotation><xs:documentation> 
            The attachment section is optional; it contains endpoints to 
            external thing services that are on offer in the smart space. Of 
            interest is the App Generator, which is used for the DIY Health Apps 
            demo and examples. 
        </xs:documentation></xs:annotation> 
        <xs:sequence> 
            <xs:element name="App_Generator" type="endpoint" minOccurs="0" /> 
            <xs:element name="Log_Server" type="authEndpoint" minOccurs="0" /> 
            <xs:element name="Protocol_Translator" type="protocolTranslator" minOccurs="0" /> 
            <xs:element name="OMA_DM" type="authEndpoint" minOccurs="0" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:simpleType name="entityCategory"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="Software" /> 
            <xs:enumeration value="Hardware" /> 
            <xs:enumeration value="Hybrid" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:simpleType name="entityType"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="Built-In" /> 
            <xs:enumeration value="Connected" /> 
            <xs:enumeration value="Remote" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="entityMetadata"><xs:complexContent> 
        <xs:extension base="partMetadata"><xs:sequence> 
            <xs:element name="Category" type="entityCategory" /> 
            <xs:element name="Type" type="entityType" /> 
        </xs:sequence></xs:extension> 
    </xs:complexContent></xs:complexType> 
 
    <xs:simpleType name="proxyProtocol"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="BLE" /> 
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        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:simpleType name="proxyAddress"> 
        <xs:restriction base="xs:string"> 
            <xs:pattern value="([0-9A-F]{2}(\:|$)){6}" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:simpleType name="proxyAccess"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="Async" /> 
            <xs:enumeration value="Write" /> 
            <xs:enumeration value="Notify" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="proxyAttribute"> 
        <xs:sequence> 
            <xs:element name="Name" type="xs:string" /> 
            <xs:element name="Handle" type="hexadecimal" /> 
            <xs:element name="Access" type="proxyAccess" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="proxyInterface"> 
        <xs:annotation><xs:documentation> 
            A proxy interface (currently only BLE) represents an external 
            device that is incapable of running the thing architcture itself. 
            This proxy-ing thing will instead expose the listed interfaces as 
            its own services for use internally / by other things. 
        </xs:documentation></xs:annotation> 
        <xs:sequence> 
            <xs:element name="Protocol" type="proxyProtocol" /> 
            <xs:element name="Address" type="proxyAddress" /> 
            <xs:element name="Attribute" type="proxyAttribute" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="proxyInterfaces"> 
        <xs:sequence> 
            <xs:element name="Proxy_Interface" type="proxyInterface" minOccurs="0" 
maxOccurs="unbounded" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:simpleType name="serviceType"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="Action" /> 
            <xs:enumeration value="Report" /> 
            <xs:enumeration value="Condition" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="contextConstraints"> 
        <xs:sequence> 
            <xs:element name="Interval" type="xs:integer" /> 
            <xs:element name="Concurrent" type="xs:boolean" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="timeConstraints"> 
        <xs:sequence> 
            <xs:element name="Working" type="interval" /> 
            <xs:element name="Callable" type="interval" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="serviceInputs"> 
        <xs:sequence> 
            <xs:element name="Input" type="parameter" minOccurs="0" maxOccurs="unbounded" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="service"><xs:complexContent> 
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        <xs:annotation><xs:documentation> 
            A service's entire description is metadata, however, it is also 
            used to construct the service runtimes for the thing. The fields 
            used for this are "Input", "Output", and "Formula". 
        </xs:documentation></xs:annotation> 
        <xs:extension base="metadata"><xs:sequence> 
            <xs:element name="Category" type="xs:string" /> 
            <xs:element name="Type" type="serviceType" /> 
            <xs:element name="Keywords" type="keywords" /> 
            <xs:element name="Contextual_Constraints" type="contextConstraints" /> 
            <xs:element name="Temporal_Constraints" type="timeConstraints" /> 
            <xs:element name="Inputs" type="serviceInputs" /> 
            <xs:element name="Output" type="parameter" minOccurs="0" /> 
            <xs:element name="Formula" type="xs:string" /> 
        </xs:sequence></xs:extension> 
    </xs:complexContent></xs:complexType> 
 
    <xs:complexType name="entityServices"> 
        <xs:sequence> 
            <xs:element name="Service" type="service" minOccurs="0" maxOccurs="unbounded" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="unbounded"><xs:complexContent> 
        <xs:annotation><xs:documentation> 
            An unbounded service represents an external thing service (different 
            from a proxy interface, however, as this is a service running on a 
            device with the thing architecture). If any metadata of shared 
            services match, it can "bind", allowing it to be used by other 
            things and smart space users in relationships, etc. 
        </xs:documentation></xs:annotation> 
        <xs:extension base="metadata"><xs:sequence> 
            <xs:element name="Type" type="serviceType" /> 
            <xs:element name="Vendors" type="keywords" minOccurs="0" /> 
            <xs:element name="Keywords" type="keywords" minOccurs="0" /> 
            <xs:element name="Match_Value" type="xs:positiveInteger" /> 
        </xs:sequence></xs:extension> 
    </xs:complexContent></xs:complexType> 
 
    <xs:complexType name="entityUnboundeds"> 
        <xs:sequence> 
            <xs:element name="Unbounded_Service" type="unbounded" minOccurs="0" 
maxOccurs="unbounded" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:simpleType name="relationshipType"> 
        <xs:restriction base="xs:string"> 
            <xs:enumeration value="Control" /> 
            <xs:enumeration value="Drive" /> 
            <xs:enumeration value="Support" /> 
            <xs:enumeration value="Extend" /> 
            <xs:enumeration value="Contest" /> 
            <xs:enumeration value="Interfere" /> 
        </xs:restriction> 
    </xs:simpleType> 
 
    <xs:complexType name="relationship"><xs:complexContent> 
        <xs:annotation><xs:documentation> 
            A relationship is a metadata construct that defines links between 
            (unbounded) services to be used by external applications. 
        </xs:documentation></xs:annotation> 
        <xs:extension base="metadata"><xs:sequence> 
            <xs:element name="Establisher" type="xs:string" /> 
            <xs:element name="Type" type="relationshipType" /> 
            <xs:element name="Service_LHS" type="identifier" /> 
            <xs:element name="Service_RHS" type="identifier" /> 
        </xs:sequence></xs:extension> 
    </xs:complexContent></xs:complexType> 
 
    <xs:complexType name="entityRelationships"> 
        <xs:sequence> 
            <xs:element name="Relationship" type="relationship" minOccurs="0" 
maxOccurs="unbounded" /> 
        </xs:sequence> 
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    </xs:complexType> 
 
    <xs:complexType name="entity"> 
        <xs:annotation><xs:documentation> 
            An entity represents an entire "bundle" of service behaviors for a 
            single feature of the thing. All services within an entity share a 
            "context" of data and computation. Before services are created, 
            shared state can be set up in the "Entrypoint", which is a code 
            block in the style of a service's formula. 
        </xs:documentation></xs:annotation> 
        <xs:sequence> 
            <xs:element name="Descriptive_Metadata" type="entityMetadata" /> 
            <xs:element name="Entrypoint" type="xs:string" /> 
            <xs:element name="Proxy_Interfaces" type="proxyInterfaces" minOccurs="0" /> 
            <xs:element name="Services" type="entityServices" minOccurs="0" /> 
            <xs:element name="Unbounded_Services" type="entityUnboundeds" minOccurs="0" /> 
            <xs:element name="Relationships" type="entityRelationships" minOccurs="0" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="entities"> 
        <xs:sequence> 
            <xs:element name="Entity" type="entity" maxOccurs="unbounded" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:complexType name="ddl"> 
        <xs:sequence> 
            <xs:element name="Atlas_Thing" type="atlasThing" /> 
            <xs:element name="Thing_Attachments" type="attachments" minOccurs="0" /> 
            <xs:element name="Atlas_Entities" type="entities" /> 
        </xs:sequence> 
    </xs:complexType> 
 
    <xs:element name="IoT_DDL" type="ddl" /> 
 
</xs:schema>



  

  

APPENDIX B: MAAT USER STUDY CONSENT FORM 

 

 

Research Participant Consent Form 
 
 
PROJECT TITLES: MAAT Plugin USABILITY STUDY  

INVESTIGATORS: Wyatt Lindquist   

PARTICIPANT NAME: ___________________________________ 

                       TITLE: ___________________________________ 

 
 
I agree to participate in the project named above, the particulars of which have been explained to me.  I 
have read the Research Project Description a written copy of which has been given to me to keep. 
 
I understand that any information I provide is confidential, and that, subject to the limitations of the 
law, no information that could lead to the identification of any individual will be directly disclosed in 
any reports on the project, or to any other party.  
 
I agree to being: (tick as appropriate): 

 
o observed; 
o interviewed; 
o part of a focus group (questionnaire) 
 

 
I agree to the following data being collected: 
 
 o Time taken for me to complete specified tasks 
 o The amount of task completed (i.e. percent of task compled)  
 o Number of errors made per task; 

o Number of times I request for help to complete a task 
o Time needed for me to work around a task 
 

 
I also agree to the data above being used for later analysis by the researchers above only.  To preserve 
anonymity, I understand that all written work referring to this data will use pseudonyms for me unless 
written permission is later obtained. I also understand that direct access to the identity of participants is 
restricted to named researchers above only. 
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I acknowledge that: 
 
a) I have been informed that I am free to withdraw from the project at any time without explanation 

or prejudice and to withdraw data previously supplied. 
b) Participation in this project is voluntary. 
 
 

Signature: ___________________________ Date: _______________  
   (Participant) 
 

 


