

IoT Requirements and Architecture
for Personal Health

Wyatt Lindquist

This dissertation is submitted for the degree of

Doctor of Philosophy

School of Computing and Communications

Lancaster University, UK

December 2020

 ii

DECLARATION

I declare that the work presented in this thesis is, to the best of my knowledge and

belief, original and my own work. The material has not been submitted, either in

whole or in part, for a degree at this, or any other university. Any user research in

this thesis was conducted ethically and with consent.

Wyatt Lindquist

 iii

To my Mom & Dad.

 iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Sumi Helal, for his

endless support, guidance, and advice throughout my PhD research. I am truly

grateful to have met Prof. Helal in the University of Florida Operating Systems

course; he opened many doors for me, introducing me to the IoT research area and

giving me the amazing opportunity to complete my PhD degree at Lancaster

University. Prof. Helal’s knowledge and intuition regarding Health IoT and academics

in general is truly an inspiration, and will undoubtedly have a lasting impact on me.

 I would also like to thank Dr. Ahmed Khaled for working closely with me

throughout my PhD and introducing me to his own research in personal IoT, as well

as all of my colleagues in the School of Computing and Communication; I am grateful

to Dr. Gerald Kotonya, Dr. Jaejoon Lee, Dr. Chris Bull, Dr. Wenjie Ruan, Dr. Jiangtao

Wang, Dr. Mahsa Honary, Dr. Emma Wilson, and Wesley Hutchinson for their insight

and collaboration through the Lancaster Digital Health Group. I also would like to

thank my coworkers in Room C21, Dr. Roberto Rodrigues Filho, Dr. Abdessalam

Elhabbash, Dr. Vatsala Nundloll, Dr. Richard Basett, Dr. Irni Khairuddin, Paul Dean,

and especially Alex Wild, whose friendship made my time at Lancaster infinitely more

interesting and enjoyable.

 Finally, I would like to thank my family for their endless support throughout

my work, as well as my close friends in the United States for staying in touch despite

the difference in time and availability. In special, I would like to thank Nick Cioli for

working with me on all sorts of side projects and for keeping me sane during the

pandemic, Kevin Warren for always playing games or watching shows with me, and

Ian Calder for coming a great distance to visit me.

 Thank you all,

Wyatt Lindquist

 v

IoT Requirements and Architecture for Personal Health
Wyatt Lindquist

Submitted for the degree of Doctor of Philosophy

December 2020

ABSTRACT

Personal health devices and wearables have the potential to drastically change the

current landscape of wellness and care delivery. As these devices become

commonplace, more and more patients are gaining access to new forms of simplified

health monitoring and data collection, empowering them to engage in their own

health and well-being in unprecedented ways. Cheap and easy-to-use health IoT

devices are leading the transformation towards a continuum-of-care health system—

focused on detection and prevention—where health issues can be caught before

hospital care or professional intervention is needed. However, this vision is set to

outpace the expectations and capabilities of today’s connected health devices,

challenging existing ecosystems with unique requirements on functionality,

connectivity, and usability.

 This thesis presents a set of health IoT requirements that are especially

relevant to the design of a connected device’s low-level software features: its thing

architecture. These requirements represent shared concerns in health-related IoT

scenarios that can be solved with the features and capabilities of smart things. The

thesis presents an architectural design and implementation of concrete features

influenced by some of these requirements—leading to the Atlas Health IoT

Architecture—which explores the role of safe and meaningful interactions between

devices and users, referred to as IoTility. The thesis also considers the IoTility of

smartphone applications in health scenarios, called Mobile Apps As Things (MAAT),

resulting in a programming enabler that more closely integrates app features with

those of physical thing devices. Alongside these implementations, this thesis

presents a set of experimental evaluations investigating the feasibility of both MAAT

and the architectural requirements as a whole.

 vi

PUBLICATIONS

• Wyatt Lindquist, Sumi Helal, Ahmed Khaled, Gerald Kotonya, and Jaejoon Lee.

2019. MAAT: Mobile Apps As Things in the IoT. ACM Journal on Interactive,

Mobile, Wearable, and Ubiquitous Technologies, vol. 3 no. 4, article 143.

December 2019. Also presented as a full paper in the main track of the ACM

International Conference on Ubiquitous Computing (Ubicomp). Virtual,

September 2020.

• Wyatt Lindquist, Sumi Helal, Ahmed Khaled, and Wesley Hutchinson. 2019.

IoTility: Architectural Requirements for Enabling Health IoT Ecosystems. IEEE

Transactions on Emerging Topics in Computing.

• Wyatt Lindquist, Ahmed Khaled, and Sumi Helal. 2020. IoT-DDL: Device

Description Language for a Programmable IoT. International Conference on Smart

and Sustainable Technologies. Virtual, September 2020.

• Wyatt Lindquist and Sumi Helal. 2020. Requirements and Evaluation of a High

IoTility Health Device Ecosystem. Manuscript in preparation.

• Ahmed Khaled, Wyatt Lindquist, and Sumi Helal. 2018. DIY Health IoT Apps.

Demo Paper. Proceedings of the 16th ACM Conference on Embedded Networked

Sensor Systems (SenSys ‘18), pp. 406-407. Shenzhen, China, November 2018.

• Ahmed Khaled, Abdelsalam Helal, Wyatt Lindquist, and Choonhwa Lee. 2018.

IoT-DDL—Device Description Language for the “T” in IoT. IEEE Access, vol. 6, pp.

24048-24063.

• Ahmed E. Khaled, Wyatt Lindquist and Sumi Helal. 2018. "Service-Relationship

Programming Framework for the Social IoT." Open Journal of Internet of Things,

vol. 4 issue 1, pp. 35-53.

• Abdelsalam Helal, Ahmed Khaled, and Wyatt Lindquist. 2019. The Importance of

Being Thing Or the Trivial Role of Powering Serious IoT Scenarios. Proceedings of

the 39th IEEE International Conference on Distributed Computing Systems

(ICDCS), pp. 1852-1859. Dallas, Texas, USA, July 2019.

 vii

TABLE OF CONTENTS

Declaration .. ii

Acknowledgements .. iv

Abstract ... v

Publications .. vi

Table of Contents .. vii

List of Figures .. xi

List of Tables ... xiii

Chapter 1: Introduction ... 14

1.1 Motivation .. 15

1.1.1 Specialized Device Behavior ... 16

1.1.2 The Role of Thing Architectures ... 17

1.1.3 Health IoT Ecosystem Issues .. 18

1.2 Problem Statement .. 19

1.3 Thesis Scope and Structure ... 19

Chapter 2: Literature Review ... 21

2.1 Existing Health IoT Ecosystems ... 21

2.1.1 Commercial Ecosystems... 22

2.1.2 Device and Data Standards .. 24

2.1.3 Health Ecosystem Research ... 25

2.2 Future Health IoT Ecosystems ... 26

2.3 Generalized Thing Architectures ... 28

2.3.1 Programming Models .. 30

2.3.2 Thing Descriptions ... 31

 viii

2.3.3 The Atlas Thing Architecture .. 32

2.4 Health IoT Architectures ... 32

2.5 Summary .. 34

Chapter 3: Requirements for Health IoT .. 37

3.1 Methodology .. 38

3.1.1 System and Ecosystem Needs in Health IoT ... 39

3.1.2 Stakeholder Roles .. 40

3.1.3 Discussion .. 41

3.2 Choosing Architectural Requirements ... 42

3.3 Requirement I: Democratization ... 46

3.3.1 Shared APIs .. 47

3.3.2 User Interface .. 48

3.3.3 Channeling ... 49

3.3.4 Requirement Specification ... 50

3.4 Requirement II: Device IoTility .. 50

3.4.1 Relationships Between Things ... 53

3.4.2 Thing-Like Mobile Apps .. 54

3.4.3 Proxy Interfaces ... 56

3.4.4 Notifications and Reminders .. 57

3.4.5 Incentives .. 58

3.4.6 Requirement Specification ... 59

3.5 Requirement III: Safe Use ... 60

3.6 Requirement IV: User Identity and Privacy.. 62

3.7 Summary .. 64

Chapter 4: A High IoTility Health Architecture... 66

4.1 The Atlas Health IoT Architecture ... 67

4.1.1 The Atlas Thing Architecture .. 67

 ix

4.1.2 Adaptations for Health IoT ... 69

4.2 Expanding IoTility in the Health IoT Lower Layer ... 72

4.2.1 The Internet of Things Device Description Language 72

4.2.2 Thing Tweets ... 76

4.3 DIY Health IoT Apps .. 76

4.4 Mobile Apps As Things .. 79

4.4.1 Using Context in Mobile Apps .. 81

4.4.2 Actionable Keywords ... 84

4.5 Summary .. 87

Chapter 5: Implementation ... 89

5.1 Internet of Things Device Description Language ... 89

5.1.1 Structure .. 90

5.1.2 IoT-DDL Builder Web Tool .. 93

5.2 DIY Health IoT Apps .. 95

5.3 Mobile Apps As Things .. 98

5.3.1 Thing Architectural Components .. 98

5.3.2 Mobile Application Library ... 100

5.3.3 Developer Plugin .. 104

5.3.4 Keyword Repository ... 106

5.4 Thing Architecture Components ... 107

5.4.1 Tweets ... 108

5.4.2 Microservices ... 109

5.4.3 Proxy Interfaces ... 110

5.5 Summary .. 111

Chapter 6: Evaluation .. 113

6.1 Experiment I: AKW Latency and Responsiveness .. 113

6.1.1 Goals.. 114

 x

6.1.2 Setup ... 115

6.1.3 Data ... 116

6.1.4 Conclusion ... 119

6.2 Experiment II: MAAT Plugin Evaluation and User Study 120

6.2.1 Goals.. 120

6.2.2 Setup ... 121

6.1.3 Data ... 123

6.2.4 Conclusion ... 125

6.3 Experiment III: Democratization in Mobile Health Apps 125

6.3.1 Goals.. 126

6.3.2 Setup ... 127

6.3.3 Data ... 129

6.3.4 Conclusion ... 130

6.4 Experiment IV: Overhead of Health Device Requirements 131

6.4.1 Goals.. 132

6.4.2 Setup ... 132

6.4.3 Data ... 135

6.4.4 Conclusion ... 136

6.5 Summary .. 137

Chapter 7: Conclusion .. 139

7.1 Thesis Review ... 139

7.2 Limitations and Future Work .. 142

Appendix A: IoT-DDL Schema Definition ... 155

Appendix B: MAAT User Study Consent Form ... 162

 xi

LIST OF FIGURES

1-1: The Determinants of Health, a breakdown of health outcome factors [2]. 14

3-1: Stages of the chosen methodology, starting at the bold element. 38

4-1: Overview of the Atlas Thing Architecture [39]. .. 68

4-2: Block diagram of the Atlas Health IoT Architecture. .. 69

4-3: Generalized thing structure and major IoT-DDL components. 73

4-4: The components of an example hybrid thing. .. 74

4-5: Contextual information available within a mobile app. 81

4-6: The interaction between an app's actionable keyword and a thing service........ 85

5-1: The high-level structure of the IoT-DDL sections. .. 91

5-2: The basic structure of an IoT-DDL service definition. ... 93

5-3: The IoT-DDL Builder tool interface... 94

5-4: A new entity section in the builder, with service and relationship sections. 95

5-5: The interface of a simple generated app. .. 96

5-6: The XML manifest of the app shown in figure 5-5. ... 97

5-7: The interactions between a traditional thing and an app-as-thing. 99

5-8: The abbreviated JSON Schema definition of an actionable keyword. 100

5-9: The components of the Android actionable keyword library. 101

5-10: An ActionableLayout XML definition with its data formatting callback. 102

5-11: The states over time (left to right) of a successful AKW search and match. ... 103

5-12: The Android Studio plugin interface and keyword search view. 104

5-13: The ActionableLayout intention action provided by the plugin. 105

5-14: The abbreviated JSON Schema definition of a generic tweet. 108

5-15: The structure of an entity bundle and its interactions with the runtime. 109

5-16: A proxy interface with one endpoint specified in an IoT-DDL. 111

6-1: Segmented activation time for a single actionable keyword. 116

6-2: UI update time for multiple instances of the same actionable keyword. 117

6-3: Processing multiple actionable keywords with only one match. 117

6-4: Processing multiple actionable keywords where all are matched. 118

 xii

6-5: MAAT satisfaction survey results. .. 124

6-6: Battery consumption in commercial and democratized health apps. 129

6-7: Battery consumption and network traffic in individual commercial apps......... 130

6-8: The representative safe use algorithm. ... 133

6-9: The representative user identity algorithm. .. 134

6-10: A potential device IoTility interaction. ... 135

6-11: Power consumption in the different device requirement scenarios. 136

 xiii

LIST OF TABLES

2-1: Related works comparison. ... 35

3-1: Significance of requirements per defined tier. ... 45

6-1: MAAT usability study task descriptions. .. 121

6-2: MAAT usability study task results. ... 123

6-3: Calculated effectiveness of the MAAT plugin. .. 124

6-4: A breakdown of a sample of commercial health IoT devices. 127

CHAPTER 1: INTRODUCTION

Looking towards the future, diseases and health issues that are commonplace today

may soon become issues considered only in the past tense [1]. Changes towards this

end will likely be led by an increased focus on individual well-being and health

maintenance—shifting away from more traditional “reactive” intervention and sick

care [1]. Such individual and social factors are already shown to play a significant role

in one’s overall health, accounting for about 60% of a given outcome (compared to

11% by medical care and services) [2]. These future transformations are motivated

by a variety of factors, such as economics; emphasis on prevention may lead to

decreased healthcare spending as issues are caught before hospital care is needed.

One force in particular, however, plays a central role in this vision: technology.

Figure 1-1: The Determinants of Health, a breakdown of health outcome factors [2].

Personal health devices and wearables are one set of key technologies that are

anticipated to empower this transformation. These devices, along with a variety of

connectivity features and services, are building the Health Internet of Things (Health

IoT)—bringing with them new forms of streamlined data collection and simplified

health monitoring. With an ever-increasing number of cheap and easy-to-use devices

available, patients are more engaged in their own health and well-being than ever

before. Further connecting these devices and their data to healthcare delivery will be

Chapter 1: Introduction Wyatt Lindquist

 15

a major step towards a continuum-of-care system focused on detection and

prevention, compared to today’s treatment-focused point-of-care systems.

 While IoT and wearable technology carries this potential, one must first

consider if today’s offerings are ready to meet such goals. Many of these wellness

devices have grown alongside the personal IoT domain, taking inspiration from its

developments and successes—for example, many traditional medical tools have

joined the health IoT through the addition of connectivity features and cloud-based

services similar to those of consumer applications (such as home automation). While

these features empower the device’s ease of use and the patient’s access to data,

they may not be sufficient to satisfy the full vision of health IoT: these ecosystems

instead must be architected to meet new and unique requirements brought about by

this vision before a device can truly fulfill its role in future healthcare scenarios.

1.1 MOTIVATION

At first glance, connected health devices may look and even act similar to their

counterparts in other IoT domains; however, they also bring unique challenges

inherent to the health and wellness ecosystem. When considering the future of

healthcare as described above, various questions must be raised in regard to the

functionality of an ideal health thing:

• How can one ensure a health device is used properly?

• How can health data be validated and shared with healthcare professionals?

• How can health IoT ecosystems support a variety of IoT vendors and devices?

• How can health things interact with each other and the user to provide useful

information and functionality?

• How can users be empowered in managing their collection of health IoT

things, apps, and data more readily?

Chapter 1: Introduction Wyatt Lindquist

 16

These questions are only a sample of the many that must be answered as health IoT

devices evolve and become commonplace. Analyzed from the perspective of the

thing and its software, such concerns frame a set of overarching features and

requirements that are especially relevant to effective health IoT ecosystems and

their overall vision presented above. The following subsections expand on these

questions and requirements, considering them from an architectural standpoint and

positioning them amongst the motivations of this thesis.

1.1.1 SPECIALIZED DEVICE BEHAVIOR

In the most basic sense, a thing represents some device or object made “smart”

through additional hardware or software features and a networked connection. Such

a connection allows things to easily share information with each other, the greater

network, or the user. While a simple service offering data may be enough for some

devices, health things often present additional usage concerns; attributes such as

accuracy and reliability are critical when used in a diagnosis or treatment scenario.

Human factors also play a role as more advanced medical devices are introduced into

the personal health market—the device must be used correctly (at the right time, in

the right manner, etc.) to be effective. Finally, such devices present new security and

privacy concerns as they generate and handle protected health information.

 In these scenarios, a thing architecture acts as the final line of defense in

managing specialized behaviors. An effective architecture must provide facilities to

handle the safety, privacy, and user engagement aspects of the device it runs on:

delegating these tasks to IoT applications leaves too many opportunities for error.

Especially considering the number of devices intended for use by inexperienced end

users, the thing architecture must not only make the devices easier to operate

correctly, but also harder to use in a wrong or unsafe manner. Catering to these

specialized internal needs will play a large role in enabling effective IoT interactions.

Chapter 1: Introduction Wyatt Lindquist

 17

1.1.2 THE ROLE OF THING ARCHITECTURES

While a specialized health device (as described in the previous subsection) may be

built to behave as a connected smart thing, it is not necessarily prepared to interact

in an Internet of Things. Consider that these things are unlikely to exist in a vacuum:

they participate as part of a “smart space,” surrounded by other devices that

perform similar functionalities or offer useful information. A thing that only performs

its actions on request can at best coexist; it cannot interact directly with other

devices or utilize information from the rest of the system. While a developer may

control interactions between devices manually or through an external service, such

“outward” thing behaviors could automate or simplify this process through more

direct and informed exchanges.

 When considering questions such as “how can things interact (with each

other)?”, these outward features become critical to the health IoT domain. Within a

smart space, a user’s set of health things are often closely related: at minimum,

these devices share a primary goal of improving or managing the user’s overall

health. In practice, they may also be capable of collecting shared information, or

utilizing unique data from their neighbors. Whereas individual health devices

normally have access to only a small part of a user’s overall well-being, direct

interactions can enable these things to obtain a more holistic view and provide

better-informed services to the user.

 To meet this goal, an effective thing architecture must also consider higher-

level “outward” interactions in an effort to better integrate with other thing devices

and cloud services. This includes features such as sharing capabilities and services

with the smart space, and providing interfaces to find or request behaviors from

other devices. Such features form the basis for meaningful interactions between

devices and lead to the creation of new IoT applications that empower the user. How

these interactions are defined and enabled within the thing architecture, therefore,

will directly dictate how a health device can participate in an Internet of Things.

Chapter 1: Introduction Wyatt Lindquist

 18

1.1.3 HEALTH IOT ECOSYSTEM ISSUES

The variety of connected health devices available today highlight another prominent

concern: interoperability. Many of these devices are tightly coupled to their

manufacturer’s ecosystem, creating “silos” of fragmented services that limit how the

end user can bring their devices together. While such ecosystems may offer highly

integrated services and features, their issues are especially apparent in health IoT,

where different manufacturers specialize in different types of wellness devices. As

their needs (and IoT applications) change and evolve, even the most loyal user is

bound to encounter a device that is not offered within their chosen ecosystem. In

this case, the separated “silo” ecosystems are likely to limit the device overall.

 Similar concerns are also present when considering the influence of thing-like

objects such as companion mobile applications. Although not directly equivalent to a

hardware thing, these apps are very common in health IoT and are often the primary

point of interaction with their associated medical devices, as a companion app

provides a very flexible interface (compared to that of the hardware thing). These

apps, however, are also very sensitive to interoperability issues: owning a variety of

devices may also mean managing each of their companion applications, which may

be confusing or annoying for the user.

 Interfacing with a variety of health IoT vendors and devices is another

important component of an effective thing architecture. Such an architecture should

understand various health data and device standards and work towards

consolidating the multitude of ecosystems and silos present in a smart space,

providing support and features that are appealing for vendors as well as developers

and end users. Additionally, treating companion apps as first-class citizens in health

IoT will also play a role in enabling meaningful interactions between the patient and

their devices. Overall, focusing on interoperability will be a key step in solving various

health ecosystem issues.

Chapter 1: Introduction Wyatt Lindquist

 19

1.2 PROBLEM STATEMENT

Health IoT continues to develop rapidly while presenting a variety of unique

challenges and concerns when compared to closely related application domains. This

thesis aims to examine these issues from an architectural standpoint, seeking to

identify the features and capabilities an IoT thing architecture must provide to best

support the needs of personal health and healthcare delivery scenarios. Once these

features are identified, this thesis investigates their feasibility—addressing how such

requirements may be implemented and evaluated within an IoT thing architecture—

and whether their realization indeed enables new solutions with connected health

devices in mind. These goals, alongside the questions raised in the initial motivation,

are summarized in the following research questions:

• RQ1: What needs and priorities separate health IoT from other IoT domains?

• RQ2: What distinct capabilities and software features must a health IoT

device provide to best support the specialized needs of personal health and

healthcare delivery integration scenarios?

• RQ3: How can a device architecture meet performance and usability needs

across a variety of health IoT scenarios and hardware?

• RQ4: What roles do various stakeholders play when using a specialized health

IoT architecture in new applications?

1.3 THESIS SCOPE AND STRUCTURE

This thesis focuses on personal health and wellness IoT devices when identifying

these unique needs. It aims to present a core set of requirements, such that each is

believed to have a significant impact on the thing architecture’s potential within

these health devices. As these requirements cover a wide range of implementation

features and domains, the implementation focuses mainly on concepts that facilitate

flexible use and meaningful interactions between things and other devices.

Chapter 1: Introduction Wyatt Lindquist

 20

On the other hand, this thesis does not consider medical devices—such as

those found in a hospital environment or acquired through prescriptions—at the

same level of detail, as their requirements are likely to differ substantially. This thesis

also does not attempt to present a complete set of personal health requirements; for

example, new or extended requirements may continue to be identified through

additional evaluation or in consideration of specialized scenarios. Finally, this thesis

does not focus on some of the core requirements involving additional and specialized

research areas, such as security or incentivization.

The remainder of the document is structured as follows. Chapter 2 discusses

the requisite background for this research and presents a set of relevant literature.

Chapter 3 introduces the identified health requirements, along with the

methodology used. Chapter 4 introduces an overview of the developed thing

architecture, presenting an overview of the individual major components. Chapter 5

revisits these components, describing their implementation and functionality in

detail. Chapter 6 then presents a set of experiments evaluating these components.

Finally, chapter 7 concludes the thesis.

CHAPTER 2: LITERATURE REVIEW

An IoT thing architecture plays an important role in many facets of the greater

Internet of Things. An effective architecture facilitates the developer to safely and

easily interface with the hardware features of a device, dictates how the thing

interacts with its surrounding smart space and users, and prepares the device to

fulfill its requirements as part of a larger IoT platform or service. Each of these facets

has received attention from a variety of research directions (such as data science or

security) and application areas (such as smart homes or wearables), resulting in a

vast number of new concepts and ideas. As connected medical devices and services

become increasingly commonplace, the same holds true for health-related IoT, which

is referred to as health IoT.

This chapter surveys work relevant to the requirements of health IoT and

their potential implications in IoT thing architectures. Section 2.1 begins by

considering developments in present-day health IoT ecosystems, in both commercial

and experimental capacities. Section 2.2 extends this discussion, analyzing the

direction of future health IoT ecosystems and their potential effect on future thing

architectures. Section 2.3 narrows its focus to work on generalized thing

architectures and their enabling features. Finally, section 2.4 discusses some initial

work towards specialized health thing architectures, along with areas and issues that

require additional efforts to be put forth.

2.1 EXISTING HEALTH IOT ECOSYSTEMS

What makes up an IoT ecosystem? In this context, an ecosystem refers to the

complete set of components that work together towards some common goal. This

includes device hardware (the things themselves), the network between these things

as well as the functionality they offer, and the features of the cloud, IoT platform, or

other services (such as mobile apps) connecting them together. An IoT ecosystem

also involves a variety of stakeholders, including vendors who own the ecosystem,

Chapter 2: Literature Review Wyatt Lindquist

 22

third party developers who create new applications and interactions (depending on

the openness of the ecosystem), and end users who take advantages of these

features. Together, these stakeholders define the unique needs and expectations for

each component of a specific ecosystem.

 The whole of such an ecosystem is greater than the sum of its parts,

especially when considering health IoT. While thing devices collecting data and

performing actions make up the core of an ecosystem, their interactions with other

components—such as mobile apps and cloud services—are what truly determine

how a user can utilize the system and achieve their personal health goals. This

highlights the importance of the thing architecture within the ecosystem: in addition

to controlling the devices, the architecture plays a major role in defining and

enabling these interactions. Although some ecosystems (especially those with tight

control over the “silo” of available devices and features) may depend less on its

flexibility, the thing architecture represents a common point that each ecosystem

component must interact with in some capacity.

 In the same manner, the needs of the ecosystem also influence the design of

the thing architecture and facilitate its advancement. Changes and new ideas within

the ecosystem promote evolution of the architecture as well, leading to a cycle of

improvement that continues to push both forward. With this in mind, an analysis of

present-day ecosystems, their challenges, and their direction can provide insight into

the needs and requirements of future health IoT architectures. To illustrate this

potential, the following subsections introduce some existing ecosystems and

concepts with this capacity to drive improvement.

2.1.1 COMMERCIAL ECOSYSTEMS

The increasing popularity and availability of wearables and other connected health

devices has caught the interest of vendors and manufacturers, resulting in a variety

of commercial health IoT ecosystems. Most of these target the domain of personal

health—offering various devices for home use and diagnosis—but have also begun to

look towards additional use cases, such as connecting users and data with healthcare

Chapter 2: Literature Review Wyatt Lindquist

 23

providers. However, while such ecosystems may offer highly integrated devices and

services, they are often tightly coupled: leaving less room for interaction with other

ecosystems outside of their designated “silo,” and limiting the types of devices that

can be used in a single ecosystem.

 iHealth Labs [3] offers health things such as pulse oximeters, body weight

scales, blood pressure monitors, and thermometers, most of which communicate

using Bluetooth and the user’s smartphone. Their MyVitals app is capable of

controlling these devices, taking measurements for storage and tracking within a

proprietary cloud service. Withings [4] (previously known as Nokia Health) is another

vendor offering connected health devices, including smart watches, body weight

scales, thermometers, and sleep sensors. These devices send their readings over

Bluetooth or WiFi to the Withings cloud service (or a custom solution for customers

using their Med Pro service), which can be reviewed through the fitness- and

wellness-tracking Health Mate app. Both companies have also introduced additional

integrations with healthcare providers, such as remote patient monitoring and

telehealth functionality.

 Libelium’s MySignals [5] ecosystem centers around an Arduino-based

development platform capable of interfacing with a variety of MySignals-branded

devices, including spirometers, temperature sensors, glucose monitors, and EKG

electrodes. The platform is also capable of interfacing with a mobile app and

proprietary cloud service for collecting and recording data. Unlike the two

ecosystems mentioned above, however, MySignals offers additional flexibility

through prototyping and modification, allowing new sensors to be integrated with

the main device (although these integrations must be programmed and configured

manually by individual developers).

 Apple Health [6] and Google Fit [7] focus less on devices (although both offer

their respective smart watches) and more on the software and cloud services needed

in a health ecosystem. Rather than offer a set of first-party things, the platforms

focus on enabling third-party integrations that allow users to collect data from

multiple ecosystems in a single place. This is achieved through common APIs that

Chapter 2: Literature Review Wyatt Lindquist

 24

vendors can use within their own apps to read and write shared health data.

Additionally, these services offer compatibility with various electronic health record

standards and simplified integration with healthcare systems. Still, the onus is on

individual vendors to support these platforms before such interoperability features

can be taken advantage of.

2.1.2 DEVICE AND DATA STANDARDS

Although some health IoT ecosystems may be completely proprietary, many offer at

least some support for various health-related standards. For example, a device

standard may define a common API for things and their interactions, while a data

standard helps simplify interoperability between platforms and service providers.

The existence of these standards influences the design of an ecosystem and even

plays a role in its effectiveness and adoption; commercial ecosystems can often use

their standards-compliance as a selling point. This subsection introduces some

standards targeting connected health devices.

 The Continua Design Guidelines [8] (now part of the Personal Connected

Health Alliance [9]) provide a set of health device standards alongside an open

implementation focused on device connectivity and interoperability. The project

includes guidelines for Bluetooth Low Energy (BLE), Zigbee, and USB connectivity,

and builds on other standards such as ISO/IEEE 11073 [10] and the BLE Health Device

Profiles [11]. Connected health devices may become “Continua Certified” (such as

various A&D Medical [12] devices), assuring end users of their compliance and

interoperability with similar devices. Overall, the standard provides a variety of

guidelines, testing tools, and software examples to empower vendors and

developers in creating interoperable health things and ecosystems.

 Fast Healthcare Interoperability Resources (FHIR) [13] is a data standard

facilitating interaction with electronic health records (EHR) and healthcare providers.

The project, aiming to supersede and simplify previous Health Level 7 (HL7)

standards, represents an EHR through a set of resources, holding reusable data types,

metadata, and human-readable content. The standard is already used in a variety of

Chapter 2: Literature Review Wyatt Lindquist

 25

existing ecosystems, such as Apple Health and Google Fit (described above);

however, it still must be supported by both the EHR vendor and the user’s healthcare

provider before it can be taken advantage of. The standard has also seen some

integration with decentralized storage platforms such as Solid [14] and MyData [15],

empowering users to better access and “own their data” in similar scenarios.

2.1.3 HEALTH ECOSYSTEM RESEARCH

Connected health devices have also seen use in various research-based health IoT

ecosystems. These systems often target an individual health issue or scenario (such

as diabetes), which is used to define the specific requirements and challenges the

architecture aims to solve. Implementation focus in these ecosystems varies

between low-level device features, thing interaction and connectivity features, and

cloud-based features depending on the needs of the target scenario. Still, many of

these identify challenges that are applicable to a variety of health IoT situations. This

subsection introduces some of these specialized health IoT ecosystems.

 Harous et al. [16] introduce MA4OCMP, an ecosystem targeting obesity

management. The system collects data from a combination of health sensors and

social media activity, which are stored, analyzed, and shared with healthcare

providers through a cloud service that provides customized suggestions, warnings,

and recommendations to at-risk users. The project focuses on the use of multiple

data sources and the interaction between patients and healthcare providers in

effectively managing obesity. In the same vein, Deshkar et al. [17] analyze diabetes

ecosystems, making similar findings on the importance of context-awareness

between the various stakeholders within the ecosystem. Deshkar also identifies a

common focus on interoperability, security, and privacy amongst these systems.

 Debauche et al. [18] present an ecosystem for patient and elderly monitoring

using a fog IoT architecture. This system uses a smart gateway edge service in

addition to a sensor network and cloud architecture to track state and behavior

changes of patients. The project focuses on data reliability—storing and managing

data on the edge device if the cloud service is unavailable—and privacy, ensuring

Chapter 2: Literature Review Wyatt Lindquist

 26

GDPR conformance as information is passed between the sensors, edge device, and

cloud service. The ecosystem again focuses on interaction with stakeholders, sending

alerts and warnings to healthcare providers and allowing them to validate

abnormalities through a graphical web interface.

 Some concerns and challenges are ubiquitous across these ecosystems; for

example, security and privacy remain a prominent concern when sending protected

health data and information to the cloud. As such, there exists a variety of research

projects and solutions targeting these facets in the context of health IoT ecosystems.

Lomotey et al. [19] propose a system managing data traceability and provenance in

wearable devices. Verifying and associating data sources with the correct patient is

critical in a variety of scenarios, such as adding to an EHR. Mahalle et al. [20] present

an access control system that calculate trusted value based on parameters captured

from the smart space. These trust values can be used to manage user identity across

thing devices. O’Donoghue et al. [21] and Yang et al. [22] focus on data validation,

consistency, and reliability across connected sensors, wearables, and mobile apps.

2.2 FUTURE HEALTH IOT ECOSYSTEMS

While present-day health ecosystems are already enabling a variety of new and

useful interactions with connected health devices, visions of future ecosystems

continue to evolve. These future concepts provide additional insight into the current

needs and problems of existing ecosystems, and can lead the direction of thing

architecture development as previously described; future thing architectures cannot

base themselves on only the needs of the present-day. This section introduces works

considering future ecosystems in this manner, as well as works that identify and

analyze the specific health IoT challenges they must solve.

Deloitte Insights [1] envisions an increasing focus on the consumer in future

health ecosystems, with greater importance given to well-being and maintaining

health rather than responding to illness. Alongside this, health sensors will become

increasingly integrated and ubiquitous, providing a large amount of personal health

Chapter 2: Literature Review Wyatt Lindquist

 27

data for early detection of various health issues. Empowered by this information, end

users will be better informed to determine when and how they interact with

healthcare providers—for example, more routine health issues could be handled at

home without direct intervention from a physician.

Deloitte argues that interoperability and open platforms will be critical to the

effective use of this abundant health data. As much basic medical care is relatively

algorithmic, access to this data will play a large role in proactive intervention through

artificial intelligence, therapeutic and health algorithms, and other new

combinations of services provided by vendors and other stakeholders. While many of

these interactions are likely to take place in the cloud, the thing architecture still

plays an important role in collecting and channeling the data that is needed to

enable this vision. Similarly, interoperability will be needed not only at the ecosystem

level, but the architecture level as well.

 However, considering data collection and interoperability alone is a relatively

narrow vision; as ecosystems become increasingly ambitious, their potential needs

and requirements grow as well. In addition to efficiently sharing data, future

ecosystems may also require new ways to interact with the user, create new

application opportunities, manage uncertainty, and much more. In anticipation of

these new ambitions, a variety of potential challenges have been identified and

considered by researchers. Each of these challenges may play a role in the design of

health IoT ecosystems and thing architectures, in the same manner as

interoperability is envisioned to.

 Laplante et al. [23] investigate a set of case studies, such as dementia and

patient safety, to determine potential quality issues and needs. The authors identify

a variety of privacy and safety requirements and relate them to an overarching

“caring” requirement. Caring is defined here as a combination of qualities such as

reliability, trust, and empathetic interactions. These caring requirements and

expectations are mentioned to vary between individuals and scenarios; the sub-

qualities that make up caring may change depending on the needs of the

Chapter 2: Literature Review Wyatt Lindquist

 28

stakeholders. The authors suggest that collaboration with various healthcare workers

and providers will be critical in identifying the specifics of these requirements.

 Farahani et al. [24] analyze health challenges from the perspective of their

fog-driven IoT architecture. Five major challenges are identified: 1) data

management, where the volume and variety of data makes standardized processing

difficult, 2) scalability, from individual users to hospital deployments, 3)

interoperability and standardization, especially involving regulatory concerns, 4)

interfaces and human factors, due to patients (especially elderly) that may not be

familiar with connected devices, and 5) security and privacy of protected health data.

The authors also present a case study to illustrate these challenges further.

 Plaza et al. [25] identify similar requirements when considering the needs of

healthcare IoT platforms and middleware, again referring to scalability,

interoperability, and security and privacy. Amongst these needs, the authors also

identify dynamic discovery and reconfiguration as important features of a health IoT

architecture. Such discovery is critical due to the number and heterogeneity of

sensors that may present in a health system, while reconfiguration can help devise

adapt to changes without interfering with the operations of other devices. The

authors then compare how these requirements manifest in a variety of present-day

health ecosystems and architectures.

2.3 GENERALIZED THING ARCHITECTURES

Zooming in on the thing architecture, one specialized for health IoT will likely share a

variety of similarities with its more generalized personal IoT counterparts. In addition

to abstracting hardware and other internal features, thing architectures also aim to

enable outward interactions and integrate with other thing devices and cloud

services. This includes features such as sharing capabilities and services with the

smart space, and providing interfaces allowing other devices to use these

capabilities. Such features help enable a device or platform as an IoT thing, rather

Chapter 2: Literature Review Wyatt Lindquist

 29

than just a connected device. This section introduces some explicit IoT architectures,

along with concepts that are likely to play a role in specialized health IoT scenarios.

 ARM Mbed [26] presents an architecture focusing on the interaction between

a thing device and the cloud platform, where device functionalities can be linked and

re-exposed as cloud services that can be provisioned, discovered, and managed

through a set of standard interfaces. The architecture runs on Cortex-M devices

using its Mbed OS, which provides a lightweight library for interacting with

hardware, communication protocols, and network security. Applications can also be

programmed and compiled through a web-based IDE, minimizing the setup

requirements placed on the developer. However, the architecture is tied closely to

the ARM ecosystem, both its cloud service and microprocessor models.

 The Network of Things (NoT) [27], introduced by the National Institute of

Standards and Technology (NIST), proposed a foundational design for IoT systems.

NoT breaks down IoT systems into a set of four underlying concepts that influence its

design: sensing, computing, communication, and actuation. The work also introduces

a set of primitives and elements to describe the functionality of individual sensors

and groups of devices, while also taking into account issues such as trust, privacy,

and security. The concepts presented by NoT can directly map to the implementation

of lower-level architectures and designs in a variety of IoT domains.

 MOSDEN [28] is an IoT middleware targeting mobile devices, allowing users

to collect and analyze sensor data through a service model. Users can connect new

sensor types without the need to directly program such an interaction; this is

achieved through a plugin architecture, where plugins (developed by third parties)

can be added and removed on the fly (downloaded from the smartphone’s

application store) to support a specific sensor type or brand. A specialized mobile

app allows users the view detected sensors and the data that has been collected.

Smartphones may play similar roles in health IoT systems, as they are a primary

mode of interaction for many connected health devices. However, in this case, the

smartphone acts as an endpoint (interfacing with only sensors) and cannot easily

participate in thing interactions.

Chapter 2: Literature Review Wyatt Lindquist

 30

2.3.1 PROGRAMMING MODELS

As mentioned above, interactions between things play an important role in all forms

of thing architecture. Programming models allow developers to more easily create

these interactions, facilitating new connections between things and services. These

models are important in health IoT architectures as well, especially given that health

sensors are frequently used in groups and collect related measurements. This

subsection presents a selection of personal IoT programming models that can

facilitate these kinds of interactions.

 If This Then That (IFTTT) [29] [30] is a web-based service that allows users to

manually connect various internet-based services and applications through trigger-

action rules: if a certain event occurs, then perform some action. IFTTT can utilize

various cloud APIs offered by service vendors, alongside limited support for smart

home products and Android system functions. These interactions form applets,

which may be defined manually or downloaded from other users. In a similar vein,

Yun et al. [31] developed Things Talk to Each Other (TTEO), which focuses on if-then

rules specifically targeting thing devices. The TTEO architecture consists of two

platforms, one which discovers and communicates with the thing devices, and

another which manages the logic and execution of the trigger-action rules. Users can

add new rules through a specialized mobile app, again highlighting the importance of

smartphones in an IoT ecosystem. However, these approaches also require the user

to manually identify their desired behaviors, which may be less practical in the

presence of many devices (such as in a future health IoT ecosystem).

 The Social Internet of Things (SIoT) [32] [33] mimics human social networks

with the properties of smart things. The authors present an architecture defining

different social relationships that describe how devices may interact, namely:

parental (things built by the same vendor), co-location and co-work (things existing

in the same place or providing similar functions), and owner (things owned by the

same user). These relationships can then be used to detect or suggest more relevant

Chapter 2: Literature Review Wyatt Lindquist

 31

interactions between things, rather than requiring explicit user consideration. Similar

social concepts play a role in the Atlas Thing Architecture (described below).

2.3.2 THING DESCRIPTIONS

Understanding the features and capabilities of a thing also plays a role in structuring

interactions within an IoT ecosystem. However, the wide landscape of (health)

ecosystems on offer has resulted in a significant amount of fragmentation; even a

device that supports new and exciting interactions may be limited by its

programming interface or cloud connection. Such platforms offer these synergistic

features, but lack the provisioning needed for intercommunication. A common, base

layer of compatibility that reflects a device’s capability and can be understood by

other things has the potential to overcome these issues.

 The Web of Things (WoT) framework [34] [35], introduced by the World Wide

Web Consortium (W3C), aims to represent thing capabilities through web-based

services, described and accessed with a semantic WoT Thing Description (WoT-TD).

The TD data model can be extended with domain-specific information and is

represented in a serialized JSON format. However, while the TD is capable of

describing the properties of individual things, additional information is required to

represent potential interactions or relationships between things. These concepts are

extended in the WoT Asset Description (WoT-AD) by Le et al. [36], which groups

physical thing devices into “Assets” that provide a set of services. This JSON-

formatted description defines high-level interactions, allowing multiple thing APIs to

be provisioned through a single functionality-focused description. While this

simplifies device setup, however, its focus on the groups of things also makes it

difficult to define more generic descriptions.

 The Atlas Device Description Language (DDL) [37] [38] is a human- and

machine-readable device description that aims to simplify the integration of things

and services in a smart space. The XML-based format defines metadata and

functional descriptions for the various sensors and actuators that may be part of a

thing. DDL descriptions are meant to be developed initially by device manufacturers

Chapter 2: Literature Review Wyatt Lindquist

 32

and OEMs, reducing the responsibilities on developers integrating new devices. The

DDL forms the base of Khaled’s Internet of Things DDL (IoT-DDL) [39], which

describes additional metadata and capabilities to better facilitate interactions

between things. The IoT-DDL is extended further in this thesis, in response to some

of the health IoT requirements identified in chapter 3.

2.3.3 THE ATLAS THING ARCHITECTURE

While many architectures focus on communication through a single point (such as a

cloud or edge device), the Atlas Thing Architecture [39] [40] focuses on the potential

derived from direct thing-to-thing interactions. The architecture is based on the

original Atlas Sensor Platform [41], building on the Service Oriented Device

Architecture (SODA) [42] and abstracting the device’s hardware to provide new thing

functionalities through the DDL project discussed above. The Atlas platform focuses

on self-discovery and advertisement of device characteristics through the DDL,

interaction with remote provisioning and management, and secure communication

with other devices in the smart space.

 The Atlas Thing Architecture builds on top of this platform, introducing new

features such as the extended IoT-DDL and improved interoperable communication

[43]. The architecture also introduces an inter-thing relationships framework [44]

that defines a set of relationships to logically and functionally describe new

connection between unrelated services and devices in a smart space. Such

relationships can be specified manually or inferred to enable new thing interactions.

Like the IoT-DDL, this thesis expands upon the Atlas Thing Architecture in response

to the health IoT requirements identified in chapter 3.

2.4 HEALTH IOT ARCHITECTURES

While generalized IoT architectures may provide features that are useful in health

IoT contexts as well, a specialized health thing architecture can better account for

the unique needs of healthcare scenarios. Even if such a feature is not exclusive to

Chapter 2: Literature Review Wyatt Lindquist

 33

the health domain, it may come with different priority and importance compared to

other domains such as personal IoT. This section discusses the implementation of

some specialized health IoT systems and architectures.

 Azimi et al. [45] introduce HiCH, a fog-based health IoT architecture that is

divided into two components; the distributed thing architecture, and a higher-level

cloud component. At the thing level, the architecture focuses on requirements such

as data accuracy, availability, and security. The thing also performs analysis on the

data it collects in an attempt to lower the amount of needed communication with

the cloud service. In the cloud, the architecture utilizes machine learning and other

analytics to detect trends and issues in health data. While the architecture fulfills

some of the lower-level needs of thing devices, it focuses mainly on sensor data

collection, and does not fully consider the potential for interaction between things.

 Catarinucci et al. [46] offer another architecture targeting healthcare

systems, called the smart hospital system (SHS). The authors utilize a variety of

communication protocols to collect and monitor data, putting much focus on the

interoperability features of these devices and networks. This data can then be

accessed uniformly by healthcare providers through a cloud service, or monitored to

send push notifications to caregivers on critical sensor events. Various services for

stakeholders are exposed through web and mobile applications, which consider their

own security and privacy challenges. Again, this architecture does not fully consider

the full range of potential health IoT requirements, such as device safety or inter-

thing interactions.

 Banos et al. [47] describe a framework and architecture for mobile health

(mHealth) applications, and present an implementation for mobile devices called

mHealthDroid. The framework consists of a set of layers designed to support new

mHealth applications, including support for communicating with biomedical devices,

storing and analyzing health data, and displaying information to the end user. The

framework also describes “service enabler” components to abstract events such as

alerts and notifications within the mHealth application. The Android architecture

implements a portion of the framework, defining various adapters for

Chapter 2: Literature Review Wyatt Lindquist

 34

communicating with wearables, as well as a graphical interface for displaying sensor

data. The framework places focus on the role of the developer in an mHealth

ecosystem. However, beyond Android apps, the framework cannot be used directly

on physical devices such as health sensors.

 FIWARE [48] is a cloud platform developed under the European Commission

to facilitate the creation and adoption of new cloud services. While the platform

itself does not specifically target health, the Future Internet CHallenge eHealth

(FICHE) accelerator program focused on its use in e-health applications. Celesti et al.

[49] describe the creation of a health system and application using this platform. The

system consists of a set of FIWARE components called “generic enablers” (GEs) that

facilitate collecting and storing data, implementing service endpoints, and managing

devices. Data can be collected from heterogenous devices and uses the Open Mobile

Alliance (OMA) standard for transmitting information. In addition to the core

components, the system also offers GEs for developers to create front-end

applications, as well as widgets that end users can compose. However, while the

system fulfills most of its needs through the cloud, it does not consider potential

contributions or interactions from the devices themselves.

2.5 SUMMARY

This chapter presented a breadth of related works covering concepts related to

digital health and IoT architectures. The design of a new specialized health

architecture is likely to be influenced by a variety of factors, including present-day

medical devices and existing standards, design patterns, and specialized applications.

The needs of future health scenarios and even existing personal IoT architectures are

also likely to play a role in the design of a new health IoT; the sections of this chapter

elaborated on each these considerations.

In terms of personal health, many existing devices stem from commercial

products targeting end users, as presented in subsection 2.1.1. Such devices are

usually tied to a proprietary cloud service, resulting in more closed-off systems that

Chapter 2: Literature Review Wyatt Lindquist

 35

focus mainly on integration with other products from the same company. Still, some

of these devices have also brought about new standards that promote interoperable

data and ease of use beyond their local ecosystems. Some of these standards and

related efforts were discussed in subsection 2.1.2.

Personal health also shares a close relation to traditional personal IoT; as

such, it is likely that some needs and solutions would carry over. Section 2.3

discussed concepts relating to more generalized thing architectures, such as

programming models and device description languages, as well as the Atlas Thing

architecture that this thesis builds on top of. Although not directly health-related,

these features are likely to correspond to the solutions presented in the explicit

health IoT architectures discussed in section 2.4.

Table 2-1: Related works comparison.

 Primary Use
Case

Architectural
Layers/Focus

Full Device
Architecture

Inter-Thing
Interactions

End-User
Developers

HiCH Hospital
Environment

Fog/Cloud
Data Analysis

No No No

SHS Hospital
Environment

Sensor/Network
Hardware

Contiki OS No No

mHealthDroid
Personal &
Home Use

Android Apps &
Paired Sensors

Partial
(Mobile Only)

Partial
(Mobile
Only)

Yes (App
Services)

FIWARE Remote
Hospital Care

Cloud Services No No Yes (Custom
Widgets)

Atlas Health Personal &
Home Use

Device-Local
Needs & Utility

Yes Yes Yes (IDE,
DDL, etc.)

These health architectures begin to answer some of the future needs

presented in section 2.2. Although more generalized than the solutions discussed in

subsection 2.1.3, these architectures still vary in their specific goals and intended use

cases. Table 2-1 shows a comparison of these architectures, alongside the solutions

presented in this thesis. One main point of comparison amongst these related works

is their primary use case: many focus on scenarios such as hospital care and patient

monitoring. Amongst the works above, only mHealthDroid shares a personal health

target (that is, cases where healthcare professionals are necessarily involved).

Chapter 2: Literature Review Wyatt Lindquist

 36

The table also shows various differences in the architectural design and focus

of each project. Partially due to their primary use case, many of the architectures put

emphasis on the structure of their fog/cloud layers (along with their networking),

using the thing devices more as simple sensors meant to collect and send data for

further processing. The table expands on this further in the Full Device Architecture

column, which considers the actual software running on devices. For example, HiCH

and FIWARE do not specify an explicit device architecture, while SHS uses Contiki OS

[50], a general purpose IoT middleware. Again, mHealthDroid offers the closest to a

detailed device architecture, although it only targets mobile devices. Such an

architecture is a primary component of the work in this thesis (described further in

chapter 4), encompassing concerns such as direct interactions between thing devices

(without using a cloud, fog, or gateway); amongst the compared works, similar

features are not considered in the same depth.

Interactions with stakeholders, such as developers (those who program a

device but do not work for the vendor) are also a main point in this thesis—discussed

throughout chapter 5—resulting in a variety of tools such as an IDE plugin and other

graphical tools. While some of the other research systems are more rigid, some do

present similar features: mHealthDroid services can be used in new mobile apps, and

FIWARE allows developers and even end users to create “widgets” using its core

functionality. Overall, though, this thesis and Atlas Health focus on a set of features

in personal health that have received less attention in similar works.

CHAPTER 3: REQUIREMENTS FOR HEALTH IOT

As discussed in Chapter 1, the devices within a Health IoT ecosystem each have

specific needs and unique functionalities that are either less likely to be found or less

of a focus in other application domains. With the variety of emerging health IoT

systems and devices in a highly fragmented and evolving market, special

consideration must be taken to these unique needs: how can they be met fully,

safely, and consistently using the functionalities available within a device and its

surrounding smart space? This is the role of a specialized thing architecture; rather

than offer its features in isolation, a focused architecture would help a device fully

utilize its potential collective and safe use. Such an architecture plays a large role in

guiding how a health IoT device performs its functions and interacts with the user

and other things, features which are critical to a powerful and effective IoT system.

The unique needs inherent to the digital health domain are requirements that

represent areas of common concern amongst health IoT systems. Each requirement

presents a set of features that must be addressed within the thing architecture to

maximize the utility of a connected health device. These requirements are proposed

from the perspective of the thing; they do not map directly to specific user needs or

use cases, especially when considering the variety of health IoT application scenarios.

Instead, a requirement helps structure the functionality of a thing architecture,

providing core features that assist the device and developers in meeting these

specialized needs of the end user, regardless of the specific scenario.

This chapter describes a methodology to seek out these specialized needs,

and presents a set of requirements that have been identified as integral to the

implementation of an effective health IoT architecture. Section 3.1 breaks down the

methodology into four main steps. Section 3.2 describes the four main groups of

requirements that have been established, along with how they fit in amongst the

variety of health IoT devices. Finally, sections 3.3-3.6 describe each requirement in

full detail.

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 38

3.1 METHODOLOGY

Figure 2-1: Stages of the chosen methodology, starting at the bold element.

Identifying, implementing, and evaluating these requirements necessitate a variety

of approaches. This methodology is broken into four stages, illustrated in figure 3-1.

The first step, requirement identification, uses a research-based approach to select

potential requirements for further evaluation. This process of choosing requirements

for a thing architecture calls for careful consideration regarding the needs of the

devices themselves, as well as the needs of their users and the spaces they reside in.

Identifying such “system” and “ecosystem” concerns is discussed in the following

subsections. The second step, prototype implementation, and the third step,

prototype evaluation, focus on the system side of these concerns; these steps

determine the feasibility of a newly chosen requirement. Health devices vary greatly

in hardware and intended use, making an experimental approach with prototypes

and example scenarios valuable in finding limitations and evaluating performance

characteristics. The fourth step, stakeholder evaluation, considers the ecosystem

surrounding the architecture: a requirement may be further validated through

surveys and other user-facing studies with stakeholders. This relationship between a

stakeholder’s needs and the features of the thing architecture is explored further in

the following subsections. As these steps are followed, an iterative approach may be

Requirement
Identification

Prototype
Implementation

Prototype
Evaluation

Stakeholder
Evaluation

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 39

taken; the requirements are likely to be closely related, allowing one to be further

refined as others are identified and evaluated.

3.1.1 SYSTEM AND ECOSYSTEM NEEDS IN HEALTH IOT

While a thing architecture directly influences how a device operates, it also provides

the thing with the interfaces it needs to interact with the user and the devices of

their smart space. This potential for interaction is critical within a successful IoT

ecosystem; a well-designed system may make an effective medical device, but its

capability for meaningful interactions makes it an effective medical thing. Therefore,

the needs of the ecosystem are of equal importance to the needs of the system itself

when considering potential requirements. As such, a variety of methods must be

used to adequately research these needs, both system and ecosystem. This thesis

makes use of literature review and market research in the first step of the

methodology.

 The literature review, reflected in Chapter 2, aims to reveal shared themes

and patterns amongst various challenges and solutions within health IoT. A work may

present a system in response to a specific problem, such as gathering and presenting

data for obesity management or optimizing communication between wearable

devices. Looking at these solutions across a variety of scenarios within the health

domain reveals common ground amongst them, which can influence the

specification of a new requirement. Other research using existing IoT architectures

may reveal shortcomings in their use within the health IoT domain, that can be

solved through a specialized architecture with its own set of requirements. Together,

the literature review serves to identify the direction of future health IoT systems and

the missing features that could enable them or enable them further.

 On the other hand, market research aims to identify the trends and needs of

commercial health IoT devices existing today. Looking at today’s devices helps reveal

the features that are popular, desired, or useful from the perspective of both the end

user and the vendor. This information may reveal requirements applicable to a

broader set of health IoT devices and provide insight as to how problems in the

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 40

health domain are being solved with existing products. Commercial devices are

especially important when considering the ecosystem of health IoT; in many

offerings, the device is only one part of the full product. Cloud features, companion

mobile applications, and other services all play a prominent role in commercial

health IoT ecosystems and, by extension, their device architectures. Staying aware of

how these services augment and extend the “IoT features” of a connected medical

device is another important component of identifying requirements. In this thesis, a

variety of commercial personal health IoT devices were requisitioned, analyzed, and

compared. In addition to influencing the requirement selection, some of the results

of this work are presented in Chapter 6.

 Comparing these methods also provides insight; the disparity between the

envisioned scenarios of research works and the present state of commercial health

devices may reveal deficits that influence or create requirements. In this manner, a

certain level of intuition and opinion is also necessary when considering these

methods. While grounded in the research directions described above, narrowing

down the needs of personal health and investigating these disparities likely involves

an aspect of prediction and personal judgement; looking to the future of health IoT

devices and systems also plays a role in identifying requirements. Each requirement

category presented in this chapter is derived from a combination of the methods

described above; specific instances of influence will be cited in each section.

3.1.2 STAKEHOLDER ROLES

When considering a new health IoT thing architecture, a variety of stakeholders

stand to benefit. This includes the vendor, who uses the architecture to build a new

device and service, the developer, who takes advantage of the architecture (and the

vendors devices) to create new interactions and applications within a smart space,

and the end user, who chooses these devices and applications to meet their personal

health goals. These groups may sometimes overlap (for example, the developer may

also be the vendor, or even the end user), but each brings different needs and

expectations from the thing architecture. Extending the previous subsection, system

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 41

needs may be more important to the vendor’s implementation, while ecosystem

needs are the focus in the developer’s applications.

 Satisfying the end user’s needs is also critical to a thing architecture’s success;

however, these needs may not map directly to the specification of a new

requirement. For example, when purchasing a connected health device, although the

end user is interacting with thing architecture, they expect their specific needs to be

met by the actual device or IoT application. For the user, the architecture provides a

base set of features enabling these needs to be met, “behind the scenes.” This is an

important factor when identifying new requirements: end user needs may have to be

considered from the perspective of the vendor or developer to determine how they

may manifest at a lower level. The thing architecture itself can then provide a

backend simplifying or enabling these features for the vendor and developer.

Overall, when considering stakeholders, the needs of vendors, developers, and end

users are likely to be closely related and codependent in terms of an architectural

implementation, even when these needs do not map directly to the requirements of

the thing architecture. In this thesis, such needs and considerations influence the

design of various architectural features (described in chapter 4), as well as the

experiments and metrics used to evaluate them (as shown in chapter 6).

3.1.3 DISCUSSION

While this thesis presents what is believed to be a core set of health IoT

requirements, it is important to consider the possibility that new or extended

requirements continue to be identified. For example, further stakeholder evaluation

in the iterative methodology described above may reveal additional needs that could

be best answered through the introduction of a new requirement. This may be the

case when considering specialized health scenarios, such as those involving users

with disabilities. Such stakeholders may require accessibility that call for additional

requirements, specifically targeting the domain in question. This thesis does not

claim to provide a complete list of these health IoT requirements; rather, the

selection presented is believed to have a significant impact on a thing architecture

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 42

maximizing its potential in utilizing new digital health devices, along with the

interactions and applications they enable.

3.2 CHOOSING ARCHITECTURAL REQUIREMENTS

When choosing the core set of architectural requirements, the entire landscape of

health IoT must be considered. A single device can be placed along a spectrum

depending on factors such as reliability, intended use (monitoring, diagnosis,

treatment, etc.), and safety concerns. For example, the Food and Drug

Administration (FDA) divides health devices into two categories: wellness and

medical [47]. In this categorization, a given device is classified based on its potential

risk to the user, as well as its claims towards specific conditions. Under these

guidelines, a wellness device focuses on general lifestyle activities such as fitness and

diet, while a medical device targets actual medical conditions and aims to diagnose,

monitor, or treat the user.

 The architectural needs and expectations of a device depend greatly on this

classification, or position within the spectrum of health IoT. A medical device as

described above, for example, may require secure transmission of measurements

back to the healthcare provider’s systems. However, enforcing such security and

connectivity requirements on a wellness device may make less sense; unverified

fitness information would be of comparatively little use to a healthcare provider, if

considered at all. To account for these differences, this thesis defines a set of tiers to

organize the variety of health IoT devices as follows:

• Wellness: Similar to the FDA definition above, these devices are intended for

general use; their features would not be used for definitive diagnosis or

treatment. This tier focuses on ease of use and often involves higher level

information, such as a fitness band reporting steps taken or calories burned.

• Personal Health: As the health IoT ecosystem expands, so do the capabilities

of devices available for personal or home use. This intermediate tier

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 43

encompasses devices that are capable of more comprehensive or accurate

functionality. For example, while these devices may not be used or prescribed

directly by healthcare professionals, their readings may influence the user to

seek further diagnosis (such as those from an electrocardiogram sensor

within a smart watch). This includes devices like blood glucose meters that

are intended for diagnosis or treatment management but are not usually

controlled or managed directly by healthcare professionals.

• Medical: At the highest tier, these devices are used directly for diagnosis and

treatment by healthcare professionals, where incorrect use or erroneous

readings can have a significant effect on the user. Such a device is likely to be

prescribed to the user or owned by the healthcare provider, and is usually

designed to operate without the support of additional devices (such as other

things or the user’s phone). One such example is a cardiac Holter monitor,

usually prescribed by a doctor and worn for a period of time before being

returned for analysis. Sometimes these devices even come with their own

mobile device, to prevent the patient from needing or involving their own.

When defining a requirement, its properties can be positioned amongst these tiers

to help clarify intentions and expectations within the health IoT ecosystem. This

thesis organizes such requirements into four main groups (with variable relevance

across the three device tiers). These requirements consider features needed to

enrich interaction within devices (such as how a thing can expose its capabilities

programmatically to application developers as well as cybernetically to the smart

space) and with the user (by enabling an end user to properly and safely use a

device), as well as their roles in each of the defined tiers.

 This chapter covers four overarching requirement categories, each

summarized below. Of these categories, requirements I and II are covered in the

greatest detail and are the primary focus of this thesis. While all requirements play

some role in an effective IoT architecture, each relates to a specific tier in which it

has the greatest potential for impact. As this thesis primarily targets the wellness and

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 44

personal health tiers, Democratization and Device IoTility are likely to play the largest

roles in terms of their influence on a thing architecture. This relationship between

tiers and requirements is visualized in table 3-1. Still, the role of the other

requirements cannot be discounted; each has the potential to influence the design of

an IoT architecture at any tier. As such, requirements III and IV are still developed to

a level that introduces the importance of their features, albeit in less detail. The four

requirement categories are summarized below.

I. Democratization: This requirement focuses on the compatibility and

interoperability of various health IoT devices. While vendor-specific services

and support are often an important part of a device’s offering, an over-

reliance on these features can limit a device’s effectiveness in the greater IoT

ecosystem without some level of cross-compatibility and device ownership

control. These features are most important at the wellness and personal

health tiers, whereas a device in the medical tier is most likely to be owned

by a health organization (a hospital or a clinic, for example) and for numerous

reasons may not prioritize democratization.

II. Device IoTility: This requirement introduces several powerful features a

health IoT device could offer by utilizing its connectivity with other things—

such as another health device or the user’s smart phone or smart TV—to

create meaningful interactions between devices. Similar to democratization,

this requirement is most important at the wellness and personal health tiers,

while medical devices are more likely to be protectively self-contained in

their functionality.

III. Safe Use: Within a health device, safe use refers to the ability to ensure

correct and reliable input/output interactions with the user. This means an

actuator thing should have limited ability to harm the user or its own

hardware, while a sensor thing should have the capacity to detect erroneous

readings and conditions. This requirement becomes increasingly important at

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 45

higher tiers (personal health and medical), where user-facing risk is higher

and accurate functionality is critical.

IV. User Identity & Privacy: While security and privacy are a major concern across

all connected devices, these features are exceptionally important in health

IoT devices when the data must be generated by or shared with a healthcare

provider or other third party and even complying with mandated regulations

such as the Health Insurance Portability and Accountability Act (HIPAA) [48]

and the General Data Protection Regulation (GDPR) [49]. Information from a

device must be trusted and secure as it is transmitted between things,

spaces, and ecosystems. This is an important requirement for both the

medical and personal health tiers, where the sharing of data is more likely to

involve healthcare providers and protected health information.

Table 3-1 shows the relationship between these four requirement categories and the

three tiers presented earlier. Each requirement is ranked against its importance in

each tier, represented by a number of checkmarks; for example, a single checkmark

may imply only minimal focus is needed, while three checkmarks mean a

requirement has a large influence within that tier. As shown in the table, the needs

of the wellness and personal health tiers tend more towards Democratization and

Device IoTility, while Safe Use and User Identity play larger roles in the medical tier.

In the following subsections, further details are provided on these requirements.

Table 3-1: Significance of requirements per defined tier.

 Wellness Personal
Health

Medical

Democratization ✓✓ ✓✓✓ ✓

Device IoTility ✓✓ ✓✓✓ ✓

Safe Use ✓ ✓✓ ✓✓✓

User Identity & Privacy ✓ ✓✓ ✓✓✓

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 46

3.3 REQUIREMENT I: DEMOCRATIZATION

In the context of health IoT architectures, the term democratization refers to a

thing’s capabilities and functionalities outside of its "silo:" the software ecosystem

created and supported by its manufacturer or vendor. Many present-day IoT devices

tend towards a pattern of closed systems with limited capacity for inter-silo

functionality; while support for and interactions between things within the same silo

may be extensive, compatibility with other devices is often limited to select

manufacturers or nonexistent. These concerns extend across many aspects of the

thing’s software, from communication and data storage to the behavior of their

relevant smartphone apps. For all of these aspects, a balance must be found to

maximize the level of health IoT democratization without being too aggressive and

undermining the business strategies of the vendor.

When considering such a balance, democratization is most important and

most useful to the core functionalities of a health device. Features such as recording

a measurement or configuring settings make up the lowest level of what could be

considered "using" the device; at this level, the user should not have to worry about

how a thing fits in with their existing digital health ecosystem. If each device or

ecosystem requires, for example, its own companion smartphone app to function, a

user with many things could quickly experience "app overload" [50], making it

difficult to effectively use and manage these devices.

 While many connected health devices such as fitness bands and other smart

watches are expected to exist with a tightly-coupled companion app, health IoT has

also introduced new connected variants of many traditional health devices where

this is arguably not the case. Things such as blood pressure and heartbeat sensors

look like their traditional counterparts, but may require additional apps, accounts,

and ecosystems that are not immediately apparent. Consider a pulse oximeter thing,

which has an integrated screen as well as a companion app. After purchasing the

device, the user attempts to take a measurement but discovers the device must first

be set up through the app; despite having the physical capabilities to function

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 47

immediately, the device is tied tightly to its silo (many present-day commercial

devices, such as the Withings temporal thermometer [51], follow this pattern of

requiring at least setup before independent use). On the other hand, a user’s

glucometer (e.g., the iHealth Gluco+ meter [52]) can take readings even if the

companion app is never installed or set up. While companion apps often provide a

variety of additional features and conveniences, they should not be required if the

user only needs basic functionality or can use another app of their choice (such as

one they know well and are accustomed to).

3.3.1 SHARED APIS

Considering how these companion apps communicate with their devices highlights

another aspect critical to true health IoT democratization: shared APIs. Even if a

device’s hardware can be operated independently, it cannot act as a thing without

connectivity to a smart space or other smart devices. Of course, eliminating these

silos through a single standardized API is unlikely; vendors will always want to

prioritize interactions between their own devices. However, even a limited subset of

API compatibility, such as that defined by the Personal Connected Health Alliance

(previously, the Continua Alliance) guidelines [9], could greatly improve a thing's

ability to interact with its smart space. Imagine a patient with a low-power,

connected body temperature sensor. Such a device is meant to be attached directly

to the body, meaning it likely has little in terms of a physical interface (such as no

integrated display to show the current temperature), and limited capacity for

physical interaction (such as a sole button for toggling power).

 The temperature readings and any needed configuration are instead exposed

through a companion mobile app. Unlike the previous two examples, however, the

device cannot be used properly without the app, even though the hardware itself is

functioning. This could be problematic in certain cases where the app cannot be

used; imagine a patient with disabilities and an unsupported, specialized device.

Luckily, in this case, the device exposes a minimal standard API with basic

functionality. Perhaps the user holds their mobile device near the sensor and

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 48

receives usage instructions as well as the ability to perform a basic read from the

sensor (thereby receiving their body temperature as desired). More advanced

configuration features are not exposed through this API, but the user is still able to

use the device, despite using a different app.

 Introducing more open APIs, however, does have implications regarding the

safety and security of these smart devices [53]. Such concerns must also be carefully

addressed; once a device provides data and receives commands more openly, the

thing architecture must “pick up the slack” and ensures these APIs are not misused

or abused. Even when the API is being used properly, health devices must consider

identity, or who is using the API; a primary user may be able to see readings from a

device through its API, but these readings should not be available freely.

3.3.2 USER INTERFACE

Many devices follow the trend of the temperature sensor described in the previous

section; the hardware is physically quite minimal, with a limited number of small

buttons or information displays. This subjects them to a variety of usability and

accessibility concerns, even when considering them along with their companion

apps. While simple functionality can be exposed to other devices or controllers

through standardized APIs, this may not work as well for more unique or advanced

features. Instead, a common set of user interface-focused API endpoints could help

alleviate these issues, allowing a user’s preferred or specialized application/device to

manage the display logic and interface with more complex behaviors.

Accounting for a wide range of accessibility requirements is a difficult task;

however, democratization has the potential to simplify this issue. Consider an API

that manages rendering a desired accessible interface. Such an API could take in

accessibility elements as parameters and output a device-agnostic markup to be

managed by the mobile app, specialized device, or other means of output. This splits

the requirement more evenly amongst the thing, the output device, and the user.

Markup languages such as UsiXML [54] attempt this, allowing an interface

specification to be used across multiple UI contexts (such as graphical, auditory, etc.)

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 49

XIS-mobile [55] is another UI language to describe mobile device interfaces in

specific. In simple cases, a UI may even just reflect the thing’s underlying API.

3.3.3 CHANNELING

Note that many of these devices mentioned above likely offer limited support for

data sharing with other ecosystems (for example, information may be exported as a

file from the cloud, such as CSV or XML). Within health IoT, channeling describes the

right and ability of the user to share data from a device to the greater healthcare

ecosystem. Many health things collect measurements and store data either locally

on the device, or in a cloud service managed by the device vendor. In either case, the

data is likely stored mainly for use within the ecosystem, with little provision for

external transfer. The user, however, may want to share this information with their

healthcare provider (for example, as external notes or as an addition to their

electronic health record), emergency services (such as when the data represents a

dangerous condition requiring immediate attention or intervention), or even

themselves (in personal storage or a private cloud). Because data on many of these

health devices can be sensitive and must be protected, access cannot be given out

freely; instead, an effective health architecture must assist in this obligation and

consider the data access rights before sharing it with various third parties.

For example, a user’s smart fitness band may be a part of the Apple Health

ecosystem [6]. This platform attempts to democratize the storing and channeling of

health data, allowing users to collect data from supported health IoT devices and

permit specific parties access to this data. On the device side, this is achieved

through HealthKit [56], a set of common APIs used by vendors to share data and

events from their supported apps. To channel the data generated by these

supported apps, the platform uses the Fast Healthcare Interoperability Resources

(FHIR) [57] standard to integrate with supported healthcare providers’ electronic

records. While this is a step towards health IoT democratization, the user is still tied

to an ecosystem at a larger scope: the data is not truly cross-platform. A user

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 50

wanting to switch to Android and Google Fit [7], for example, would not be able to

transfer their data directly through first-party services.

3.3.4 REQUIREMENT SPECIFICATION

Section 3.3 introduced a variety of user-facing democratization features that aim to

improve the compatibility and functionality between thing devices and the interfaces

through which they may be interacted with. These features are summarized into the

following requirement specifications:

• Shared APIs: A health thing should expose its core functionality through a set

of open, well-defined API endpoints.

• User Interface: A health thing should consider the possibility for alternative or

new user interfaces, both physically and in software.

• Channeling: A health thing should ensure its data is available to and shareable

by its owner or end users.

As these requirements focus more on the thing’s interaction with the end user, they

are likely be significant considerations in the design of specific health devices and

applications. Still, these requirements contain a variety of aspects that guide the

design of the generalized thing architecture described in chapter 4. For example, the

IoT-DDL specification (subsection 4.2.1) revolves around the Shared APIs

requirement, and the DIY Health IoT Apps project (section 4.3) works towards the

User Interface requirement. The concept of Democratization remains a consideration

throughout the Atlas Health Architecture, and guides the experimental design and

validation described in section 6.3.

3.4 REQUIREMENT II: DEVICE IOTILITY

As discussed previously, a device’s ability to effectively participate as an IoT thing is

influenced largely by how it is prepared to interact with users, other devices, and the

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 51

smart space as a whole. This ability to enable meaningful and safe interactions is

referred to as a thing’s IoTility within this thesis. The concept of IoTility covers a

number of related requirements (individually described in this section) that center

around utilizing a health device’s connectivity features: taking full advantage of the

information and functionality available within its surroundings to augment and

improve the services the device may offer.

 These capabilities are very relevant to many digital health scenarios, where

devices monitor or interact with the user directly and share closely related goals

involving management of the owner’s health. For example, consider a patient that

has an elevated risk for diabetes and related complications. Following consultation

with their physician, suggestions are made for the patient to make lifestyle

adjustments in an effort to reverse this risk. The patient begins an exercise regimen,

purchasing a smart body-weight scale, fitness tracker watch, and pulse oximeter, and

downloading their associated smart phone applications. Each of these devices take

related measurements and aim to assist the user in reaching and maintaining a

healthier lifestyle. A short time later, the patient becomes more invested in their

health and potential risks, and purchases a blood glucose meter and blood pressure

cuff to more accurately monitor for symptoms of prediabetes. As the patient’s health

and treatment requirements change, they may continue to acquire more devices to

provide further measurements and features supporting their health goals.

 While these devices—many based on traditional healthcare instruments—

each fulfil a specific purpose, considering them independently means the user must

manage and make sense of their information to see their bigger health picture.

Introducing a high-IoTility health architecture, as described above, increases the

potential of these devices to better meet the needs of the user and their health

goals. Allowing these thing devices to work together and share data can open up

many application possibilities on the principle that “the whole is greater than the

sum of its parts.”

However, before these devices can interact meaningfully, it must meet some

basic requirements to communicate with and understand its smart space. To enable

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 52

interaction with an entire smart space, a device must communicate despite language

or protocol differences, such as through a "translator" thing [43]. To understand

various opportunities for interaction, a device must learn about the available APIs,

services, and semantics of other things (as well as share its own) through information

exchange. To act on these opportunities, a device must also be able to infer various

cooperative and competitive relationships with the other things in the smart space

[44]. Together, these features lay the groundwork for the formation of meaningful

interactions and IoTility in a health IoT smart space.

 Beyond direct data sharing, the interactions and events generated by a health

device can be used to infer pieces of user context. This refers to information that

helps a device describe "when" it should be used; critical when considering health

devices that require use in specific intervals throughout the day or after certain

events. For example, a glucose monitor must be used two hours after eating a meal

to achieve the most accurate readings. Traditionally, the user may need to

remember or manually set an alarm; however, if the smart space is aware of when

the user eats, the timing and reminders could be managed by the glucose monitor

device itself. This kind of context usually cannot be deduced from a single device;

instead, it must be "built up" over time using a combination of events from different

devices and measurements.

Continuing on the previous example, it is unlikely that the glucose monitor

can detect when the user eats on its own. However, the user may enter their meal

information into a diet-tracking app, or use a smartwatch app that automatically

detects eating movements [66], which can then share this contextual information for

use by the glucose monitor. Measurements from multiple devices can also allow the

users or their caregivers see a bigger health picture; while a single abnormal data

point may not be a concern, unexpected readings across multiple devices might point

to a larger issue. Achieving these goals through meaningful interactions with fellow

smart space things is especially important when considering the variety of

constrained or low-power health IoT devices that feature limited independent

capabilities.

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 53

3.4.1 RELATIONSHIPS BETWEEN THINGS

Communication between things is a substantial part of an IoT ecosystem. The

advantages brought by democratization (as described in section 3.3) are less

impactful when considering only interactions between a thing and the user. Once

things are able to "speak" some level of a common language, they can interact not

only with the user and edge, but also with each other. This thing-to-thing interaction

is another critical part of a functional health IoT system: a thing with the potential to

cooperate and directly utilize the capabilities of the smart space increases the

capacity for meaningful interactions to occur. This is especially true in an

environment with a wide variety of health sensors and devices. Even if these devices

share a common interface, they still must be individually considered and

programmed for, which quickly becomes unreasonable when considering a large

number of devices and the various potential synergies between them.

Relationships, or logical links between functionalities offered by two or more

things, allow for the creation of implicit and opportune interactions between smart

space devices. A relationship may allow a thing to become a conditional element

within a logic matrix, its output used as an input or to control another thing, as in

IFTTT [29] and TTEO [31]. A thing's ability to form these types of relationships

(especially when they can be formed as suggested by the thing, rather than explicit

user intervention, such as the Social IoT [32]), can help users focus on the high-level

functionality of their smart space, leaving the low-level details to be taken care of by

the architecture itself. These kinds of relationships are especially useful in a personal

health environment, where sensors may only record a part of a larger metric (such as

how body temperature, blood pressure, etc. make up a patient's general vital signs),

or may record the same measurement in conjunction with other sensors (such as

reading pulse in different places on the body). Such grouping of information can be

handled or specified between things through relationships, reducing the need for

explicit programming and simplifying the use of the smart space at the edge,

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 54

especially for personal health scenarios where the user may not want or know how

to effectively manage their array of smart devices.

Consider a patient with a blood pressure measuring device and pulse

oximeter. Both of these devices are capable of recording, amongst their other

measurements, the patient’s pulse. In the traditional case, the user would be

presented with two pulse readings, and would likely choose to use one over the

other, possibly hiding or removing the second measurement. Imagine instead that

these devices look to form relationships with other devices (whose specific form may

not be known) that provide a pulse reading, allowing them to combine readings or

keep each other in check. Such a situation improves usability and allows for a form of

reliability across devices taking the same measurement (where services only need to

be aware of the measurement itself, not the source device). Handling these

relationship-based behaviors within the architecture itself can help supplement and

simplify the creation of meaningful interactions without relying on specific

knowledge from the thing app or software.

3.4.2 THING-LIKE MOBILE APPS

In many IoT scenarios, the mobile app plays a prominent role in the interaction. The

number of these apps targeting digital health is significant: over 300,000 as of 2017

[67, 68], and still growing. In addition to self-contained health apps, many health IoT

devices require a mobile device to host their companion app. However, despite their

close interaction with things and the smart space, these mobile apps are not utilized

fully: this thesis argues that they can be further integrated as things themselves.

Considering mobile applications as "software things" (as opposed to hardware

things, such as sensors, actuators, or other personal health devices) can open up new

potential for meaningful interactions within a smart space. In most situations, the

mobile app either acts as a controller for other smart things, such as requesting data

or sending commands, or manages information for the user, such as the

aforementioned diet app. In terms of a smart thing, this is only half of the picture.

Other things in a smart space cannot consider the app for any interactions beyond

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 55

what it is programmed to do. Even if a health app's information could be used by

another thing (especially one un-related to the purpose of the app), the app most

likely lacks a way to channel data to that thing. The app is missing a concrete API like

those of other physical things, simply because most mobile apps are not designed to

work this way.

For example, consider a patient with a dieting app and a smart fitness band.

The user eats a meal, enters the information into their app, and receives an updated

exercise plan. The user then must use another mobile app or other method to

update their fitness band’s configuration, to reflect the exercise parameters they

were given. Even though all of the information is available implicitly within the smart

space, the user must manually “transfer” parameters between the apps and the

things, because the developer of the app did not necessarily consider all potential

interactions. If the diet app had a thing-like API, the interaction could have

progressed differently: after the user enters their information into the app, the

fitness band sees that the exercise plan has changed, updating its parameters

automatically. In this case, the thing becomes the driver of the interaction, where it

asks the mobile app for information through its thing-like API. Although the app was

not developed with the fitness band in mind, it was able to provide its information to

the smart space and enable this transfer of parameters.

Compared to a normal hardware thing, a mobile app is likely much more

capable in terms of features and the ability for the user to interact. Things in the

smart space can potentially utilize a wide variety of sensors (for example,

accelerometer and GPS) or engage the user through a touchscreen interface. This is

especially interesting for lightweight hardware things with minimal physical inter-

faces, like the body temperature sensor example mentioned in section 3.3. Such

functionality makes higher-level interactions available to things without the need for

physical interfaces or a specially programmed app (thereby reducing the need for the

"silos" created by many existing companion apps). Used with the concepts from the

previous section, mobile apps could even form thing-like relationships with other

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 56

devices or even other apps, allowing users to “combine” app functionalities, or easily

create new app-like behaviors with the exact functionality they desire.

3.4.3 PROXY INTERFACES

Many health IoT devices offer relatively minimal physical interfaces, deferring many

of their interactions to a companion mobile app. While this is usually convenient or

even preferred, it is also important to consider times when a user does not have

their mobile device on their person; such a situation may occur while charging the

device, or with an elderly patient that does not use their device frequently. Even

without a mobile device nearby, other smart things may be able to convey

information to or accept input from the user. With the appropriate context and

shared information, any device could act as a proxy for interactions with other

things, either through their APIs, hardware user interface elements, or both.

In this case, a proxy interface describes a device used as a host for another

thing’s functionality. In fact, a mobile companion app can be considered a proxy

interface for its respective health IoT device. Some devices may use a proxy interface

in addition to a basic physical interface, while others may use this external interface

exclusively (such as in simple sensor devices without displays). In these cases,

loosening the relationship between a device and its mobile app controller could help

enable new simplified interactions or allow information to be shown with greater

precision, relevance, or availability within the smart space.

The efficacy of these proxy interfaces hinges on the democratized capabilities

of their device APIs, as described in section 3.3. In addition to offering its own

services, a device may want to discover the capabilities of other things in the smart

space, to search for potential proxies or to offer its features to less capable devices.

Similarly, a proxy interface may even exist solely between two devices; for example,

a Z-wave device’s services may be proxied as REST endpoints by a separate device

that also has WiFi hardware. An architecture must support this ability to share

capabilities and form such relationships to fully enable this potential for meaningful

interactions.

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 57

3.4.4 NOTIFICATIONS AND REMINDERS

Notifications, including reminders, device and health information, and other forms of

non-transactional incentives, are another important set of features that can support

and empower the user. Many health IoT devices, such as fitness bands and other

sensors, are meant to be used passively: most interaction is done in retrospect to

view collected data over time. In these cases, different forms of notifications are

especially useful to convey data in situations involving abnormal readings, contextual

data, and other time-sensitive information. Under normal use, the user might not

receive such information until far after the fact; a notification allows the device to

capture the user’s attention at the time of occurrence. Such notifications are already

a well-understood interaction in the mobile application space, making them very

useful for communicating important information from things.

 In addition to traditional thing-to-smartphone notifications, alerts may be

transmittable between health devices. Even if two devices do not interact through

their APIs directly, a generalized event may be broadcast by one, allowing the other

device to react despite not explicitly supporting the source device. This is powerful

when considering proxy interfaces and the scenarios described above, where a user

away from their mobile device may miss an important notification. A capable device,

such as a fitness band with LEDs or a speaker, could pick up this notification and gain

the user’s attention where not normally possible without a smartphone.

Reminders, a subclass of notifications, extend these concepts and focus on

empowering the user through specifically timed notices. These types of notifications

are especially important within a health IoT ecosystem, where they may help ensure

a user continues to use a device as required, such as maintaining a schedule or taking

measurements at specific times. For example, a typical blood glucose meter requires

the user to take a measurement two hours after eating: the device could schedule a

set of reminders on the user’s phone, describing this requirement and triggering a

notification at the appropriate time. The ability to meaningfully react is especially

important for this type of notification: the glucometer, for example, may not be

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 58

programmed with time-tracking functionality, and instead requests another device

(the user’s smart phone) to set up an alarm with its desired parameters.

3.4.5 INCENTIVES

Compliance and adherence when using personal health devices faces issues

resembling problems with medicine compliance [69]; that is, taking medicine on

time, consistently, and taking the proper dose). Patient empowerment is an effective

strategy to achieve compliance or at least convergence (where attempts to influence

or change behavior begin to have an effect), especially in patients with long-term

conditions [70]. However, a persistent problem in this form of empowerment is the

lack of a roles model: “who does what and when?” The concept of device IoTility

argues that the connected health device itself can contribute and play a role in

patient compliance and empowerment. Evidence would be needed to establish that

such a device contribution could make a difference, however, this would only be

possible after an implementation of the requirement feature is included in at least

some health devices.

 The three key elements of empowerment and successfully engagement are:

recall (reminders), reward (incentives), and maintaining capacity and context

(encouraging actions that are possible and doable by the user) [71] [72]. Measuring

and operating within user capacities is difficult, and although it may be approximated

under the context of how empowerment attempts are delivered, this element is not

addressed in this thesis. Recall is well addressed under the IoTiity requirement, as

shown in subsection 3.4.4. The last element, incentives, also remains important even

through it is a broad concept and difficult to architect; implementations would be

likely to use external elements and assets such as credit, passes, discounts, or

anything of value to the end user that could be provided by healthcare systems or

providers. Given this generality, the IoTility requirement for incentivization would

likely follow a cooperative process that places the device in the pathway of managing

these incentives. For example, a device may report usage statistics periodically to a

democratized app or server (such as those described in section 3.3). This could

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 59

include data on timing and accuracy (using concepts from section 3.5), such as when

the device was used and if it was used properly over a period of time. The receiving

end may accumulate this information and “score” it to convert into incentives; this is

where the unknown external possibilities would fall into place. Interfacing with these

unknown possibilities could occur through smart contracts [73] (connected to by

external organizations or businesses) or a form of digital wallet (such as Apple Wallet

or Google Pay).

3.4.6 REQUIREMENT SPECIFICATION

Section 3.4 introduced a selection of system and device-focused IoTility features that

aim to facilitate local interaction and cooperation between things in a smart space.

These features focus on the vendor and developer stakeholders, describing behavior

that can enrich IoT interactions without direct involvement or contribution from the

end user. These features are summarized into the following requirement

specifications:

• Relationships Between Things: A health thing should be prepared to interact

with other devices through some shared protocol.

• Thing-Like Mobile Apps: Mobile applications and software should be able to

interact with a smart space in the same manner as hardware things.

• Proxy Interfaces: A health thing should be able to act as an intermediate for

other devices or alternative communication methods.

• Notifications and Reminders: A health thing should be able to utilize

notifications and reminders in the same manner as a mobile app.

• Incentives: A health thing should consider the role of empowerment and

engagement in the design of their behavior and features.

As described above, these requirements represent a variety of features that can be

provided by the thing architecture and utilized in a variety of health applications. As

a result, some of these features are implemented directly in chapters 4 and 5 (such

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 60

as Mobile Apps As Things in section 4.4 and Proxy Interfaces in subsection 5.4.3).

Other architectural features provide more flexible support for a variety of

requirements, such as Tweets (subsection 4.2.2) and the relationships provided by

the Atlas Thing Architecture (subsection 4.1.1). Together, these requirements also

represent the bulk of the experiments and validation in this thesis, resulting in

evaluations described in sections 6.1 and 6.2, as well as a portion of section 6.4.

3.5 REQUIREMENT III: SAFE USE

Safety and accuracy are both primary concerns in healthcare environments in many

regards, from correctly taking a measurement to administering a proper dosage.

While the influx of connected medical devices has helped make these actions easier

and more accessible than ever before, safe use remains a prominent interest.

Especially when considering the number intended for use by inexperienced end

users, health IoT devices must not only become easier to operate correctly, but also

harder to use in a wrong or unsafe manner. For a health IoT architecture, safe use

refers to a thing’s ability to correctly and reliably interact with the user using both its

inputs and outputs.

 For sensor devices, safety manifests through the capacity for detecting

proper use: ensuring the user is taking a measurement the right way, at the correct

time, etc. To achieve this, an architecture must have some built-in capacity for error

detection on its inputs; depending on the device’s function, this may be possible

solely through software, or may require the assistance of additional hardware. For

example, a smart watch EKG device may use software signal processing to determine

the quality and validity of its readings. On the other hand, an automated blood

pressure device may require state from additional hardware elements such as

accelerometers to determine proper cuff placement. Once erroneous input is

detected, an architecture must be able to use this information to guide and correct

the user. While data can be marked as valid or invalid for further processing within

the device or other things, the user is likely to continue providing this bad data

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 61

without feedback on adjusting their interactions. Depending on the device, this may

involve conveying a binary value, an accuracy (analog) rating, or more traditional

feedback such as additional instructions. For example, the Kardia EKG device [58]

displays a real-time "signal-strength" graphic to guide the position of the user’s

fingers, while the A&D Medical wrist blood pressure monitor [59] controls LEDs

signaling the user to move their wrist lower or higher.

 For some devices, this feedback may be provided in real-time, allowing the

user to adjust their behavior and prevent an invalid reading from occurring in the

first place. Even in devices (especially those with "dumb" components, such as the

test strips of a user’s glucometer) where this is not possible, an invalid reading may

be detectable such that it is discarded, and the user presented with additional

guidance or coaching to repeat the process correctly. This simple form of input safety

becomes valuable when considering users who own many devices or are less familiar

with a device (which may even be prescribed by a physician rather than personally

chosen), especially compared to more traditional assistance such as physical

instructions [60].

 Compared to sensor devices, safety for actuator devices mainly involves

detecting behavior or commands that could harm the user or physically damage the

device itself. While input safety can process an invalid reading and discard it after the

fact, output safety must always handle potential errors before the action actually

occurs. Health IoT devices cannot stop all improper use, but an architecture can

consider and manage how a device is being used through its software APIs; for

example, an impatient user pressing a button five times does not necessarily

correlate to five sequential or simultaneous requests to the thing’s functionality.

While actuator devices are less common amongst health IoT devices, they are often

"high-risk," higher-tier (medical) devices; for example, output safety would be critical

in closed-loop insulin pumps (which can provide more personalized treatment

regimens [61] while still boasting an impressive safety profile [62, 63]) or other

dosing devices. Similar safety features are still important in lower-risk actuators, such

as a blood pressure monitor preventing over-tightening or damage to the air pump.

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 62

Due to their inherent risk, many of these actuator devices are likely to have similar

safety features in place already; however, further integration with health IoT

ecosystems will likely bring about new forms of interaction that require additional

precautions and considerations in regard to the safety of these devices.

 An architecture may validate these requests through constraints [64], or

additional validation on the conditions of an action. In actuator devices, this includes

limitations on aspects such as the frequency of invocation, the range of a parameter,

or the times when an invocation is allowed. For sensor devices, constraints focus

more on the results of the process, considering output value ranges or the states of

components within the device. In either case, a triggered constraint may then be

used to provide additional feedback to the user, as described above. Such

enforcements help ensure a device stays in a functioning and expected state,

regardless of how the user interacts with it. This type of safety also extends to "fail-

safe" modes [65] for actuator devices, where a malfunction or loss of power, such as

a health IoT wearable running out of battery, would not leave the device in a state

that could cause harm. How an architecture offers and manages these safety

features is critical when considering the effective use of various health IoT devices.

3.6 REQUIREMENT IV: USER IDENTITY AND PRIVACY

User identity is another critical component of a health IoT ecosystem; many personal

health devices will need some concept of an active or owning user. Most obvious are

the larger or home-based devices, such as blood pressure monitors and body weight

scales, that are shared between members of a family or household. If the device

intends to share its readings with the smart space or a user’s app, it must first know

how to associate this information with the correct user. Such a device may rely on

the user or the connectivity of other devices in the smart space to determine this.

For example, a glucometer may prompt the user to select their profile, or the

companion app (specific to each user’s mobile device) may share this information

during use automatically.

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 63

 When considering the connectivity features described in section 6, identity

becomes a prominent consideration even in single-user wearable devices, since such

potential interactions should usually be limited to devices owned by the same user.

For example, the glucometer scenario above should not set reminders based on a

family member’s dieting app. In this case, while a device may not track multiple user

profiles, it must still associate identity with broadcast measurements, or remember

which devices share ownership and are clear for interaction. These concepts of user

data and ownership are therefore critical within an architecture, as they directly

affect how a device can discover and interact with its smart space.

 Privacy is also a primary concern when considering user identity and how

health IoT devices share information: the data and functionality offered by many

devices should not necessarily be shared freely with an entire smart space. In

addition to ownership, a health IoT thing must also consider who else (if anyone) a

given piece of data should or could be made available to. This is especially true when

considering devices that support democratized channeling, as described in

subsection 3.3.3. Data made available to third parties or healthcare providers may

also become protected health information, increasing security requirements and

complicating matters for a thing that shares its information within a smart space. In

this case, a strong and secure user identity is essential to the health IoT device.

 These concepts play a role when integrating incentivization features as well,

such as those described above. These features and their associated measurements

will likely require some level of verification (in terms of the user and device identity

of the data) that a platform can trust when calculating how to administer a reward.

For example, a user receiving incentives for consistent use of a glucometer should

not be rewarded when a family member wants to take a reading for themselves. In

addition to the forms of detection described above, a health IoT device may

integrate some form user authentication; this could involve a biometric challenge or

defer to the hardware present in the user’s mobile device, such as fingerprint

scanning and facial recognition. Such authentication features also bring into

consideration how health IoT things are provisioned in a new smart space. For many

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 64

single- and multi-user health devices, identity is a main focus during the setup

procedure. A health device may require a variety of identifying features to function;

these can be specified manually, or even sourced automatically from parameters in

the smart space [20]. The way an architecture handles this procedure is critical in

determining how a device may be used; some devices may require a configured

identity before use, while others function even in an un-provisioned state (this

scenario is also discussed in section 3.3).

3.7 SUMMARY

This chapter introduced a set of requirements intended to meet the specialized

needs of health IoT. First, a high-level methodology was presented, describing the

process of identifying, implementing, and evaluating a new requirement. This

methodology also highlights some of the considerations taken during the selection of

the presented requirements. One such consideration is the difference between the

“system” and the “ecosystem;” while the main concern of the IoT architecture

involves the hardware it controls, the device’s interaction with other devices,

applications, and services also plays a large part in influencing the architecture’s

design and features. The methodology also considers the role of the end user in

relation to the device architecture: while the needs of the user set the goals of the

architecture overall, they may not map to individual system features and

requirements. Instead, requirements may also stem from stakeholders such as

vendors and developers, who create applications using the architecture.

 This chapter also introduced the concept of IoTility, or the ability to increase

the collective utility of a group of smart things. This concept relates closely to the

potential functionality of many health IoT things, and represents one major grouping

of the identified requirements (alongside Democratization, Safe Use, and User

Identity and Privacy). The chapter then considers these requirements across the full

spectrum of health IoT, considering their use in wellness, personal health, and

medical scenarios. As each of these “classifications” are likely to present different

Chapter 3: Requirements for Health IoT Wyatt Lindquist

 65

needs and use cases, the requirements are discussed mainly in the context of

personal health: devices that may contain more advanced health features but are

meant to be used by individuals outside of a hospital setting.

 The chapter then investigated each requirement grouping in more detail,

focusing especially on Democratization and Device IoTility. These two requirements

are broken down further into individual features and concepts that may be

integrated into a health IoT architecture. Democratization focuses on how users may

control or decide how to use the thing, arguing for features such as common user-

facing programming APIs, additional focus on user interface capabilities (especially

when considering accessibility), and data transfer and ownership between users and

their healthcare providers. On the other hand, Device IoTility focuses on how a

device may enrich the user through the combined capabilities of other things,

without requiring explicit command or intervention. This includes concepts such as

creating thing-like mobile applications, proxying interactions between dissimilar

thing devices, and integrating incentivization features and interactions.

 These requirements are used to guide the design and implementation of the

architecture described in chapters 4 and 5, especially those related to the IoTility

requirement. Still, while these requirements introduce a variety of powerful features

prepared to meet the needs of health IoT, the chapter notes the possibility of

additional or modified requirements as the architecture evolves. Potential limitations

of the selected features, as well as directions leading to new or modified

requirements, are discussed further in chapter 7.

CHAPTER 4: A HIGH IOTILITY HEALTH ARCHITECTURE

Fully supporting the requirements described in chapter 3 calls for careful

consideration of their impact and position within the lower levels of an IoT device;

that is, the thing architecture. While it is possible to address some of these needs

within an individual IoT application, a focused architectural implementation can

position the thing to more easily and consistently offer these important

functionalities across a variety of devices and scenarios; points that are critical when

considering the fragmented and evolving nature of the personal health ecosystem. A

health IoT application may then utilize or build on top of the functionalities provided

by this groundwork to better meet the specific needs of their end users. To this end,

the architecture presented in this thesis uses such requirements to guide the

implementation of core features that can facilitate new meaningful interactions with

users and other things in a health IoT ecosystem.

 While all of the previously defined requirements play a role in forming these

features, those related to the concept of IoTility (detailed in section 3.2) are

especially significant in the context of an IoT architecture: they influence how a thing

is prepared to interact with the rest of the smart space. Considered on its own, a

health device is mainly concerned with performing its physical functions (sensing or

actuating); here, an architecture may be able to provide hardware abstractions or

other utilities. Expanding to a traditional ecosystem silo, where the device

communicates through a mobile application or the cloud, an architecture may

become more involved, managing safe use, networking, and security concerns.

Beyond this, much of a thing architecture’s potential stems from how a device can be

programmed (by the vendor, developer, and even end user) to support new “high

IoTility” interactions that specifically target the specialized needs of health IoT.

 This chapter presents an overview of the developed thing architecture and its

prominent components, each of which aims to provide new features that satisfy one

or more of the requirements identified in chapter 3—especially those related to the

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 67

concept of IoTility. Section 4.1 introduces the Atlas architecture, and describes the

modifications made to support new health IoT requirements. The remaining sections,

4.2 through 4.4, focus on individual components that work within or alongside the

architecture to further enable the meaningful interactions described above.

4.1 THE ATLAS HEALTH IOT ARCHITECTURE

The Atlas Health IoT Architecture described in this thesis builds off the structure of

the Atlas Thing Architecture [41, 40]. This earlier architecture aims to better enable

things to self-discover their characteristics and capabilities, which can then be shared

within a smart space with other things. Such “social” thing-to-thing interactions are a

core focus, versus an architecture that communicates through a single point such as

a cloud service. The new health architecture modifies these components to better

support IoTility features and other health IoT requirements, while also introducing

new capabilities that work towards this same goal. The following subsections provide

an overview of the original Atlas Thing Architecture, as well as a detailed description

of the new Atlas Health IoT Architecture.

4.1.1 THE ATLAS THING ARCHITECTURE

The Atlas Thing Architecture is a set of software operating layers that provide

functionalities a thing requires to engage and interact meaningfully within a smart

space, first introduced by Khaled [39]. The Atlas platform (the upper block of figure

4-1) itself exists on top of a set of base thing operating system services, abstracted by

a host interface layer that provides portability and interoperability. These layers

manage the interactions between the Atlas platform and device features such as

networking, memory management, I/O interfaces, etc. Building on top of this, the

architecture consists of several elements focusing on different issues in IoT, each of

which are represented through the individual blocks within the Atlas platform.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 68

Figure 3-1: Overview of the Atlas Thing Architecture [39].

At the lowest level, the API Engine manages a device’s service behaviors and

endpoints. The structure of these services is derived from the IoT-DDL Manager,

which loads thing information from a structured device description (described in

section 4.2.1). The manager also provides metadata information that can be shared

through messages (described in section 4.2.2) formatted by the Interactions and

Tweeting Engine and sent to other devices in the smart space. Messages received

from other things can then facilitate new interactions and relationships [44] through

the Knowledge Engine. Additionally, the Security Engine manages authorization and

encryption of active thing interactions, and the Interface and Communication Engine

manages converting any messages to various protocols such as REST and MQTT [43].

 Together, these components create a powerful thing architecture targeting

the traditional personal IoT domain. It is important to note that the Atlas Thing

Architecture mainly focuses on more powerful thing devices, including boards that

can run full-featured operating systems (such as the Raspberry Pi [74]) and

microcontrollers with more advanced networking and data storage features. On a

Interactions and Tweeting Engine

IoT-DDL Manager

API Engine Identity
Parser

Attachment
Manager

Interface and Communication Engine

Identity and Knowledge
Tweets

API
Tweets

A
tla

s I
oT

 P
la

tfo
rm

DDL
Sublayer

Tweeting
Sublayer

Interface
Sublayer

Host Interface Layer

Network
Manager

Process
Manager

Memory
Manager

Device Secure
Elements

Services
Interfaces

Main Controller and Messaging Backbone

Io
T

O
S

Se
rv

ic
es

Device
Manager

Meaningful
Interactions

Security Engine and
Application Run-Time

Knowledge
Engine

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 69

more constrained device, some features may not be feasible: for example, a thing

lacking a WiFi radio cannot share metadata information in the same manner as a

more capable thing, and a device without flexible storage may be unable to load its

device description at runtime. These constraints are an important consideration

when adapting to the personal health domain, where devices represent a large

variety of capabilities and may vary in their ability to support a specific health IoT

requirement.

4.1.2 ADAPTATIONS FOR HEALTH IOT

Figure 4-2: Block diagram of the Atlas Health IoT Architecture.

The Atlas Health Architecture utilizes and augments the features of the Atlas Thing

Architecture to better target the goals and requirements of health IoT, as shown in

figure 4-2 (where blue outlines represent modified components and green outlines

represent new ones). In the Lower Layer, the Atlas Platform components are built

upon to provide the base for the IoTility features described in chapter 3. For

example, the API (Service) Engine and Entity Manager are adapted to a microservices

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 70

architecture (expanded on in chapter 5) that supports a variety of API and IoT

interactions. Some new components are also introduced, such as the Keyword

Manager to handle information collected from tweets (described in section 4.2.2)

and mobile apps acting as things (described in section 4.4). Above these

components, the Higher Layer utilizes these core platform features to extend and

adjust interactions as they are passed to and from the Communication Engine above.

In this layer, the components provide self-contained IoTility capabilities that can be

utilized directly in specialized Health IoT interactions. As shown in figure 4-2, these

components are named after the architectural requirements they target:

• The Safe & Proper Use component manages a set of pre- and post-conditions

for each API endpoint. For example, a received API call (an IoT interaction)

may be prevented from reaching the API Engine if a parameter value is

outside of its expected range. Such “constraints” may also depend on the

physical characteristics of the device or environment, the state of other

things, and the time and frequency of interaction. This component is

described in further detail within chapter 5.

• The User Identity & Privacy component manages any user identifiers and,

along with information from the Device Identity, packages this data with

service outputs as needed. The component also provides basic security

features, such as enabling the encryption of inter-thing communications. Like

Safe Use, this component works closely with the API Engine, but can still be

managed independently.

• The Health Device IoTility component contains a variety of features that

support the IoTility concepts described in chapter 3, including managing

notification-style communications and exposing endpoints and capabilities

for incentives-based reporting. The component also allows a device to proxy

service calls to other devices with different capabilities, allowing a greater

variety of devices to participate in the interactions enabled by the

architecture. The details of these IoTility features are expanded on alongside

the discussion of their implementation in chapter 5.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 71

Above the Health IoT layer exists the Interface and Communication Engine, which

contains the democratization component of the requirements. This layer manages

the communications received by the health thing, including IoT interactions (such as

service calls) and user interactions (such as notifications). The democratization

component manages representations of the API endpoints from the API Engine,

allowing standardized services to interact with the device, and enabling effects such

as an authorized, user-approved "redirect" of a native health device companion app

to a separate democratized one. Together, these components enable many of the

requirements presented in chapter 3—creating a foundation for a variety of personal

health IoT applications.

 The separation between the Lower and Higher Layers is also an important

feature of the architecture. While most of the Lower Layer components are closely

integrated and related, the Higher Layer features offer greater “standalone”

capabilities; they may still be useful even in scenarios where the complete Atlas

Platform components are not supported. Imagine a scenario similar to the one

described in section 4.1.1, where a minimal thing platform, such as a low-power BLE

device, cannot offer the IoTility features integrated within the Lower Layer (such as

IoT-DDL loading or tweeting over WiFi). Even without this support, Higher Layer

features such as Safe & Proper Use may still be important requirements for the thing.

Defining this separation ensures the utility of a requirement can be maximized across

a variety of health IoT device classes.

 Another important feature of the new health architecture components is

represented by the addition of the Software Platform Support block, positioned next

to the Device Operating System Services in figure 4-2. In addition to traditional thing

devices, this thesis highlights the “software thing,” such as a mobile application, as

an important part of a health IoT ecosystem. In such a scenario, the thing is no longer

represented only by physical hardware, but possibly by an ephemeral application

that exists as a part of a larger system as well; the architecture interfaces less with

low-level features and acts more as a software library providing IoT functions to the

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 72

application. Like the hardware device services, these features are abstracted by an

interface layer sitting below the core architecture. These services are significant for

such software things, as their needs and functionality likely differ from a similar

hardware device: for example, a mobile app thing might manage interactions and

offer services defined by the state of the application rather than a manually created

device description (IoT-DDL). Here, while the higher-level health IoT requirements

are similar, the Atlas platform features are used in a different capacity. Similar

situations relating to mobile apps are explored further in sections 4.3 and 4.4.

4.2 EXPANDING IOTILITY IN THE HEALTH IOT LOWER LAYER

Present-day IoT platforms and architectures [75, 76] often revolve around

communication through a central point (such as cloud platforms or an edge) where

users can control things and access data. This type of architecture is highly effective

for cloud-based application development; however, it is often vendor-specific and

ignores the potential for direct communication between things. These silo-

constrained connections limit the capabilities of the smart space, preventing things

of different type or vendor from fully engaging. To truly realize the potential of an

IoT ecosystem, things should be able to seamlessly integrate with clouds, edges, and

devices across a variety of vendors and developers: features that are a primary focus

of the Atlas Architecture. The following subsections expand on two components that

are central to this potential, the IoT-DDL Manager and the Interactions and Tweeting

Engine, and present aspects that have been developed further to better enable core

IoTility features and increase democratization and interaction between health IoT

things within the Atlas Health Architecture.

4.2.1 THE INTERNET OF THINGS DEVICE DESCRIPTION LANGUAGE

While democratized communication is important, simply connecting devices that

“speak the same language” is not enough to fully realize the potential of the IoT.

Rather, this also depends on how a thing’s services, resources, and capabilities are

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 73

described and made known to the smart space, and how a thing can utilize that

information to support promising IoT scenarios. The main constraint in achieving this

centers on the wide heterogeneity of communication technologies, environments,

generated data, and measurement capabilities that may be found on a device. Such

variability introduces a significant challenge in integrating these things with a

surrounding smart space and IoT ecosystem.

Figure 4-3: Generalized thing structure and major IoT-DDL components.

The Internet of Things Device Description Language (IoT-DDL) defines a human- and

machine-readable schema to structure and address some of these democratization

requirements. This schema builds on top of the previous Atlas DDL specifications [38,

40], shifting focus from discovering hardware services directly to enabling ad-hoc

connections between the various capabilities within a set of thing devices. To

achieve this, a structure must be identified that represents not only the potential

characteristics of the thing, but also the variety of forms and purposes it may take.

For example, a thing may be hardware-based (such as a sensor or actuator),

software-based (such as a mobile app), or even a hybrid that offers a variety of

…

…

Entities

Services

…Attachments

Interactions Interactions

Resources

Thing

…

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 74

services to the smart space. From another perspective, a thing may be a single low-

power sensor, a powerful interactive device, or a collection of different thing-like

entities. These types and roles influence the kinds of meaningful interactions a thing

can be involved in, as well as their suitability to interact with other things in a smart

space.

Figure 4-4: The components of an example hybrid thing.

With these differences in mind, the IoT-DDL defines a set of major components that

can represent a given thing, and uses them to structure the top-level format of the

description itself. The components, illustrated in figure 4-3, are:

• Resources: the shared components that a thing requires to be a part of the

IoT, such as the networking hardware, storage device, etc. Each resource can

be described by a set of attributes and properties that dictate the operation

of essential internal functions.

• Entities: individual hardware and software components that represent a core

set of functionalities within the thing device. An entity defines properties that

control how the component operates when used in external interactions.

Alarm Clock as
built-in entity

Offered services
by the Clock

Database attached
to the thing

Storage and Computing
Resources for the thing

Smartphone
as thingInteractions

(e.g., API call
for an offered
service)

Interactions
(e.g., Announcement
of services)

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 75

• Services: functions that use the features of their parent entity. A service

represents a single point of interaction with the thing; it is a well-defined

interface (public API) that can be utilized by users or other things.

• Attachments: a (potentially shared) external resource that can offer

additional services to the thing. This resource likely exists on the cloud or

edge, as it is too heavyweight for a constrained device or requires resources

that are not available internally. For example, an attachment may represent a

log server, database, or dashboard.

As an example, consider a smartphone acting as a hybrid thing in a smart space. The

thing, illustrated in figure 4-4, contains internal storage and WiFi radio resources, a

set of hardware sensor entities (such as the accelerometer), and a software timer

entity that can provide a variety of services to the user. The phone also receives

occasional operating system updates from the vendor through a cloud attachment.

Together, these components make up a complete IoT-DDL description that the thing

can use to self-identify and better prepare for meaningful interactions.

 This description language assists in bridging the gap between the needs and

wants of health device vendors, and those of developers and end users. While the

vendor has full control over the initial features and behavior of a device, the DDL

keeps the thing open to changes by other stakeholders as well. A developer can

tweak a vendor behavior without needing to completely reconfigure the device; user

stakeholders gain more control over their things without cutting out the vendor’s

influence or creating additional work in developing a new device.

 The IoT-DDL specification has continued to evolve alongside changes

introduced by the Atlas Health IoT Architecture. For example, the architecture uses

microservices for thing functionality on capable platforms, matched by a more

explicit service definition model within the description file. This allows behavior to be

specified within the DDL and created or changed at runtime. The specification also

introduces new concepts such as actionable keywords (described in section 4.4) and

structures for declaring proxy interfaces to external devices, including BLE sensors.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 76

To simplify the creation of these descriptions for vendors, developers, and end users,

an HTML builder tool capable of creating, editing, and validating IoT-DDL files is also

introduced. These components are discussed in detail in chapter 5.

4.2.2 THING TWEETS

Once a device is positioned to interact effectively with its smart space, it must

understand how to communicate with other things; the Atlas Health IoT Architecture

manages this inter-thing information sharing through interactions called tweets.

Devices can share available information and metadata (collected from the IoT-DDL

description) by distributing these small messages to all things in the smart space.

Each tweet contains an identifier for the originating thing, along with a payload such

as device information, a service name and API, keywords, etc. Tweets are flexible and

adaptable to new health architecture features, such as a smartphone application

thing searching for services to integrate into its interface (as described in section

4.4). Together, these “broadcast” tweets represent the first stage of a meaningful

interaction between thing devices.

 In addition to the broadcast tweets described above, a device may send a

tweet interaction directly to a single thing. In this case, the tweet contains an

identifier for the target thing (likely acquired from a previous metadata tweet) in

addition to the payload and source information. Such tweets allow devices to invoke

services or respond to requests from other communicating things. This tweet type is

also used in new architecture features, such as carrying inter-thing notifications or

formatting proxy interactions. This class of “unicast” tweets represents the second

stage of a meaningful interaction—allowing things to utilize the information they

discover and receive from other things in the smart space.

4.3 DIY HEALTH IOT APPS

As discussed in chapter 3, the concept of mobile companion applications that control

and enrich their devices is exceptionally important in the personal health IoT domain.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 77

Combined with the software thing features introduced in section 4.1.2, mobile apps

have the potential to integrate further with traditional health things and participate

in their high IoTility interactions. However, even amongst software things, mobile

apps are quite different from normal devices in both form and function. An app’s

detailed and flexible interface (the smartphone’s screen) opens up a variety of

interaction possibilities, but utilizing these unique features requires rethinking how a

mobile app with thing features can interact with other devices in the smart space.

This section describes an initial attempt at better integrating mobile apps with

democratized thing devices.

In present-day health IoT ecosystems, many companion apps are tailored to

specific environments and things that force the user to stay within the bounds of

their silo if the app’s full functionalities are to be taken advantage of. Future

ecosystems could be much different, where these IoT apps are built by the end user

in an easy do-it-yourself (DIY) fashion, tailored to their own smart space and devices.

Such capabilities could help limit the “app overload” described in chapter 3 as well; a

user with many health devices from different vendors (and therefore many

companion apps) could effectively “concatenate” the information they are most

interested in, creating a single DIY app containing only this focused information. To

achieve this, a variety of questions must first be answered, such as how the app

interface can be defined and how the user can design and build a new app directly

from their mobile device.

 First, consider the following example of a simple DIY health app. A user owns,

among others, two health devices: a connected body weight scale and a fitness

tracking mobile app acting as a thing. The app contains functionality to calculate the

user’s body mass index (BMI)—under normal circumstances, this requires the user to

manually input their current weight (their height is stored within the app’s profile)

after taking a reading on the connected scale. Both devices sport thing capabilities,

but there are no pre-existing integrations between the two, limiting their combined

use. Instead, imagine the user defines a DIY app relating the scale’s API to the BMI

functionality of the wellness app. The new app presents a simple interface showing

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 78

the calculated BMI after the scale is used, without requiring the user to open the

apps for the scale or fitness tracker.

 Using the Atlas Thing Architecture, things can tweet to share identities,

services, and potential relationships [44] that provide hints as to how devices may be

related and capable of working together. These relationships empower the user,

allowing them to discover new interaction possibilities or create their own while

charting out the functionality of a new DIY app. To enable generation of this app

without involving the user further, a description of these functions can be sent to an

external attachment (a cloud or edge server) capable of converting such information

into actual mobile code. The attachment builds an application package, using the

APIs of the involved things to create a simple interface, before sending the binary

back to the user’s smartphone; the end result is a native application (versus a

“bookmark” or web app link) enabling interactions unique to that user’s smart space.

 These concepts were utilized in a prototype implementing the DIY health app

scenario described above [77]. This prototype partially served as a guide while

developing features of the Atlas Health IoT Architecture; it begins to show the

potential of more generalized app-thing interactions, but also highlights some issues

with these simpler interactions. For example, the above works best with sensor

things and APIs that take no input parameters—complex thing services demand

complex user interfaces that are harder to generate dynamically. Additionally, the

concept depends on the generated app superseding the use of its components. If a

user likes or wants other features from the fitness tracker app described above, for

example, they cannot easily access these capabilities within the newly generated

application. The next section builds on this concept and its shortcomings, introducing

more direct thing-like behavior and better integrating dynamic opportunities into

existing mobile applications.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 79

4.4 MOBILE APPS AS THINGS

Imagine a user downloads a mobile app within their smart space full of personal

health things. For example, consider a COVID-19 tracking and information app that

provides advice and contact tracing. Surrounded by a variety of devices with the

potential to track symptoms such as body temperature or coughing, the app could

offer feedback beyond “do you feel ill?” or “have you been tested?” prompts. The

presence of such things may drive the app to adjust its interface, creating a new

button that requests the devices check for a high temperature or listen for

continuous coughing, and provide deeper feedback to the user.

 While a vendor may be able to achieve this within their own ecosystem silo,

imagine the interaction taking place without programming the specific interaction—

the app simply advertises a set of capabilities and interests that allow thing devices

to create new engagement opportunities. The thing devices described above are

looking for these capabilities, allowing them to drive a new interaction on the mobile

app without the original developer implementing or even considering this specific

case of a “COVID check” button. However, this raises a variety of concerns: how

should the app present these dynamic opportunities to the user, and how can the

developer prepare their app logic and interface for such opportunities?

 To act as a thing, a mobile app must react to the capabilities and

opportunities of a smart space, and change at the will of its user within the context

of its own interface and functionality. This calls back to introspective programs [78],

or programs that "self-reference" their own information. However, instead of

performing tasks like copying itself or print out its source code, a mobile app must

use this information for far more practical purposes, such as adjusting their services,

appearance and functionality on the fly to take advantage of and utilize the services

of another smart thing. Before such modifications can occur, two pieces of

information must be known: the target functionality (from the smart thing), and the

control to give it (from the mobile app). Once both of these are known by one of the

devices, the interaction and app augmentation can occur.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 80

 Receiving potential functionalities from the thing through the transmission of

its APIs, as was done in a previous apps-as-things demo [79], provides an app with all

the information it needs to form new meaningful interactions. However, this method

also leaves a lot of work for the app developer, in terms of determining how to

integrate this new behavior and display it to the user. If the developer does not know

exactly which smart things to support, it becomes impossible to determine what

context (when and where in the app) an interaction should be made available. In this

manner, the app developer may want to leave some "placeholder" space for a new

interaction’s UI elements; however, anticipating the extent of the requirements

(mainly where to place this placeholder and how to link it logically with the created

new behavior) would prove difficult. Instead, a UI in this manner would likely find

most use in pop-ups (such as a toast notification [80]), or a new interface in its

entirety (such as a “Chromeless” in-app web browser view [81]), where the context

of the interaction can be entirely contained. This moves the information requirement

to the thing, which can now manage interactions through its own interface, using the

mobile app only as a display. Unfortunately, in these cases, this context is disjoint

from the rest of the interface: the UI exists "on top" of the app and cannot easily

interact with or extend the app’s developer-created elements.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 81

Figure 4-5: Contextual information available within a mobile app.

True integration of a thing’s functionality into a mobile app, therefore, becomes

difficult. While handling “simpler” interactions this way may be possible, such as

when a sensor value should be displayed or when a button can trigger a service with

no arguments (as in the above example), it becomes less feasible when handling

services that require input from the user. Here, both the thing and the app lack the

full picture of the interaction; the app does not know what information is needed by

the thing (in terms of an API call), but the thing cannot pull arbitrary information

from the app. Instead, more complicated interface decisions would have to be

provided directly by the thing (in the Chromeless web view, for example), asking for

information that may already be available within the app. If the app developer only

knows about what information can be provided to potential things, and the thing

only knows the services it can offer, how can interactions between these devices be

more closely integrated?

4.4.1 USING CONTEXT IN MOBILE APPS

Consider, for example, a pain management app and its developer. The app presents

a variety of tips and instructions for the user to manage different forms of chronic

Try to sleep on a
firm mattress

Set the room temperature
to around 20-24˚ C to
stay comfortable

{
“firmness”: “firm”

}

{
“temperature_min”: 20,
“temperature_max”: 24

}

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 82

pain, including a one layout with sleep tips such as “use a firm mattress” and “sleep

with a room temperature between 20-24˚ Celsius.” Imagine that, like the concepts

above, the app reacts to the user’s smart space, showing new buttons to set the

firmness of the user’s smart mattress or schedule a temperature on their thermostat.

Rather than explicitly program these interactions, the app developer merely exposed

key concepts, such as “firm mattress” or “22˚ C” to the smart space, and the

engagement opportunities are initiated by the things that could use this data if they

existed in the smart space.

 In this manner, various “contextual” data from the app can be quite useful in

integrating new smart thing interactions. Even without knowing what devices to

interact with, the developer already knows where interesting data comes from (such

as a specific UI element), and, by extension, how such data may be used in a new

interaction with an interested thing—this relation is shown in figure 4-5. In a

situation targeting a specific device, the app developer indirectly identifies such

“interaction-capable” contextual information to pass to the known API. For example,

if the app developer works for a smart bed manufacturer, they know “firm” is the

value to pass to the device. When the target functionality is unknown, the developer

can still identify this information, effectively saying, “the user is interested in a firm

bed” rather than “the user wants to set their smart bed to firm.” While they cannot

give this information directly to a thing that will use it, the app developer can still

provide this input information if a thing can relate its services and complete the

other half of the engagement.

 From the thing’s point of view, the app reveals not only a potential place

where it may be used, but also the data needed to use it. Even with the right

information, however, the thing does not know when to use it. For example, the pain

management app should not set the bed’s firmness immediately upon starting; the

user must see the suggestion and explicitly ask for the change to be made. The app

also needs the context of the interaction, or where in the app’s logical flow the data

will enter and be made available. In the case of a mobile app with many views and

functionalities, such context is critical in enabling meaningful interactions; at times, a

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 83

service or a piece of data may not even be relevant or accessible, depending on the

state of the app and the actions of the user. Conveniently, knowing where the data

comes from provides the contextual information needed: the source UI element is

always tied to a specific point in the app’s logical flow. For example, the ability to set

the mattress to firm only makes sense when the user is looking at the sleep tips view.

Therefore, the final “trigger” for the interaction (a UI element; a button in the

example) must be located in the same context as the data that will be provided.

 This concept is similar to the more traditional Android URI Intent [82]. Here,

the developer specifies a format that arbitrary text can be matched against, creating

a “hyperlink” to a different app that can use the matched text to perform a service.

For example, Android can detect common date and time formats in plain text, which

are automatically underlined to create a link. When the user taps on this link, they

are given the option to add the event to their calendar, amongst other operations.

Here, the original writer of the text was not concerned with this functionality; they

did not write HTML tags to specifically allow the time to be used in the calendar. Like

the concepts above, the “consumer” of the interaction (the thing, or the Android OS

in this example) decided how to use the data.

 Unlike a date URI, however, useful app information is unlikely to follow a

standard format. Instead, collecting and presenting this per-component information

poses a significant challenge to the developers of both thing devices and mobile

apps. Making such fine-grained interaction a reality will require mobile app

developers to truly consider the role of their app in an IoT system, manually

identifying pieces of information that could be used, for some purpose, in a smart

space. Likewise, thing developers must support a wider range of potential

interactions, looking for key pieces of data that are compatible with their services,

making their things more usable and accessible through relevant mobile apps.

Through a new programming construct introduced in the next subsection, this thesis

aims to limit such apparent complexity by minimizing requirements placed on the

mobile app developer—where a mastery of IoT should not be required to create an

app with these thing capabilities. A solution also should impose only minimal

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 84

changes to the app development process; even with IoT knowledge, app developers

are less likely to go out of their way in making their apps things. Rather, the

capabilities introduced should exist as a first-class citizen within the standard

development ecosystem.

4.4.2 ACTIONABLE KEYWORDS

For a mobile app to better realize its functionality as a thing, the roles of a mobile

app and normal thing device are reversed. Rather than search for potential

interactions through service/API information broadcast from things, the mobile app

advertises its available input data back to the smart space. A thing can then match

this input against its available services, discovering new potential interactions that

can be shared with the mobile app. With knowledge of the input data, the mobile

app developer can directly design an appropriate interface (versus leaving space for

the Chromeless web view described above) while remaining flexible for various

potential interactions. This also enables other thing devices to make the decision on

actual matches and have more means to interact with the mobile app.

The actionable keyword (AKW) concept and programming construct can be

used to represent this input information and facilitate a link between the logic of an

engagement opportunity and the mobile user interface. An AKW—as shown in figure

4-6—is a structure present within a mobile app that contains the following: a

description of some input data, a set of keywords to represent the purpose and

source of that data, and information on the UI elements that data is tied to (the

context of the interaction). Portions of this information from the AKWs are then

broadcast to the smart space, where thing devices compare keywords and data types

against their available services. If a match is found, that service’s API is sent back to

the app to be invoked by the user. Note that a single AKW may represent multiple

instances of such a UI context (like the rows of a list view); the actionable keyword

represents the type of information available, not a specific piece of data—all

instances of that data are valid inputs to a thing service that matches with the AKW.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 85

Figure 4-6: The interaction between an app's actionable keyword and a thing service.

The AKW also handles another important aspect discussed in the previous

subsection: once a relationship is formed, when should the data be used to invoke

the bound thing’s functionality? To address this, an actionable keyword also

represents an input control (also called a widget [83]) within its context that allows

the user to trigger the formed relationship. The developer defines a "placeholder"

element (a button in the current implementation) that is initially blank and hidden—

it is not known what service, if any, will respond to the AKW (if nothing responds, the

element will stay hidden indefinitely). Once a relationship is established, the button

pops into view with a label or styling specified by the binding thing. At this point,

interacting with the element (such as tapping the button) invokes the received thing

service with the data from the relevant UI context as input.

 To illustrate this entire process, consider the pain management app described

above. The app developer believes smart things could help the user better act on the

various suggestions within the app, and decides to transmit the ideal temperature

for sleeping. They create a new AKW, specifying the temperature as an available

integer, and relating it to the keywords “temperature”, “air conditioner”, and

“heater,” among others (since the user may have central air, a radiator, or even a

Set the room
temperature to
around 20-24˚ C

{
“keywords”:[

“temperature”, “AC”, “heat”
],
“type”: “button”,
“value”: “temperature”, • • •

}

HIDDEN Set Target
Temperature

{
“service”:“SetTemperature”,
“owner”: “Thermostat”,
“inputs”: [“temperature”], • • •

}

Set the room
temperature to
around 20-24˚ C

New Extend
Relationship

Thermostat

Actionable
Keyword

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 86

fan, the developer does not know exactly how temperature can be controlled).

Within the app’s UI, the developer specifies the text view as the context of the

potential interaction and positions a placeholder button next to the text itself. All of

this information is compiled into the app, and broadcast to the smart space while the

app is open. These broadcasts can then be evaluated by other things in the smart

space, which attempt to match the keywords and data types with the capabilities of

their own services.

 A thermostat thing finds a match and responds to this AKW to create a new

relationship with the app, providing information about itself, its “set temperature”

service, and a new label for the placeholder button within the app. The app can then

concatenate its ability to provide a temperature with the thing’s service, enabling the

placeholder button and changing it label to “Set Target Temperature.” When the

button is tapped, the service provided by the thermostat is invoked with the

temperature specified in the sleep tips. Note that in this scenario, multiple services

may vie for an AKW, but only one may attach and create a relationship—this,

however, is not permanent; the bound service may be removed, disabled, or

swapped out, allowing another to match.

 In the given scenario, all information needed by the thermostat service is

available from the app immediately, and the user can complete the interaction with

the single tap of a button. The interaction involves a thing requiring a specific input

type, receiving the relevant AKW, and instructing the mobile app to integrate its

service. However, this kind of back-and-forth may not always be able to satisfy a

thing service’s requirements, especially with more complicated services, such as

those requiring multi-stage interactions or user confirmation. Handling such

interactions is likely to drastically increase the complexity of the solution, therefore,

the proposed systems focus only on "simple" interactions utilizing a single button.

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 87

4.5 SUMMARY

This chapter described the design of a health IoT architecture influenced by the

requirements presented in chapter 3. The Atlas Thing Architecture, focused on

personal IoT applications, was used as a base for introducing new, health-specific

features and requirement implementations. The Atlas Health IoT Architecture,

whose structure was broken down in this chapter, reflects the accumulation of these

new features. Most of these features reside in one of two major subsystems: the

Lower Health IoT Layer and the Higher Health IoT Layer, resting between an

abstraction layer and a communication interface. The higher health IoT layer

provides self-contained implementations derived from the requirements (such as

IoTility and Safe Use), and augments interactions that occur in the lower health IoT

layer—which focuses on core functionality such as handling API calls received from

other things—as they are sent and received throughout the smart space.

 This chapter also introduced some features utilized by the architecture to

better support democratization, including “tweet” communications and the IoT

Device Description Language (IoT-DDL). Tweets are text-based messages that are

used to transmit information about a thing’s services and capabilities, invoke

functionality on a device, or flexibly enable new health interactions. The IoT-DDL is a

human-readable configuration schema that allows vendors, developers, and end

users to configure and describe the capabilities of their various devices. Like tweets,

the IoT-DDL is also extensible and has adapted to new health IoT features and

requirements alongside the thing architecture.

 Lastly, the chapter introduced some IoTility concepts that play a role outside

of the core thing architecture, defining new interactions with mobile device apps. DIY

Health IoT Apps allow end users to combine functionality from independent thing

devices (utilizing their public APIs) into a simple interface that can be installed as a

native app. Mobile Apps As Things (MAAT) evolves this concept further, allowing

developers to specify individual “placeholder” UI elements that can be linked to new

thing device behaviors. These placeholders are created in the same manner as

Chapter 4: A High IoTility Health Architecture Wyatt Lindquist

 88

normal interface elements and associated with actionable keywords (AKWs)—

containing keywords and potential arguments for an IoT service call—that allow the

developer to specify potential behaviors/features without programming for a specific

thing or class of devices. Instead, the thing makes this matching decision, shifting

responsibility and simplifying the mobile developer’s role in new IoT interactions.

 Overall, this chapter outlined the structure of the complete Atlas Health IoT

Architecture, especially the components related to Device IoTility and

Democratization. This also included considerations for these ecosystem components,

such as external services and companion mobile applications. The implementation of

the architecture and ecosystem is explored in further detail in chapter 5, and then

evaluated through a set of experiments in chapter 6. Some architectural features

that received less focus in this chapter, such as those relating to User Identity and

Privacy, are also a part of the limitations and future work discussed in chapter 7.

CHAPTER 5: IMPLEMENTATION

This chapter presents the implementation details of the health IoT architecture and

supporting components detailed in chapter 4, each aiming to satisfy features of the

requirements presented in chapter 3. While the requirements cover a wide area of

concerns regarding personal health, this implementation focuses mainly on the

issues of democratization and IoTility features (although some parts of the

architecture begin to address the other requirements). Section 5.1 implements the

Internet of Things Device Description Language, a key element in addressing

democratization concerns. Section 5.2 implements the DIY Health IoT Apps concept,

making use of some of these democratization capabilities. Section 5.3 implements

the various components of Mobile Apps As Things and actionable keywords, a

significant enabler of IoTility. Finally, section 5.4 implements a variety of

miscellaneous thing architecture components that are relevant to the requirements.

5.1 INTERNET OF THINGS DEVICE DESCRIPTION LANGUAGE

The Internet of Things Device Description Language (IoT-DDL), introduced in chapter

4, is an XML-based schema used to describe the capabilities of a thing’s hardware to

the health IoT architecture. This includes metadata and behavioral details that, in

addition to internal use, can be broadcast to the smart space to share information

and set up new interactions. The IoT-DDL is a core element of the democratization

features discussed in chapter 3. Providing a base for many IoTility concepts, it is used

to configure the various architectural components detailed in this chapter, such as

proxy interfaces, constraints, and MAAT. The following subsections detail the

structure of the IoT-DDL, along with a user-facing tool designed to simplify the

development of new description files. Additionally, the complete underpinning

schema is presented in appendix A.

Chapter 5: Implementation Wyatt Lindquist

 90

5.1.1 STRUCTURE

At the top level, the IoT-DDL begins by defining various sets of metadata, as shown in

figure 5-1. The first section, Descriptive Metadata, describes the thing’s

manufacturer properties, such as make, model, and vendor that can be shared with

other devices, along with user-specific details such as location and smart space

information. This section also defines the thing’s Atlas Thing ID (ATID), specific to the

device, and Smart Space ID (SSID), shared within the user’s smart space, to facilitate

communication between things. The combination of these identifiers provides a

unique address to specify the device when sharing information or making service

calls within the smart space (as used in the tweet communications described in

subsection 5.4.1). On the other hand, the Administrative Metadata section exposes

information that can be used to initialize the OS components of the thing device

internally. For example, this includes networking hardware (such as WiFi or

Ethernet), access information (for example, SSID and password for WiFi), and

protocol information (such as the multicast group for IP-based communication). Note

that not all fields of these metadata sections must be defined, and some may not be

used depending on the environment of the thing device.

The top-level IoT-DDL also defines two lists: one of entities and one of

attachments. An attachment, as introduced in chapter 4, defines a service or feature

that requires resources and capabilities less likely to be present within a thing device.

In this thesis, an attachment represents a specific type of resource (such as the app

generator described in section 5.2) that can be interacted with through a well-

defined API already understood by the thing architecture. Within the schema, an

attachment is represented by its type and URI endpoint (such as an IP address).

Chapter 5: Implementation Wyatt Lindquist

 91

Figure 4-1: The high-level structure of the IoT-DDL sections.

An entity, the other list element, is a flexible concept describing a single unit of

hardware, software, or hybrid functionality that is part of the thing device. For

example, a hardware entity may represent a single temperature sensor built into the

device. Each entity holds a section of Descriptive Metadata, similar to that of the top-

level Atlas thing, containing properties such as name, description, model, and

vendor. Additionally, entities may declare a proxy interface (detailed in subsection

5.4.3), such as an external BLE address and its attributes of interest, for interacting

with low-power devices and exposing their features to the smart space. Mainly,

however, an entity declares the structure of its APIs and the interactions it can take

part in, though sets of the following elements:

• Services: A service defines a single API endpoint for interacting with its

respective entity. This section also defines metadata, including name,

description, and keywords, which can be used to filter services when

searching (such as the case in MAAT) or with unbounded services (described

below). To declare its API, the service also defines its input and output types,

Chapter 5: Implementation Wyatt Lindquist

 92

each with a name and optional description. Finally, the service declares a

“formula,” or short set of instructions to be invoked with the service. The

implementation represents this as a C-code excerpt, which is compiled at

runtime on a capable thing device to formulate its API. This “just-in-time API-

ing” (discussed further in subsection 5.4.2) is important to the IoT-DDL’s

flexibility; rather than the API being part of its compiled firmware, the device

uses basic information (input, output, etc.) to create a service definition

appropriate for the smart space it exists in. An example is shown in figure 5-2.

• Relationships: A relationship represents a logical bond between two services,

relationships. While relationships are not acted upon directly by a thing

device, they act as metadata guiding the creation of new IoT interactions and

applications, such as the DIY Health Apps described in section 5.2. A

relationship can represent a variety of cooperative or competitive

interactions [44], such as control, a basic trigger-action linkage, and drive,

which additionally passes the output of one service as the input of another.

• Unbounded Services: With the above elements, a thing can only define

relationships between services within its own entities—however, most

interesting interactions likely exist as relationships with other thing devices.

To allow an element to reference services that may not exist, an unbounded

service can be defined. Such a service represents a “wildcard” that can be

matched to a concrete service at runtime based on its metadata. These

match requirements can be unique, such as a service from a specific vendor

or one with a specific identity, or generic, using keywords along with input

and output parameters (similar to MAAT’s method in section 5.3). In this

case, the required similarity is defined as a “match value” threshold.

Chapter 5: Implementation Wyatt Lindquist

 93

Figure 5-2: The basic structure of an IoT-DDL service definition.

The IoT-DDL also defines various constraint fields to enable safe and proper use

within the thing device. At the entity level, these specify temporal constraints, or the

time periods when the device can be used (for example, a sleep sensor should only

operate in evening hours). Services offer similar constraints, defining the minimum

period of time between consecutive API calls and the ability of the API to accept

simultaneous invocations, in addition to per-input minimums and maximums to

validate passed API parameters. Together, these checks must execute successfully

before a service’s actual behavior can be run. This can protect against the various

scenarios described in chapter 3, such as unexpected behavior or damage to the

device due to user error, programming bugs, or malfunctions.

5.1.2 IOT-DDL BUILDER WEB TOOL

In practice, an IoT-DDL description is most likely to be first created and shipped by

the thing’s creator; that is, the original equipment manufacturer (OEM) or vendor. By

the time the device is in the hands of the user (or developer), its IoT-DDL contains a

default set of metadata, services, and constraints that it can use to interact safely

and effectively in a smart space. This is not necessarily the end of the IoT-DDL

lifecycle, though: as the format is open and human-readable, it can be expanded and

Chapter 5: Implementation Wyatt Lindquist

 94

modified by third-party developers or end users to meet more specialized needs.

However, using the schema directly may be a daunting task for the average end user

without documentation or external help. Instead, the IoT-DDL Builder tool aims to

simplify the creation and modification of these IoT-DDL descriptions by organizing

the schema’s fields and options into a user-friendly web form GUI.

Figure 5-3: The IoT-DDL Builder tool interface.

The builder tool is a single-page HTML and JavaScript web app developed using

Semantic UI [84] that can use its form data to create, validate, and export IoT-DDL

files. The tool, shown in figure 5-3, consists of four main “tabs” representing each

top-level element (Descriptive Metadata, Administrative Metadata, Entities, and

Attachments). Each tab organizes its fields to emulate the structure of the schema,

providing a mostly one-to-one mapping. The fields reflect their expected data types

(for example, token fields for keywords, pickers for dates, and dropdowns for

enumerations), and set up hover tooltips next to each label to provide additional

help, descriptions, or examples. The Entities tab is the most complex, using an

accordion-style nested list to allow users to create new instances of entity, service,

Chapter 5: Implementation Wyatt Lindquist

 95

and relationship fields as needed (depicted in figure 5-4). Device APIs can also be

written directly in the builder tool: in addition to metadata, a service section allows

the user to define inputs, outputs, and functional behavior using an integrated Ace

[85] code editor.

Figure 5-4: A new entity section in the builder, with service and relationship sections.

Once the user fills out the form, the tool can validate elements of the description

before generating the final file. Required fields are marked as such, and will raise an

error if left empty by the user—some of these checks may also be conditional, such

as an SSID and password being needed only when “WiFi” is selected as the

networking module. Similarly, the builder can ensure the formatting of special fields

is correct, including numbers and IP addresses. After validation, the IoT-DDL is

generated by collecting the form fields into a JSON object and converting it to the

proper XML format, presenting the completed downloadable file to the user.

5.2 DIY HEALTH IOT APPS

The DIY Health IoT app development concept, introduced in chapter 4, utilizes the

democratization features of the health architecture along with the IoT-DDL (detailed

in the previous section) to create new Android apps utilizing existing thing services

Chapter 5: Implementation Wyatt Lindquist

 96

on the fly. These apps offer a simple interface allowing the user to “concatenate”

functionalities from different thing devices, specially tailored to their smart space

and needs. To maximize utility and ease of use, the user should be able to define this

functionality and generate the app directly from their mobile device. This section

describes an implementation that meets this goal, focusing on a cloud-based service

that can compile new IoT apps from a simple description provided by the user.

Figure 5-5: The interface of a simple generated app.

 Before choosing functionalities for a new app, the user must first be able to

identify interaction possibilities in their smart space. Utilizing the service and

relationship metadata tweets described in subsection 5.4.1, the user can visualize

the capabilities of their smart space (through a special app implemented alongside

the demo [77]) and select a subset to be made accessible and usable in their new

app. These selected services will be executed in parallel, returning all results to the

user (for example, the measurements from a pulse oximeter and temperature sensor

will be concatenated into a single result, but the two devices do not interact with

each other). More advanced functionalities are represented by relationships, which

chain services together by executing them in series and passing their results along.

Chapter 5: Implementation Wyatt Lindquist

 97

Consider the example from chapter 4, where the results of the body weight scale’s

service are passed as one of the inputs to the fitness app’s BMI service. These

combinations of services and relationships allow users to represent a wide range of

potential IoT apps and interactions.

Figure 5-6: The XML manifest of the app shown in figure 5-5.

Once the user selects the interactions to be included in their app, this information is

transferred to a cloud-based service where an Android application binary (.apk) is

compiled. The generator service accepts an XML-based manifest (an example is

shown in figure 5-6) describing the desired services and relationships, and uses it to

modify an IoT app skeleton (a basic Android application project). The implementation

achieves this through a Python-based templating engine that fills in the needed parts

of the app, including the Android manifest (the application name, etc.), the user

interface layout, and the main activity logic that invokes the services in the proper

order. Note that, as relationships are handled as metadata on thing devices, the app

itself handles calling the inner services based on the rules of that relationship type

[44]. The interface is represented within an Android LinearLayout [86] (for a single

column form-style input) and uses an appropriate widget type (text field, slider, etc.

based on the input type) with a label specified by the IoT-DDL input descriptions for

each input. The app functionality is initiated with a button placed below the fields,

Chapter 5: Implementation Wyatt Lindquist

 98

while results are displayed in a popup. A generated app, such as that shown in figure

5-5, can then be built, downloaded, and installed directly to the user’s mobile device.

5.3 MOBILE APPS AS THINGS

Treating mobile apps like traditional thing devices is another important concept that

can facilitate high IoTility interactions within a smart space. This section describes

the implementation of the actionable keywords (AKW) programming enabler

introduced in chapter 4, which directly works towards this goal. In addition to new

inter-thing interactions, fully supporting this concept requires careful consideration

of how a mobile app’s interface might expose such new features, as well as how a

mobile developer can empower their non-IoT apps with minimal difficulty or

confusion. The following subsections discuss the AKW framework from each of these

perspectives, detailing the thing runtime, mobile application framework, and a utility

that assists ordinary developers in adding these thing capabilities to existing app

development projects. Amongst the wide variety of mobile frameworks and

development environments available today, the implementation below focuses

specifically on the Android platform and the Android Studio IDE [87].

5.3.1 THING ARCHITECTURAL COMPONENTS

Within the Atlas Architecture health IoT layers, supporting thing-like mobile app

interactions requires a thing device to listen for AKWs from the smart space and

compare them against the services it offers. If a service matches the purpose and API

parameters specified in the actionable keyword, the thing device can request that

the mobile app “bind” to its service; this results in the appearance of new user

interface elements within the app and allows the user to invoke the bound service

directly. The mobile app is responsible for collecting the required input parameters

of the service, which is called through a normal service invocation tweet (detailed in

subsection 5.4.1). By utilizing the same method as a normal service interaction, any

additional complexity on the thing side is minimized, and the AKW lifecycle is

Chapter 5: Implementation Wyatt Lindquist

 99

contained within the mobile app logic (for example, if an actionable keyword is “un-

bound,” no additional action needs to be taken from the perspective of the thing

device). These steps of advertising, binding, and invoking are illustrated in figure 5-7.

Figure 5-7: The interactions between a traditional thing and an app-as-thing.

In this interaction, the main responsibility of the thing device involves comparing

keywords and input parameters with its available services. A received AKW, whose

simplified JSON structure is shown in figure 5-8, contains a set of input types and

names along with a set of keywords that relate to the desired interaction; these

correspond to the service keywords and input descriptions defined in the IoT-DDL of

traditional thing devices (specified in section 5.1). On initial receipt, the architecture

uses the input types to filter out incompatible service APIs, and then compares the

remaining services’ metadata with the AKW’s descriptive keywords. On sufficiently

powerful devices, the two sets of keywords are compared with WordNet [88, 89], a

lexical database that groups words into sets of synonyms and can provide a semantic

similarity measurement between a pair of keywords. The required level of similarity

can be controlled through a “match threshold” value specified in the service’s IoT-

DDL information: the architecture uses the Inverse Document Frequency (IDF) [90]

measure to quantify the uniqueness or importance of individual keywords. Other

more constrained thing devices can still participate in AKW interactions by directly

AcWionable Ke\Zord

IdenWiÀer

InpXW T\pe

LisW of Ke\Zords

UI ConWe[W (parenW YieZ)

InpXW ConWrol/WidgeW

AKW Message

AKW IdenWiÀer
InpXW T\pe
Ke\Zords

AKW Response

AKW IdenWiÀer
Thing IdenWiÀer
TargeW SerYice API
WidgeW Label

SmarW Thing

IdenWiÀer

LisW of SerYices (APIs)

MeWadaWa

Mobile-ASS-AV-Thing HaUdZaUe ThiQg
Mobile-App-As-Thing

Hardware	Thing

API	Call
Service	Identifier
Arguments

Chapter 5: Implementation Wyatt Lindquist

 100

comparing keywords for equality. With the assistance of the developer plugin and

keyword repository detailed in subsections 5.3.3 and 5.3.4, the chance for exact

matches is greater: the developer can select keywords that are already present in the

IoT-DDLs of existing thing devices.

Figure 5-8: The abbreviated JSON Schema definition of an actionable keyword.

Once a match is successful, the thing device prepares an AKW response for the app.

The response contains the information needed to call the selected service—namely,

the thing identifier and the service name. Additionally, the response specifies a

descriptive label that can be displayed within the app interface (in the current

implementation, this becomes the label of the placeholder button described in the

next subsection). This label can be specified with an additional XML tag in the

relevant IoT-DDL service block. Once the response is sent back to the source of the

AKW, the MAAT-specific behavior of the thing device is complete; the thing is already

prepared to respond to service invocations from the mobile app (or other devices).

5.3.2 MOBILE APPLICATION LIBRARY

To behave like a thing device and support the actionable keywords concept, a mobile

app must be able to communicate with the smart space, interact with other devices,

and bridge these elements with its non-thing components such as the user interface.

Additionally, with the possibility of multiple apps acting as things, the mobile device

itself becomes a “thing-of-things,” and must manage distributing interactions to its

Chapter 5: Implementation Wyatt Lindquist

 101

child things (apps) as appropriate. To meet these needs, this implementation

introduces an Android background service [91] to run the thing architecture

components (to broadcast and receive AKW information), and a supporting

framework allowing developers to expose these new capabilities in their apps (to

augment the user interface with available thing services).

 On the mobile device, the background service assumes the role of the

Communication Engine in the traditional architecture. With the possibility of multiple

apps-as-things on a device, a single application should not monopolize interaction

with the smart space by networking on its own. Instead, one instance of the

background service is shared between all apps, listening for incoming tweets and

routing interactions to their appropriate destinations as Android IPC calls. In the

context of actionable keywords, this service maintains a list of an app’s active AKWs,

listens for binding responses, and sends API invocations when requested. However,

the service is also capable of collecting metadata from the smart space or forwarding

incoming service calls in more generalized app-as-thing interactions. The lifecycle of

the service process is tied to the longest-living MAAT app; that is, it does not need to

provide thing functionality once no thing-like apps are running.

Figure 5-9: The components of the Android actionable keyword library.

Background Service

System
Application

AKW Manager

AKW 1
Observable

AKW 2
Observable

Actionable Layout

Actionable Layout

Actionable Layout

register(), invoke()

onAKWBound()

AKW Broadcast
Tweets

Binding Response
Tweets

Service Call
Tweets

Chapter 5: Implementation Wyatt Lindquist

 102

Within the apps themselves, the actionable keyword library provides a custom

“Actionable Layout” UI component that controls the appearance of the AKW input

control, as well as an “AKW Manager” class that handles connecting to the

background service and tracking the state of the layouts. These roles are illustrated

in figure 5-9; Actionable Layouts register themselves with the manager, which uses

their information to create AKWs and set up tweets with the background service.

Note that the relationship between AKWs and Actionable Layouts may not be one-

to-one in some scenarios (such as the list view described in chapter 4). To handle

this, the AKW Manager maintains an Android Observable [92] per AKW that is

notified when a binding response is received from the background service. New

layouts are automatically subscribed to the appropriate Observable as they are

registered with the manager.

 In the app’s interface, the actual context of an AKW interaction is

represented by an Actionable Layout object. This custom view component extends

the Android ViewGroup class [93] (similar to the standard Android classes

FrameLayout and LinearLayout) and is intended to wrap around an existing view or

widget that can expose thing-like functionality. Each layout requires the following

information from the developer: 1) a list of keywords, 2) the descriptive names of the

provided data, 3) the AKW input control (a button component), and 4) a data

formatting callback (which converts layout info into JSON arguments), all of which

can be specified either programmatically or through an Android XML layout (such as

in figure 5-10). The layout places no restrictions or requirements on its child

elements beyond the button component specified in the attributes.

Figure 5-10: An ActionableLayout XML definition with its data formatting callback.

Chapter 5: Implementation Wyatt Lindquist

 103

When initialized, the Actionable Layout passes these keywords and input

descriptions (whose types can be deduced from the formatting function) to the AKW

Manager singleton and sets the child button’s visibility to false. The invisible button

still takes up space in the layout, meaning the rest of the interface remains

unchanged. The layout also sets the button’s onClick callback to a stub function that

invokes the specified formatter (shown in figure 5-10) and uses its JSON result to

initiate a service call through the AKW Manager. This behavior is important, as the

contextual data of an AKW is not necessarily constant, especially when multiple

layouts represent the same keyword. The formatter function allows the developer to

pull the data from their application logic without needing to interact with any

internal AKW states or behaviors. Once initialized, the layout waits to receive a

binding notification from the AKW Manager, before making the button visible and

setting its label to the string specified in the request.

Figure 5-11: The states over time (left to right) of a successful AKW search and match.

The manner in which this button appears is also an important consideration. Given

the relatively unusual form of interaction, user understanding is another important

part of the actionable keyword concept—especially since the signs of an AKW are

mostly invisible before a match is made. Depending on when the match is made, the

user may miss interaction opportunities by navigating throughout the app too

Chapter 5: Implementation Wyatt Lindquist

 104

quickly, or become confused when a UI element has changed since the last time it

was viewed. Even when the user notices the moment of “pop-in,” such an event

could easily lead to a feeling of “where did this button come from, and why?”

To combat this, the implementation offers an alternative button behavior

that overlays a progress bar-style animation on top of the button. In this case, the

button is not hidden at the start (but still has no label) and can raise awareness to

the ongoing search for compatible interactions. If enough time passes without a

match and the progress bar fills completely, the button can then fade away to

convey that no AKWs were found. While this method hints to the user that there is

additional potential in an area of the UI, it comes with its own set of concerns. For

example, a quick match may cause the progress bar to appear only briefly, confusing

the user or making them feel like something was missed. Similarly, a completed

progress bar (when no match is found) leading to the disappearance of an element

may also be unexpected or confusing. While the progress bar has some advantages,

this implementation focuses mainly on the simple “pop-in” behavior. Both methods

are illustrated in figure 5-11: the first two list elements represent the “pop-in”

behavior, and the third shows the stages of the progress bar.

5.3.3 DEVELOPER PLUGIN

Figure 5-12: The Android Studio plugin interface and keyword search view.

Compared to the first apps-as-things demo [79], which used an app-wide set of

keywords and capabilities along with interface elements provided by the thing, the

actionable keywords concept places greater importance on the role of the app

Chapter 5: Implementation Wyatt Lindquist

 105

developer. The app initiates these interactions (rather than the thing device as in the

demo), meaning the mobile developer must consider in detail which elements can be

used by the smart space while also describing the keywords and data they offer.

Similarly, while the purpose of an app overall may not change over time, individual

AKW requirements may need to be added or removed as features change or the UI is

altered. These aspects increase the burden on the developer, who may not be very

familiar with adding IoT functionality—a serious concern when one of MAAT’s goals

focuses on simplifying these interactions.

To ease the developer’s role and facilitate the creation of actionable

keywords, the MAAT framework introduces an Android Studio IDE plugin. This plugin

provides support in: 1) creating an Actionable Layout and specifying its fields, 2)

choosing appropriate keywords and data formats, and 3) implementing the data

formatting callback. To open the dialog, the developer simply selects an existing

component with the layout XML that will be converted into an AKW. The plugin

registers an Intention action [94] (the “lightbulb” pop-up menu shown in figure 5-13)

that provides the option to convert the selected layout to an Actionable Layout. In

addition to accessing the dialog, the Intention also provides context (a position in the

file), allowing the plugin to retrieve buttons within the layout (for the “With Button:”

field in figure 5-12) and insert new XML tags in the correct location automatically.

Figure 5-13: The ActionableLayout intention action provided by the plugin.

Within the plugin dialog, the developer can fill out the needed AKW information

using text fields or dropdowns as appropriate. The fields for keywords and data types

Chapter 5: Implementation Wyatt Lindquist

 106

may also create an additional dialog (using the “Choose” button in figure 5-12),

allowing the developer to search a repository of existing keywords (described fully in

the next subsection) within the plugin and select directly from this information.

Accepting the dialog wraps the selected layout element in an ActionableLayout tag

with appropriate attributes, and creates a skeleton function for the data formatting

callback within the specified Activity/Fragment class. This skeleton function initializes

a JSON object with key names from the input data format, leaving the values to be

filled in by the developer.

5.3.4 KEYWORD REPOSITORY

As mentioned above, the developer’s choice of keywords and data descriptions is

critical to the successful functioning of the actionable keywords concept. For

example, consider an extension of the scenario from chapter 4—the developer of the

wellness app creates an actionable keyword with a “firmness” parameter, but a

certain smart bed device is looking for a “softness” value instead. As long as the app

developer is unaware of this specific smart bed and its parameters, a match cannot

be made, even though both sides represent an interaction that is effectively

equivalent. The keyword search of the AKW plugin aims to resolve these scenarios:

imagine the developer searches for bed-related thing interactions, sees smart beds

using the “softness” value, and adjusts their AKW definition to accommodate and

enable the interaction. The keyword search can increase this probability of apps

finding successful matches (compared to the developer making up keywords or

choosing randomly).

 The plugin’s search is backed by a cloud-based “keyword repository:” a

simple database and web service that indexes thing services, keywords, and API

parameter information. To populate this database, the repository is capable of

scraping fields from existing IoT-DDL files (as described in section 5.1) that are

uploaded to it, each containing fields that correspond directly to the information

needed by an AKW, as well as human-readable metadata and long-form descriptions

for the device and its services. Combined, this information allows developers to

Chapter 5: Implementation Wyatt Lindquist

 107

search through existing thing information with their own terms and ideas (as shown

in figure 5-12), while choosing keywords and data formats that are guaranteed to

work with some variety of devices. While the repository does not inform the

developer exactly which things should be supported by their app, it offers insight

into potential thing interactions that may influence their keywords, the structure of

their app, or the data they provide to better support a wide range of IoT devices.

5.4 THING ARCHITECTURE COMPONENTS

The Atlas Health platform integrates the concepts and features described above into

the thing architecture and runtime introduced in chapter 4. The full feature set of

the architecture, written mainly in C++, targets higher-capability embedded devices

and single board computers (such as Raspberry Pi [74] or Intel Edison [95]), but also

includes provisions for mid-power devices (such as ARM Mbed [26]). Various

compilation flags can disable features such as IoT-DDL file loading (for devices

without persistent storage) or microservices (which normally requires dynamic

loading), instead using alternatives more appropriate for these constrained devices.

This allows the architecture to support a wider range of devices without

compromising on its more powerful features.

 When an Atlas Health thing is initialized, the runtime begins by loading and

parsing its IoT-DDL. This description, usually loaded from a file on the device, defines

keywords and attachments, sets up API services, describes the device identity, and

configures the various higher layer architecture components. A complete IoT-DDL is

capable of fully initializing the thing device without needing additional information or

intervention from the user. For devices without persistent storage (as mentioned

above), the IoT-DDL may be embedded directly into the architecture during

compilation; in this case, the build script selects a subset of information from a given

IoT-DDL file and uses it to replace the parsing procedures with statically generated

initialization code. This allows these devices to use an IoT-DDL in the same manner as

more powerful things (at the expense of recompilation after any changes).

Chapter 5: Implementation Wyatt Lindquist

 108

 While a thing device is running, many of its smaller architectural components

also work towards enabling the requirements described in chapter 3. For example,

the Interface and Communication Engine layer can further facilitate democratization,

allowing services to be advertised and invoked through REST and MQTT protocols in

addition to the native methods provided by the tweeting system. The following

subsections expand on some of these smaller components and their roles in the

requirements, focusing on tweets, microservices, and proxy interfaces.

5.4.1 TWEETS

Introduced in chapter 4, tweets are the main method of communication between

Atlas Health things. An individual tweet is represented as a JSON object that can be

sent within a UDP packet over the network. The different tweet types extend from

the basic format shown in figure 5-14; this includes a tweet type, the sending thing,

and a timestamp. The sender information consists of the thing’s ATID and SSID, as

well as an optional thing name and smart space name for easy identification. The

remaining tweet fields are dependent on the specific tweet type, which falls into one

of two general categories: “broadcast” information-based tweets, and “unicast”

request- or result-based tweets.

Figure 5-14: The abbreviated JSON Schema definition of a generic tweet.

Chapter 5: Implementation Wyatt Lindquist

 109

An information-based tweet sends thing metadata to the smart space over a

multicast IP group. This includes vendor information, descriptions, and keywords

parsed from an IoT-DDL, and can refer to the thing itself, its services and

relationships, or an actionable keyword on a mobile device. On the other hand, a

request-based tweet is sent directly to an individual thing over UDP to initiate or

complete an interaction, including invoking a service, receiving the results of an API

call, or binding to an actionable keyword. This category of tweet also includes a

Receiver object for verification, which follows the same format as the Sender field.

5.4.2 MICROSERVICES

Figure 5-15: The structure of an entity bundle and its interactions with the runtime.

The concept of “just-in-time API-ing”—enabling a service to be dynamically created

based on its specification—is an important part of the IoT-DDL design. This decouples

the thing’s behavior from its low-level implementation, allowing service logic to be

defined and changed in the description without recompiling the architecture. To

support such a feature, the architecture adopts a microservices pattern using the

CppMicroServices [96] library. With this pattern, the services listed within an entity

are compiled at runtime (directly on the thing device, assuming an appropriate

compiler is available) into a bundle: a dynamically linked binary that exists

Chapter 5: Implementation Wyatt Lindquist

 110

independently from the main thing architecture executable. This bundle can be

loaded, unloaded, and reset on demand, allowing new behaviors to be created on

the fly. Each entity bundle, shown in figure 5-15, follows a simple template that

ensures the thing architecture is able to locate and execute its offered services.

During generation of a given entity, each service defined in the IoT-DDL is

translated to a complete C++ function (using its name, parameter info, and

behavior), along with a separate “initializer” function defined in the entity’s top-level

description; when a bundle is started, this initializer can perform one-time setup or

configure an update loop as necessary. The generator also defines templated logic to

register each service with the CppMicroSerivces context, such that incoming services

calls can be dispatched to the appropriate function. Once this code is generated, the

architecture invokes a build script that compiles the bundle before loading it into the

runtime. After starting the new bundle and creating a thread to run its initializer

function, the contained services are ready for interaction; service call tweets are

forwarded to an entity bundle based on the received API name, where they can be

validated (through another generated function created using the specified

parameter ranges in the IoT-DDL) or executed as needed. Note that in scenarios

where microservices are not supported, similar behavior can still be achieved by

specifying an IoT-DDL at compilation time (as described in the beginning of this

section). In this case, code is generated on the build machine in the same manner—

allowing it to be statically linked into the architecture binary before loading onto the

thing.

5.4.3 PROXY INTERFACES

Proxy interfaces, introduced in chapter 3, allow a thing device to act as an additional

host for another device’s behavior, exposing and augmenting their APIs or interface

elements in a way that could not be achieved alone. This concept is especially

important in the context of digital health, where many constrained devices use

Bluetooth Low Energy (BLE) and thus only interact with a paired device (such as a

smart phone). In the Atlas architecture implementation, a proxy interface

Chapter 5: Implementation Wyatt Lindquist

 111

component allows BLE devices to advertise their services to an IP-based smart space

through a more powerful thing with multiple radios or network interfaces.

Figure 5-16: A proxy interface with one endpoint specified in an IoT-DDL.

Within the IoT-DDL (detailed in section 5.1), an entity may represent this kind of

external device. In this case, a proxy interface can be defined as part of its

description, shown in figure 5-16. Within the interface, the device’s MAC address is

specified along with a list of GATT attributes that should be made accessible to the

entity. Each attribute defines a service-like name and the access mode (read, write,

etc.), and can be specified by their handle or UUID. During service generation

(described in the previous section), the proxy attributes are made into stub functions

that interact with the BLE methods of the architecture’s interface layer. Integrated

this way, normal services inside the entity can then call these methods like normal

functions, re-exposing them to the smart space or integrating their functionality.

5.5 SUMMARY

This chapter detailed the implementation of the architectural components

introduced in chapter 4, as well as the tools created to support them. First, the

structure of the IoT-DDL XML description format was discussed, along with the

functionality of the IoT-DDL Builder web application. Together, these components

allow vendors, developers, and end users to describe their devices and define new

services and behaviors in a standardized format that is flexible and open for later

modification. A similar format is utilized in the implementation of DIY Health IoT

Chapter 5: Implementation Wyatt Lindquist

 112

Apps, which allows an XML manifest created by the user to be converted into a

native Android app through an external web service.

 The chapter also described the implementation of MAAT and the actionable

keywords programming enabler, both on the device side and the mobile application

side. The app developer begins by creating a special layout element around the

placeholder elements and context, using the MAAT IDE plugin. This defines the

potential input arguments, the descriptive keywords (which can be selected from an

online repository built from existing IoT-DDL information), and the interface element

that will appear once a thing matches and makes a connection. A runtime library and

service then handle the rest of these interactions and logic while the app is in use.

On the device side, potential AKW interactions are transmitted as tweet messages,

and established interactions are handled in the same manner as normal API calls.

 Finally, the chapter elaborated on some individual features within the thing

architecture itself. This includes the JSON format of the tweet messages and the IoT-

DDL fields involved in specifying a proxy interface, as well as the details of the API

and service subsystem. On powerful platforms, services are represented as

microservices, generated from the IoT-DDL and bundled with their parent entity (the

hardware or software element that provides their functionality). This allows services

to be both specified dynamically and managed independently. On more constrained

platforms, the architecture also supports the static compilation of these service

behaviors without additional effort from the developer. These implementations,

along with those of the IoT-DDL and mobile app features, are used as the basis for

the experiments described in chapter 6.

CHAPTER 6: EVALUATION

This chapter evaluates of a selection of the feature implementations presented in

chapter 5. Each experiment described below considers an implementation detail of

the architecture from a different point of view, from performance evaluation to user

acceptability. Overall, the experiments aim to use these architectural components in

analyzing the relevance and feasibility of the requirements presented in chapter 3.

Section 6.1 evaluates a selection of performance metrics relevant to the actionable

keyword feature. Section 6.2 presents a developer case study evaluating the tooling

developed for the Mobile Apps As Things concept. Section 6.3 investigates a variety

of commercial health devices in order to develop a representative scenario

evaluating democratization concepts. Finally, section 6.4 focuses on the performance

feasibility of the remaining safe use, IoTility, and identity requirements through a set

of representative behaviors running on a prototypical thing device.

6.1 EXPERIMENT I: AKW LATENCY AND RESPONSIVENESS

The actionable keyword programming enabler, detailed in chapter 5, introduces a

new way to integrate arbitrary thing capabilities into existing mobile app interfaces

to realize the concept of Mobile Apps As Things (MAAT). When an actionable

keyword is bound, the app’s interface adjusts dynamically to expose a new thing

interaction opportunity to the user. As this occurs simultaneously with normal use of

the app, metrics such as the processing time of the adjustment become significant:

can these interface changes (which may not be anticipated) resolve quickly enough

to be effective as the user navigates throughout the app? This section presents a set

of measurements to quantify this concept of responsiveness, along with experiments

to evaluate an app using AKWs in a variety of representative scenarios. Finally, these

results are analyzed to determine the feasibility (in terms of runtime performance) of

these dynamic interface changes and the actionable keyword concept as a whole.

Chapter 6: Evaluation Wyatt Lindquist

 114

6.1.1 GOALS

As mentioned above, the elapsed time between broadcasting an actionable keyword

and the appearance of its corresponding interface element is critical. While metrics

such as battery usage and processing power are important in all mobile applications,

this latency measurement has the greatest effect on the immediate user experience:

as each AKW is tied to a specific piece of the app UI (local to a single “view”—an

Activity or Fragment [97] in Android), the overall visibility of a MAAT interaction is

temporary (and possibly brief) depending on how the user navigates throughout the

app. In a given scenario, an interface change with high latency may be at best

confusing or annoying, and at worst missed entirely. Therefore, the time needed to

broadcast and process an AKW should be minimized for an optimal interaction.

 However, defining a maximum acceptable latency is not straightforward; the

exact duration that constitutes “too long” or “fast enough” will likely vary depending

on an individual user’s perception as well as the design of the app itself (such as how

much information is present in each relevant interface). For the following

experiments, this thesis considers latencies below one second to be acceptable; in

this range, changes occurring within 100 milliseconds are perceived to be

instantaneous, and larger delays are noticeable but well within tolerable times [98]

[99]. Note also that a default Android transition lasts for 220 milliseconds [100]—

therefore, any interaction occurring within this time will have no perceived delay.

Using these metrics, the experiments below attempt to answer the following

questions:

• Is the time needed to discover and activate a single AKW acceptable?

• Can an app effectively support multiple AKW opportunities simultaneously?

• Do AKW broadcasts originating from other apps affect overall latency?

Chapter 6: Evaluation Wyatt Lindquist

 115

6.1.2 SETUP

To perform these experiments, a set of benchmark scenarios were developed using

two representative thing devices—one a platform for hosting MAAT apps, and the

other a physical device that resembles a “real-life” hardware thing. A Nexus 9 tablet

(2.3 GHz CPU and 2GB RAM) running Android API 23 was used as the MAAT platform,

while an Intel Edison development board (500 MHz Atom CPU and 1GB RAM) [95]

was chosen as the physical thing. These devices were connected to the same WiFi-

based private network, with the hardware thing running the Atlas architecture and

configured to offer a single service described by three keywords. Using this

configuration, each device performs no additional tasks—the smart space network

activity consists only of AKW interactions and standard metadata tweets.

 On the MAAT platform, three simple AKW-enabled apps were developed to

evaluate different use cases. Each app presents a unique configuration of AKWs to

best fit the goals of a specific scenario, defined as follows:

• The Simple App consists of a single AKW (a layout containing a text view and a

button) represented by two descriptive keywords, designed to bind

successfully with the service offered by the physical thing.

• The List App uses the same AKW as the Simple App, but instantiates it within

a list view. Here, the app displays between 2 and 10 rows of the same AKW

layout—when the AKW is bound, all rows update in response.

• The Complex App sets up a large number of unique AKW layouts (between 4

and 20 following the format of the Simple App AKW) organized in a grid, each

targeting a separate service instance on the physical thing.

Each benchmark scenario aims to calculate the overall latency, referred to as

activation time, under these conditions. In the following subsection, this activation

time is broken into three measurements based on the lifecycle of an AKW: 1)

Opportunity Discovery, a summation of the network transmission times needed to

Chapter 6: Evaluation Wyatt Lindquist

 116

send an AKW tweet and receive a bind response, 2) Keyword Match, the time

required by a thing to compare an AKW’s descriptive keywords with those of its

services, and 3) UI Update, the period an Android app spends between invalidating

an AKW layout and redrawing its interface elements. These values are measured

directly (using System.nanoTime [101] on Android and std::chrono::system_clock

[102] on Atlas), except for Opportunity Discovery, which is equivalent to the app’s

network round trip time for an AKW interaction minus the target’s Keyword Match

time.

6.1.3 DATA

The first scenario uses the Simple App to calculate the activation time of a single

AKW. This aims to determine a lower bound for the latency of a potential MAAT

interaction, where each device performs the minimum amount of work necessary to

treat an app as a thing. Such a lower bound represents the most ideal perceived

delay a user may experience. Figure 6-1 shows the average activation time over 100

AKW events: here, Opportunity Discovery is responsible for a majority of the time

taken, while in comparison, the Keyword Match and UI Update times are minimal.

Figure 5-1: Segmented activation time for a single actionable keyword.

0

50

100

150

200

250

300

350

400

Opportunity Discovery Keyword Match UI Update

AKW Activation Time (milliseconds)

Chapter 6: Evaluation Wyatt Lindquist

 117

Figure 6-2: UI update time for multiple instances of the same actionable keyword.

The next scenario focuses on the performance of the MAAT Android library; namely,

the ActionableLayout logic and behavior. Using the List App, the UI Update time is

recorded while varying the number of active list rows. This represents the time

needed for a layout to register its binding and to draw any new elements (the

buttons). Since a single AKW is always used, only the UI Update time will increase as

more instances are shown. Figure 6-2 shows the average update time over 100

interface bindings for each row count—as the number of active layouts increases, so

does the time taken, until leveling off at around 8 list rows. This is because rows 8-10

reside outside the list’s view bounds and will only update once visible to the user.

Figure 6-3: Processing multiple actionable keywords with only one match.

0

5

10

15

20

25

30

35

2 4 6 8 10
AKW Instances

UI Update Time for a single AKW (milliseconds)

0

50

100

150

200

250

300

350

400

450

500

4 8 12 16 20
Total Broadcast AKWs

Processing Time for a Single Matched AKW (milliseconds)

Opportunity Discovery Keyword Match UI Update

Chapter 6: Evaluation Wyatt Lindquist

 118

The third scenario considers the effect that “background” tweets (that is, other AKW

messages that will find no matches within the user’s smart space) have on a thing

device and on activation time. This scenario configures the Complex App such that

only one AKW will match on the physical thing device, while the others must still be

received and compared before being rejected. As with the previous figures, figure 6-

3 shows the averages of 100 AKW events for varying numbers of broadcast tweets.

The additional network load has a reasonable effect on the thing device, increasing

Opportunity Discovery times as well as Keyword Match times. These increases are

somewhat limited, however, as the Atlas architecture multithreads the receipt and

comparison of AKW messages.

Figure 6-4: Processing multiple actionable keywords where all are matched.

The last scenario aims to test the limits of the actionable keyword concept. Here, the

Complex App is configured to match all of its AKWs evenly across four physical things

(using additional Intel Edison boards), each with up to five services. Figure 6-4 again

shows the average measurements over 100 trials for each app configuration. Note

that because each physical thing receives and processes AKWs independently, only

the total activation time of the set is shown; this represents the time between

sending the first AKW tweet and updating the final UI element. These measurements

0

100

200

300

400

500

600

4 8 12 16 20
Total Active AKWs

Total Activation Time for Multiple AKWs (milliseconds)

Chapter 6: Evaluation Wyatt Lindquist

 119

also show a steady increase as more AKWs are activated, with each taking slightly

more time than the equivalent configuration in figure 6-3.

6.1.4 CONCLUSION

Overall, the latency actionable keyword concept remains acceptable (under one

second, as defined in subsection 6.1.1) across a variety of situations. The first

scenario shows a basic AKW interaction takes about 370 milliseconds at best, or

about 150 milliseconds in addition to a regular Android view transition (rather close

to being perceived as instantaneous). The networking capabilities of the thing

devices play a significant role in this benchmark—the speed at which tweets can be

exchanged has the greatest effect on perceived latency. The second scenario shows

that Android AKW library is also quite performant; changes received from the smart

space can be reflected within the interface almost immediately. For example, AKW

layout changes propagate in about 2 frames (33 milliseconds) at 60 frames per

second, even with many active instances.

 This performance persists even under more demanding conditions, such as

those described in the remaining scenarios. The third scenario shows that latency

remains under 500 milliseconds even when many AKWs are being broadcast to the

smart space (such as those from other apps or devices). Here, the thing device again

plays a large role in the perceived latency, as the Keyword Match time steadily

increases in addition to the Opportunity Discovery. The final scenario shows that

even in an unlikely scenario (20 AKW layouts filled almost the entirety of the Android

tablet’s screen), latency remains around 500 milliseconds—while an app may define

many keywords, the number visible in a single interface is likely to be less. Since

offscreen AKWs have less impact as they update at a slower rate (described in the

previous subsection), latency is likely to remain reasonable across most loads.

Chapter 6: Evaluation Wyatt Lindquist

 120

6.2 EXPERIMENT II: MAAT PLUGIN EVALUATION AND USER STUDY

In addition to the user-facing performance of the MAAT framework and its

interactions with thing devices (as evaluated in section 6.1), this thesis also places

emphasis on the app developer’s role in the creation of mobile app things. The

Android Studio IDE plugin, described in chapter 5, derives from this emphasis and

attempts to simplify the process of adding IoT features to existing mobile app

projects. Here, Android developers without extensive IoT experience are the primary

target: how useful is such a plugin in this case? This section presents a user study to

evaluate how developers use the plugin in a variety of mock IoT scenarios, which are

then quantified into a set of usability metrics to describe the utility of the plugin in

more objective terms. Finally, a survey is used to assess developers’ personal

satisfaction with the plugin and the concept overall.

6.2.1 GOALS

As described in chapter 4, the MAAT concept places higher expectations on the app

developer compared to previous designs; to be effective, individual interface

elements must be manually identified as IoT interactions and paired with carefully

chosen descriptive keywords. With these more specific requirements, simplifying and

integrating the concept into normal app development processes becomes critical

when considering ease of use and adoption amongst app developers. The IDE plugin

aims to fill this role, prompting the developer for structured information and

keywords, which are used to generate appropriate logic and interface code

automatically. All of the steps needed to create a new AKW and associated layout

are contained within this plugin, such that developer can add MAAT features to an

app without missing or forgetting components.

 While the plugin sets up this streamlined process, it still requires developers

to understand all of the information needed for an AKW interaction—not much can

be deduced or inferred by the system. For example, even with the keyword

repository detailed in chapter 5, developers must still accurately search for relevant

Chapter 6: Evaluation Wyatt Lindquist

 121

thing devices when choosing keywords. Considering this, the following experiment

presents a set of development tasks involving AKWs and MAAT, along with metrics

based on the time taken and number of errors made, to evaluate how effectively

developers use the plugin while creating a thing-like app. A second part of the

experiment complements these tasks, using a survey to quantify developer

satisfaction and plugin usability. Overall, this experiment attempts to determine how

well the plugin fits into a typical app developer’s development process.

6.2.2 SETUP

To perform this experiment, eight participants with varying levels of experience in

Android development and Android Studio were recruited. These developers, mainly

coworkers and acquaintances, all had at least some experience with developing

traditional android apps in a either a personal or professional capacity. Prior to the

experiment, each participant was given a short explanation the MAAT framework

along with some brief plugin documentation. For the study itself, each participant

was asked to complete three timed development tasks with increasing complexities,

summarized in table 6-1. The first task provides the developer with a pre-made app

and interface, a portion of which must be converted into an AKW layout. The second

task requires the developer to create a new interface with two separate AKWs of

their choice. Finally, the third task introduces another pre-made app, this time with a

list view and data adapter. Here, the developer must integrate an AKW into the list,

such that each row contains its own instance. After completing these tasks, each

participant was asked to complete an online survey, with metrics ranging from how

easily the plugin is used, to how well the plugin fits into an existing workflow.

Table 6-1: MAAT usability study task descriptions.

Task Description Expected Duration (minutes)

1 Create a simple AKW 5

2 Create two AKWs in a single interface 10

3 Use list data to create an instanced AKW 15

Chapter 6: Evaluation Wyatt Lindquist

 122

To evaluate the experience of each participant, the time taken to complete each

task, along with any questions or errors encountered, was recorded. These

measurements are then converted into three usability metrics derived from the

ISO/IEC 9126-4 Usability Standard [103]:

• Effectiveness represents the accuracy and completeness with which the

developers were able to achieve the specified goals. This calculation is

reflected below.

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑎𝑠𝑘𝑠	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑎𝑠𝑘𝑠	𝑢𝑛𝑑𝑒𝑟𝑡𝑎𝑘𝑒𝑛 	𝑥	100										(1)	

• Efficiency describes the resources expended in relation to the effectiveness of

the developers. Efficiency is measured in terms of task time (the time in

minutes a participant takes to complete a task successfully). This can be

computed either as the time-based efficiency or the Overall Relative Efficiency

(ORE), both shown below. ORE represents the ratio of the time taken by

participants who successfully complete a task to the time taken by all users.

𝑇𝑖𝑚𝑒	𝐵𝑎𝑠𝑒𝑑	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 	
∑ ∑

𝑛@A
𝑡@A

B
@CD

E
ACD

𝑁𝑅 				𝑎𝑛𝑑				𝑂𝑅𝐸 = 	
∑ ∑ 𝑛@A𝑡@AB

@CD
E
ACD

∑ ∑ 𝑡@AB
@CD

E
ACD

		(2)

Where:
N = the total number of tasks
R = the total number of users
nij = the result of task i by the user j; where success = 1, else = 0
tij = the time spent by user j to complete task i successfully, or until quitting

• Satisfaction represents the comfort and acceptability of the plugin. This is

measured through a standardized questionnaire administered after the tasks

are completed.

Chapter 6: Evaluation Wyatt Lindquist

 123

6.1.3 DATA

The results of the tasks, measuring effectiveness and efficiency, are shown below in

table 6-2. Apart from Task 1, the tasks were completed either within the allocated

time or much sooner. The discrepancy with Task 1 can be attributed mainly to the

initial unfamiliarity with the MAAT framework in general. While participants

understood the initial documentation, some hands-on guidance with the concepts

was often needed initially. However, once the developers gained this intuition, few

issues were encountered in future use. This is especially prevalent in Task 2, where

the concepts from Task 1 could be applied directly. Task 3 was the most complex,

introducing a new concept and mixing in some traditional Android development, but

overall was completed around the expected time. The participants encountered

eight errors total, for an average of one error per three tasks. Most errors in Task 1

resulted from the unfamiliarity described above, while Task 3 errors related to the

one-to-many AKW concept and “connecting” this to the list data.

Table 6-2: MAAT usability study task results.

Participant Task 1 Time (# Errors) Task 2 Time (# Errors) Task 3 Time (# Errors)

1 8 minutes (1 error) 4 minutes (0 errors) 10 minutes (0 errors)

2 12 minutes (1 error) 7 minutes (0 errors) 14 minutes (1 error)

3 10 minutes (0 errors) 5 minutes (0 errors) 10 minutes (0 errors)

4 10 minutes (0 errors) 6 minutes (0 errors) 14 minutes (1 error)

5 5 minutes (0 errors) 4 minutes (0 errors) 12 minutes (1 error)

6 10 minutes (1 error) 6 minutes (0 errors) 16 minutes (0 errors)

7 6 minutes (0 errors) 5 minutes (0 errors) 15 minutes (1 error)

8 10 minutes (1 error) 4 minutes (0 errors) 11 minutes (0 errors)

All of the participants were able to complete their tasks successfully; therefore, only

the tasks done without error are considered successful when calculating the

effectiveness of the MAAT plugin—these results are shown in table 6-3. This same

metric is used when calculating the efficiency of the plugin; using the Overall Relative

Chapter 6: Evaluation Wyatt Lindquist

 124

Efficiency method described above, the efficiency equals (119/214), or 56%. This

figure is relatively low due to treating tasks with any error as unsuccessful, especially

considering the need for familiarity mentioned previously. For example, if the errors

from Task 1 are discounted, the ORE jumps to 74%.

Table 6-3: Calculated effectiveness of the MAAT plugin.

Task Computation Effectiveness Average Effectiveness

1 4/8 50%

2 8/8 100% 67%

3 4/8 50%

Figure 6-5: MAAT satisfaction survey results.

Finally, figure 6-5 shows the average results of the participants’ responses to the 14

questions of the developer satisfaction survey. Almost 88% of the participants felt

the plugin was easy to use, and a similar number felt they could complete their work

effectively using the plugin. Importantly, most participants believe they would not

have to significantly alter the way they worked to use the plugin. Only two questions

on the survey received a weighted score less than 4 out of 6; most participants felt

0 1 2 3 4 5 6

It	was	simple	to	use	this	plugin

I	can	effectively	complete	my	work	using	this	plugin

I	feel	comfortable	using	this	plugin

It	was	easy	to	learn	to	use	this	plugin

I	believe	I	became	productive	quickly	using	this	plugin

The	plugin	gives	error	messages	that	clearly	tell	me	how	to	fix	problems

Whenever	I	make	a	mistake	using	the	plugin,	I	recover	easily	and	quickly

It	is	easy	to	find	the	information	I	needed

The	information	provided	for	the	plugin	is	easy	to	understand

The	information	is	effective	in	helping	me	complete	the	tasks	and	scenarios

I	like	using	the	interface	of	this	plugin

This	plugin	has	all	the	features	and	capabilities	I	expect	it	to	have

I	do	not	have	to	alter	the	way	I	normally	work	in	order	to	use	this	plugin

Overall	I	am	satisfied	with	this	system

Weighted	Average	Satisfaction	Scores

Chapter 6: Evaluation Wyatt Lindquist

 125

that the plugin did not provide clear error messages or facilitate quick recovery from

mistakes. Overall, however, participants indicated they were satisfied with their use

of the plugin.

6.2.4 CONCLUSION

Overall, most participants were able to successfully use the plugin, and reacted

positively to the concept as a whole. However, the MAAT library has a noticeable

“onboarding” period, highlighted by the times of Task 1. The lack of proper error

handling and help messages (reflected in the results of the survey) likely contributed

to this; while the plugin was mainly in the prototype stage, features such as proper

error messages and in-plugin guidance should be a focus of the experience, and may

have limited questions and task errors at this stage. Still, even with these roadblocks,

most of the participants were able to get up to speed quickly over the span of three

tasks and 30 minutes, and rated the interface and features of the plugin highly.

 While the effectiveness and efficiency results are lower in comparison, this

can be partially explained by the strict definition of a task error. During the tasks,

participants could ask questions that would be marked as an error if the needed

guidance was significant enough. Again, this is mainly seen in Task 1, where the most

“hands-on” assistance was required. As described in the previous subsection,

ignoring these errors results in a positive change to the overall effectiveness and

efficiency results. Taking this into consideration, while still requiring some initial level

of IoT and framework knowledge, the MAAT plugin appears to generally improve a

developer’s ability to create new AKW interactions and enable thing-like features

within their mobile apps.

6.3 EXPERIMENT III: DEMOCRATIZATION IN MOBILE HEALTH APPS

Democratization, introduced in chapter 3, refers to a thing’s ability to interact

outside its vendor-supported software ecosystem. While a variety of open health-

and IoT-related standards exist, many devices tend towards their own “siloed”

Chapter 6: Evaluation Wyatt Lindquist

 126

ecosystem, utilizing vendor-specific interactions and cloud services. This effect is

most noticeable in mobile companion apps, where a user with many thing devices

may begin to experience “app overload” [50] if they buy into a variety of

manufacturer ecosystems. While these silos do come with some advantages

(especially from the vendor’s point of view), how do they compare to an ideal

democratized app? This section analyzes the behavior of commercial wellness and

personal health IoT devices from a variety of manufacturers, recording a set of

performance metrics. Similar measurements are then performed on a custom

democratized app with the same capabilities, such that the results can be compared

to assess the potential benefits of improved democratization in companion apps.

6.3.1 GOALS

Democratization is one of the four overarching health IoT requirements presented in

this thesis. The requirement focuses on enabling flexible interactions across thing

devices, but is also an important part of an effective companion app: even if a thing

device supports democratized communication, an app with the same capabilities

must exist to take full advantage of its features in a typical health IoT ecosystem. In

practice, some vendors may utilize a low level of democratization by supporting their

entire device lineup, along with a limited selection of third-party devices, within a

single app. However, many follow a one-app-per-thing pattern that forces users to

maintain a variety of mobile applications; here, a true democratized app has the

greatest potential to limit this issue, even across vendors.

 Democratized apps may also play a role when considering their resource

consumption (such as memory usage, storage space, or background activity)

compared to multiple vendor-specific apps. While this is likely not an issue on most

modern mobile devices, other metrics such as battery usage may still be at a

premium—especially when considering health apps are more likely to be used

multiple times per day, or even continuously. In addition to the perceived benefits

described in chapter 3, the following experiment attempts to quantify any

Chapter 6: Evaluation Wyatt Lindquist

 127

performance benefits that can be derived from a democratized mobile app versus

multiple siloed apps.

6.3.2 SETUP

The following experiment uses a set of commercial health and wellness IoT devices,

shown in table 6-4, to serve as the basis for comparison. These devices, each from a

different manufacturer and with their own companion app, include a blood pressure

cuff, a pulse oximeter, an electrocardiogram (EKG) device, and a sleep tracking mat;

together, they cover a variety of health IoT ecosystems, functionalities, and

communication methods. To prepare the devices, each was set up as a normal

user—charging fully (when applicable), downloading the companion app, and

creating an account if required—and paired with the experimental mobile device (a

Google Pixel 3a running Android 10).

Table 6-4: A breakdown of a sample of commercial health IoT devices.

Device Pulse Oximeter Blood Pressure Cuff Sleep Tracker Electrocardiogram

Brand iHealth Labs [104] A&D Medical [59] Withings [105] AliveCor [58]

Model Air PO3 UA-651BLE Sleep Analyzer KardiaMobile

Connectivity Bluetooth Low Energy Bluetooth Low Energy WiFi BLE/Microphone

Proper Use Signal Strength Cuff Position N/A Signal Strength

Device API Proprietary PCH Alliance [9] Proprietary Proprietary

Mobile App iHealth MyVitals A&D Connect Health Mate Kardia

Login Yes Optional Yes Yes

Cloud API Yes Partners Yes No

To represent an equivalent democratized app, a simple Android application capable

of Bluetooth Low Energy (BLE) and WiFi communication was developed. This app is

designed to interact with the same commercial devices as above, or with an

Chapter 6: Evaluation Wyatt Lindquist

 128

analogous simulation for those using proprietary interfaces. In this manner, the app

implements the following interactions:

• A blood pressure reading, obtained directly from the A&D Medical blood

pressure cuff, as it conforms to the PCH Alliance guidelines [9]—readings are

accessible through a standard BLE Health Data Profile (HDP) [11].

• An SPO2 reading, obtained via a simulated HDP “PLX Continuous

Measurement,” as the iHealth pulse oximeter uses a proprietary BLE profile.

This simulated reading models a previous interaction with the real device.

• Sleep data, through a REST service that returns a chunk of simulated data

based on the Withings service. The sleep mat is unique in that it passively

records data overnight, using the app mainly for review on the next day.

• An EKG reading, through a unique simulation: in addition to BLE, the Kardia

device transmits the actual EKG as high-frequency sound decoded by the

mobile device’s microphone. To simulate at least the collection of this data,

microphone activity is recorded during the measurement, which is actually

simulated by an HDP heart rate characteristic.

Note that all apps (except for A&D Connect) also require the user to initially log in

through their respective cloud services; however, the democratized app does not

replicate these features. In both the commercial and democratized cases, each

measurement is recorded for 30 seconds; this is the time required for the

electrocardiogram and a reasonable average for the blood pressure monitor, while

the pulse oximeter can operate continuously for any amount of time. The sleep mat

again is an exception, connecting to the REST service only momentarily; however,

this still represents a substantial amount of communication. Once measurements are

obtained for all four services, performance and battery usage can be measured with

the Android Debug Bridge batterystats [106] command. This command provides a

dump of system events and a breakdown of power usage across the device’s

hardware and applications, tracked by the Android operating system itself.

Chapter 6: Evaluation Wyatt Lindquist

 129

6.3.3 DATA

For the commercial apps, each trial measured the power usage of a typical un-

democratized “session:” a single use of each device and its companion app, in

sequence. Each vendor app was opened, used to perform and review a

measurement (taking about 45 seconds total), and immediately closed, confirming

any background processes were killed as well. For the democratized case, a similar

pattern was followed—the app was left open for 3 minutes while its four

measurements were performed in sequence. This ensures a similar amount of

screen-on time for both cases, such that the display’s power usage does not skew the

results. Additionally, the device was fully charged and set to 75% display brightness

before each trial.

Figure 6-6: Battery consumption in commercial and democratized health apps.

Figure 6-6 shows the average results of 10 trials for each case, as well as the base

“idle” consumption of the mobile device (screen off). These results show that under

the same measurement conditions, the individual commercial apps consume about

50% more energy than the single democratized app. In both cases, the energy usage

of the communication hardware and screen is similar: most difference comes from

the software itself. To further investigate, additional trials were performed using

0

2

4

6

8

10

12

14

16

Idle Individual Apps Democratized

Ba
tte

ry
 C

on
su

m
pt

io
n

(m
Ah

)

Radios (BLE + WiFi + Cellular) Screen App Usage

Chapter 6: Evaluation Wyatt Lindquist

 130

each commercial app individually over 3 minutes. Figure 6-7 again shows the results

across 10 trials—the energy consumption of each app, while similar, shows a

correlation with the amount of additional network traffic performed. Therefore, the

lack of cloud communication features must also play a role in the energy savings of

the democratized app.

Figure 6-7: Battery consumption and network traffic in individual commercial apps.

6.3.4 CONCLUSION

Overall, the democratized app exhibits a reasonable decrease in energy usage

compared to the equivalent set of commercial apps. Much of the individual apps’

additional usage is likely due to the overhead of loading and switching between the

four applications, whereas the democratized app only needs to be loaded once.

Networking and cloud requirements also play a part, especially when interacting with

three separate services in a single session. This is particularly evident when

comparing the A&D Medical app in the second part of the experiment—without any

user accounts or cloud services, the app consumes the least energy of the four.

 While these differences are relatively small (about 5mAh between the two

scenarios), these devices are meant to be used multiple times throughout the day (or

0

2

4

6

8

10

12

Withings AliveCor iHealth A&D
Medical

Ba
tte

ry
 C

on
su

m
pt

io
n

(m
Ah

)

0

50

100

150

200

250

300

Withings AliveCor iHealth A&D
Medical

N
et

w
or

k
Tr

af
fic

 (K
B)

Download Upload

Chapter 6: Evaluation Wyatt Lindquist

 131

even continuously in some cases), where such numbers can begin to add up. For

example, a user may take a set of readings five times a day; assuming the user is not

perfectly efficient and takes an additional 2-3 minutes per use, this process would

consume about 5% of the Pixel 3a’s 3000mAh battery. In another example, a user

could be monitoring for potential COVID symptoms throughout the night using a

continuous ring oximeter (such as Wellue O2Ring [107]) that repeats measurements

automatically. Additionally, considering users with older phones containing batteries

that are smaller or more worn out (unable to hold a full charge), this could easily

account for over 10% of their daily use. Therefore, even with this relatively small

difference, democratized apps can help limit any future impact as health IoT things

become more common.

6.4 EXPERIMENT IV: OVERHEAD OF HEALTH DEVICE REQUIREMENTS

While the requirements introduced in chapter 3 present a variety of features with

potential to increase the overall utility of a health IoT thing, many also come with

new needs or expectations from the devices. For example, such expectations may

come in the form of additional resources, communication capabilities, or software

logic. While many of these are likely to be easily supported by the architecture, they

still come with their own impacts and overheads. Especially when considering the

variety of low-power things within a health IoT ecosystem, how does the overhead of

these requirements compare to their presented advantages? This section presents

and evaluates minimal implementations of three requirements—safe use, user

identity, and IoTility (while the democratization element is evaluated in section

6.3)—and benchmarks them against a basic health IoT device without these features.

The impact of these performance measures can then be weighed against the

potential benefits of the requirements.

Chapter 6: Evaluation Wyatt Lindquist

 132

6.4.1 GOALS

As mentioned above, each of the architectural requirements introduce some form of

additional behavior. For example, safe use requires extra logic when sensing and

actuating, or even additional hardware components to detect improper use. User

identity must manage multiple sets of data through software logic or storage space.

IoTility, focusing on interactions between things, requires a variety of specialized

networking and communication features from the architecture. Additionally, these

requirements are likely to have varied impacts, depending on the needs and goals of

the specific health device. With this in mind, the following experiments attempt to

quantify the base performance overhead of the requirements, using a representative

low-power health thing to benchmark an implementation of each.

 When considering constrained devices, power usage is a primary concern in

terms of performance metrics. This is especially true when considering the overhead

of IoTility features, as network radios are often a major component of energy

consumption. To collect these metrics, the experiments of this section consider each

requirement in isolation, layering a representative implementation on top of a

simple health IoT system (the low-power device described above, simulating a basic

measurement service). This allows the impact of each to be measured without

involving the other features of a complete health IoT architecture in the results.

6.4.2 SETUP

The following experiments use a Nordic nRF52840 [108] ARM-Cortex microcontroller

dongle to represent the target low-power health thing. This family of devices is used

in various smart watches and fitness bands, and offers connectivity and power-saving

features that are common amongst similar systems-on-a-chip used in commercial

health IoT devices. The device was programmed to act as a basic BLE continuous-

monitoring health thing, which performs a simulated reading at the rate of twice per

second. Each of these readings is collected with minimal processing or validation

before being sent out—this represents a device with minimal IoT architecture and

Chapter 6: Evaluation Wyatt Lindquist

 133

requirement support, and is used to record the baseline power usage. Each of the

following representative requirements was then integrated into separate instances

of the device firmware:

• Safe Use: when considering safe use with continuous measurements, the

reliability of a reading may change in real-time as the user shifts and moves.

To ensure the accuracy of the measurement overall, the device may share

additional parameters as feedback. For example, an EKG device may report

the amount of skin contact on the electrodes, while a pulse oximeter may

detect when the finger is not inserted far enough. To represent this scenario,

algorithm 1 is used to simulate the collection of “proper use metrics” from

the device’s hardware inputs (line 3). These additional values must be

converted to an accuracy or validity measurement (line 4) by applying

comparisons or calculations. These measurements are different from the

actual readings offered by a device (obtained through get_measurement() in

line 5). Finally, the proper use metrics can be packaged and displayed

alongside the actual reading (line 5) or transmitted (line 6) to a companion

app for further handling. In this experiment, and analog GPIO reading

represent the safe use metric.

Figure 6-8: The representative safe use algorithm.

• User Identity: similar considerations must be made for the user identity

requirement: before measurements begin, a device may need to be informed

Chapter 6: Evaluation Wyatt Lindquist

 134

about the active user. For example, a blood pressure monitor may accept a

profile handle to store the user’s measurement history, while a body weight

scale may request the user’s height to calculate BMI. Algorithm 2 implements

an additional BLE service characteristic, allowing the user to provide

additional information before the reading takes place (line 2). This may be

used to verify the user, or to augment and associate the reading with more

details (line 3). Once an identity is verified (likely for a limited time),

subsequent device measurements (line 5) are “stamped” with the verified

user info before transmission (lines 6 and 7).

Figure 6-9: The representative user identity algorithm.

• IoTility: device IoTility, on the other hand, is a much more demanding

requirement in the context of a low-power Bluetooth device. For this case, a

more blue-sky is adopted, where the device periodically searches for other

BLE services it can use in addition to its normal capabilities. For example,

instead of asking for identity parameters as in algorithm 2, the device can

independently search for services offering these values. This scenario is

represented in algorithm 3: the device initially acts as a BLE central, scanning

for related services (line 2) and pulling identity information from any matches

(line 3 and 4). Device readings can then be shared normally as a BLE

peripheral (lines 5 and 6). This represents a simple IoTility scenario compared

to those offered in chapter 3.

Chapter 6: Evaluation Wyatt Lindquist

 135

Figure 6-10: A potential device IoTility interaction.

Finally, energy measurements for each experimental scenario are taken by powering

the device with an external 5V source in series with a low-value shunt resistor. The

voltage drop across this resistor—converted into a current measurement using

Ohm’s Law—can then be used to calculate the power usage of the device over a one

minute period. Note that unlike a real device, there is no additional load from

supporting circuitry or measurement devices; the microcontroller is used with only a

single on-board LED.

6.4.3 DATA

The results of these simulations over 10 trials are shown in figure 6-11. In this figure,

each scenario is represented in two “states:” one where the device is actively

advertising or scanning for the entire duration, and one where a discovery and

connection occurs immediately. In all cases, the power consumption is less once a

connection is established due to the properties of the BLE radio; broadcasting to the

smart space requires more energy than sustaining a single connection. This

difference is most significant in the IoTility scenario, which performs additional

advertising procedures.

Chapter 6: Evaluation Wyatt Lindquist

 136

Figure 6-11: Power consumption in the different device requirement scenarios.

Compared to the baseline, the impact of the safe use and user identity requirements

is minimal in their respective scenarios. Together, these requirements represent

potential for increased usage in hardware, processing, and networking; however,

within the experiments, the increases due to additional service writes and analog-to-

digital conversions are only a small contribution. On the other hand, the impact of

the IoTility scenario is more significant; the power cost of performing a BLE scan is

greater in comparison to the baseline measurements. However, once a valid service

is discovered, power usage decreases to better match the other scenarios.

6.4.4 CONCLUSION

Overall, these results show that the potential costs of the safe use and user identity

requirements can be acceptable in low-power health devices. In fact, some of these

features can already be found in some commercial devices (as noted in section 6.3).

Still, this impact may be greater in real-life scenarios, depending on the components

required to meet the goals of the thing. For example, a device using complicated

calculations or additional power-hungry hardware (while monitoring proper use, for

example) would experience a greater impact to power usage. Overall, however, the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Base Behavior Safe Use & User Identity Device IoTility

Po
w

er
 C

on
su

m
pt

io
n

(m
W

h)

Advertise/Scan Connected

Chapter 6: Evaluation Wyatt Lindquist

 137

minimal impact of these experimental scenarios leaves ample room for any

additional overhead.

 In comparison, device IoTility has a relatively high cost on such devices;

searching for potential interactions requires significant energy unless performed

sparingly (the experimental scenario uses a scanning duty cycle of 50%). In this case,

inter-thing communications may not be feasible—beyond direct interaction with a

paired controller or companion app—in low-power health devices. However, such

devices may still support IoTility through other means, such as the proxy interfaces

described in chapter 3. Alongside these low-power devices, more capable health

things (such as mobile phones) are also common, and capable of “picking up the

slack” with high-overhead features.

6.5 SUMMARY

This chapter presented a set of experimental evaluations designed to evaluate the

architectural implementations of the overarching requirements, as well as the

Mobile Apps As Things concept and actionable keyword programming enabler. One

experiment considered the energy impact of the Democratization requirement in the

context of companion mobile apps, comparing an idealized shared app against a set

of individual commercial applications. While power consumption is low in both cases,

the democratized app showed reduced energy usage and network activity for an

equivalent workload. Another experiment investigated the performance impact of

supporting the Safe Use, User Identity, and IoTility requirements on constrained

hardware. While the representative Safe Use and User Identity behaviors had little

impact on the power consumption of the device, that of the IoTility behavior was

more significant; constrained devices would likely need other devices (such as smart

phones) to assist in the support of this requirement.

 For MAAT, this chapter considered the time latency involved in a complete

AKW interaction: that is, the time between broadcasting keywords from the app and

the new user interface element appearing. In all cases, involving a varying number of

Chapter 6: Evaluation Wyatt Lindquist

 138

devices and active AKWs, this latency remained within defined reaction times. These

results showed that the user will be presented with new interactions quickly,

reducing the potential for confusion or missed opportunities. Within MAAT, the IDE

plugin was also evaluated through a small user study with Android developers. After

creating a set of sample applications, each developer answered a questionnaire and

was evaluated based on a set of success- and time-based metrics. Reception to the

plugin was generally positive, although efficiency and effectiveness varied depending

on the specific task.

 The experiments in this chapter evaluate the overall impact that the

requirements presented in chapter 3 have on a representative Atlas Health IoT

device, along with some key ecosystem features that integrate closely with the thing

architecture. These features and requirements have the potential to play a core role

in a variety of health IoT scenarios and applications, bringing significance to their

performance and usability aspects alongside the architecture itself. Still, many of the

individual architectural features introduced in chapter 3 are open to additional focus

and experimentation; this potential is discussed in the future work of chapter 7.

CHAPTER 7: CONCLUSION

Health IoT is preparing to be a prominent force in the future landscape of personal

health and wellness. Traditional medical devices with smart and connected features

are opening up new opportunities in disease prevention and treatment, and

empowering users outside of traditional healthcare settings. However, treating these

devices as traditional IoT things is unlikely to utilize their full potential; a variety of

healthcare scenarios introduce functional requirements that are unique or less of a

focus in other IoT domains. To fully achieve the vision of health IoT and its role in

future healthcare transformations, the influence of these requirements must be

carefully considered from the perspective of stakeholders (including end users,

developers, vendors, and healthcare providers), thing devices and services, and the

greater healthcare ecosystem.

7.1 THESIS REVIEW

 This thesis focused on the role of a thing architecture—the firmware running

on and interacting with these connected health devices—in this health IoT vision:

what features and capabilities must a health IoT device provide to best support the

specialized needs of personal health and healthcare delivery integration scenarios?

To answer this research question (RQ2), alongside the other research questions

presented in chapter 1, the thesis presented a set of requirements, or overarching

features and concepts that reflect needs and priorities common amongst health IoT

systems (answering RQ1). These requirements were considered from the perspective

of a device’s software functionality, and then used to identify features that could

contribute to the creation of effective health IoT applications and scenarios. Once

identified, the thesis further investigated a selection of these requirement features,

implementing and integrating them into a modern thing architecture and ecosystem

(answering RQ3). Finally, these features were evaluated through a set of experiments

to determine performance characteristics and other metrics (also answering RQ3)

Chapter 7: Conclusion Wyatt Lindquist

 140

that are likely to be relevant to future stakeholder groups (based on section 3.1.2’s

discussion of RQ4).

 Four overarching requirements were identified in this thesis:

democratization, safe use, user identity and privacy, and a new concept called

IoTility, describing a thing’s ability to enable safe and meaningful interactions with

other things, devices, and users. The thesis focused particularly on democratization

and IoTility, identifying a set of software features that could contribute towards

meeting these requirements (RQ2). For example, shared APIs, flexible user

interfaces, and data channeling were identified as important features within

democratization, while IoTility introduced concepts on thing-like mobile apps, proxy

interfaces, and incentivization (among others) as key components.

Additionally, some of these features were integrated into the Atlas Thing

Architecture—forming the Atlas Health IoT Architecture—to investigate a device

architecture’s role in a health-ready IoT ecosystem (RQ3). In addition to the

architecture itself, the concept of Mobile Apps As Things (MAAT), along with the

actionable keywords programming enabler, was also introduced to better integrate

and enable the capabilities of companion mobile apps. These apps, which control the

behavior of a thing and interface it with the cloud, are ubiquitous in the context of

present-day connected health devices. However, most of these apps are quite

limited in the scope of the devices they support, and rarely allow for additional

integration. The MAAT concept introduced in this thesis allows app developers (one

group of important health IoT stakeholders) to easily integrate similar features and

thing-like behaviors without requiring specific knowledge of the target devices.

The thesis then described the implementation of these components in detail.

This includes internal runtime features such as inter-device communication and a

dynamic service model, the complete MAAT ecosystem, including an Android

support library and IDE plugin, and modifications to the IoT Device Description

Language (IoT-DDL). A new web-based tool was also introduced, allowing developers,

vendors, and users (three main health IoT stakeholders) to visually create IoT-DDL

files without requiring knowledge of the schema or its implementation. The self-

Chapter 7: Conclusion Wyatt Lindquist

 141

documenting effect of the presented GUI-based tools (both the IoT-DDL Builder and

the MAAT plugin) aims to simplify and encourage use amongst the stakeholders that

can enable these new requirements (RQ4).

Next, this thesis presented a set of studies and experiments to evaluate the

concepts described above. One experiment evaluated the performance

characteristics of actionable keywords and the MAAT concept, investigating how an

end user may perceive the new UI functionalities and their overhead. Another

experiment introduced a group of Android developers to the MAAT IDE plugin,

evaluating its effectiveness and providing insight on its ease of use in creating new

mobile apps with advanced thing-like functionality. Across all cases, the performance

of MAAT remained promising, with latencies remaining well within the bounds of

target reaction times, even with many active actionable keywords. Similarly,

reception of the IDE plugin was quite positive amongst the participant developers.

Given the prevalence of smartphones and companion mobile apps in the

health IoT domain, MAAT represents an important component of the IoTility

requirement while also showing some advantages of improved democratization.

Mobile app developers can integrate new thing capabilities without programming

around a specific device or ecosystem, potentially allowing vendors to design device

interactions targeting specific apps (rather than the other way around), improving

compatibility and flexibility between stakeholders.

In a broader experimental scope, an additional evaluation aimed to

determine the general feasibility of the four proposed requirements, in terms of

performance (RQ3). This involved comparing the performance characteristics of

commercial health IoT companion apps with a representative democratized app, as

well as those of thing devices running structured implementations of the privacy,

safe use, and IoTility requirements. Within a mobile device, the democratized app

revealed potential for decreased power consumption compared to similar use of

multiple, device-specific apps. On the other hand, while the safe use and privacy

cases had limited influence on performance, the IoTility scenario displayed a greater

Chapter 7: Conclusion Wyatt Lindquist

 142

impact, dependent on the capabilities of the thing device and how it communicates

with the smart space.

These experiments reveal that democratization can also play a role in device

performance, in addition to the perceived end user and ecosystem benefits. Such

benefits provide additional reasoning for increased democratization, and may help

further encourage these patterns amongst vendors. On the other hand, the impact of

the safe use, privacy, and IoTility requirements is likely to be specific to individual

thing scenarios, especially on more resource constrained devices. However, with

increasingly powerful devices—such as smartphones—acting as the “center” of many

interactions, IoTility can also be achieved through effective integration with the

smart space and other thing devices. Overall, these considerations are likely to be

critical to vendors and developers attempting to meet the specialized needs of

health IoT through these requirements.

7.2 LIMITATIONS AND FUTURE WORK

Overall, this thesis presents a set of requirements that are believed to have a

significant impact on a thing architecture’s potential within health IoT. While these

requirements are argued to be an important base, one must again note the potential

for additional requirements; the thesis does not attempt to provide an all-

encompassing set. For example, specialized health scenarios may reveal the need for

additional or modified requirements alongside those presented previously; such a

possibility opens up one avenue for future work, especially when considering

accessibility and other scenarios where the end user’s needs may differ significantly.

Similarly, when reflecting on the health device “tiers” presented in chapter 3, this

thesis focuses on the needs of personal health devices: while the other tiers may

utilize similar features, they may also necessitate additional requirements (especially

when considering medical devices and their use cases).

Additionally, the implementation does not provide the full scope of features

described in chapter 3. Although all of the requirements are considered in the design

Chapter 7: Conclusion Wyatt Lindquist

 143

of the architecture, the final result focuses mainly on features relating to

Democratization and Device IoTility, while providing a more general framework for

other requirements such as Safe Use. Future work in this area may continue to build

on the Atlas Health IoT architecture, introducing more concrete implementations of

features such as User Identity and Privacy or Incentivization. Similar consideration

extends to the evaluation, which is split between requirement performance metrics

and an investigation into Mobile Apps As Things. New or existing requirements may

be further validated through future work involving limited user studies with

stakeholders such as patients and healthcare providers; such user-facing needs may

not map directly to the requirements of a thing architecture like the ones presented

in this thesis but would still provide insight into the needs and future of health IoT.

REFERENCES

[1] Deloitte Insights, "Forces of Change: The Future of Health," The Deloitte

Center for Health Solutions, 2019.

[2] GoInvo LLC, "Determinants of Health," 2016. [Online]. Available:

https://www.goinvo.com/features/determinants-of-health/. [Accessed

November 2020].

[3] iHealth Labs, "About iHealth," [Online]. Available:

https://ihealthlabs.com/pages/about-us. [Accessed November 2020].

[4] "Withings," [Online]. Available: https://www.withings.com/uk/en/. [Accessed

November 2020].

[5] Libelium, "MySignals," [Online]. Available: http://www.my-signals.com/.

[Accessed November 2020].

[6] Apple, "Apple Health," [Online]. Available:

https://www.apple.com/ios/health/. [Accessed July 2020].

[7] Google, "Google Fit," [Online]. Available: https://www.google.com/fit/.

[Accessed July 2020].

[8] R. Carroll, R. Cnossen, M. Schnell and D. Simons, "Continua: An Interoperable

Personal Healthcare Ecosystem," IEEE Pervasive Computing, vol. 6, no. 4, pp.

90-94, 2007.

[9] Personal Connected Health Alliance, "Interoperability Design Guidelines for

Personal Connected Health Systems," 2019. [Online]. Available:

https://members.pchalliance.org/document/dl/2148. [Accessed July 2020].

[10] IEEE Health Informatics, "IEEE 11073-20601-2019 Application Profile:

Optimized Exchange Protocol," [Online]. Available:

https://standards.ieee.org/standard/11073-20601-2019.html. [Accessed

November 2020].

References Wyatt Lindquist

 145

[11] Bluetooth Technology, "Health Device Profile Data Exchange Specifications

and Specializations," [Online]. Available:

https://www.bluetooth.com/specifications/ assigned- numbers/health-

device- profile/. [Accessed November 2020].

[12] "A&D Medical," [Online]. Available: https://medical.andonline.com/home.

[Accessed November 2020].

[13] HL7, "FHIR Standard Release 4," 2019. [Online]. Available:

https://hl7.org/FHIR/. [Accessed November 2020].

[14] MIT, "Solid," 2017. [Online]. Available: solid.mit.edu. [Accessed November

2020].

[15] "MyData," 2018. [Online]. Available: mydata.org/mydata-101. [Accessed

November 2020].

[16] S. Harous, M. El Menshawy, M. A. Serhani and A. Benharref, "Mobile health

architecture for obesity management using sensory and social data,"

Informatics in Medicine Unlocked, vol. 10, pp. 27-44, 2018.

[17] S. Deshkar, R. A. Thanseeh and V. Menon, "A Review on IoT based m-Health

Systems for Diabetes," International Journal of Computer Science and

Telecommunications, vol. 8, no. 1, 2017.

[18] O. Debauche, S. Mahmoudi, P. Manneback and A. Assila, "Fog IoT for Health: A

new Architecture for Patients and Elderly Monitoring," Procedia Computer

Science, vol. 160, pp. 289-297, 2019.

[19] R. Lomotey, J. Pry and S. Sumanth, "Wearable IoT data stream traceability in a

distributed health information system," Pervasive Mobile Computing, vol. 40,

pp. 692-707, 2017.

[20] P. Mahalle, P. Thakre, N. Prasad and R. Prasad, "A Fuzzy Approach to Trust

Based Access Control in Internet of Things," Conference on Wireless

Communication, Vehicular Technology, Information Theory and Aerospace and

Electronic Systems, 2013.

References Wyatt Lindquist

 146

[21] J. O'Donoghue and J. Herbert, "Data Management within mHealth

Environments: Patient Sensors, Mobile Devices, and Databases," Journal of

Data and Information Quality, vol. 4, no. 1, 2012.

[22] P. Yang, D. Stankevicius, V. Marozas, Z. Deng, E. Lui and A. Lukosevicius,

"Lifelogging Data Validation Model for Internet of Things Enabled Personalized

Healthcare," IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 48, no. 1, pp. 50-64, 2018.

[23] P. Laplante, M. Kassab, N. Laplante and J. Voas, "Building Caring Healthcare

Systems in the Internet of Things," IEEE Systems Journal, vol. 12, no. 3, 2017.

[24] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant and K. Mankodiya,

"Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine

and healthcare," Future Generation Computer Systems, vol. 78, pp. 659-676,

2018.

[25] A. Plaza, J. Diaz and J. Perez, "Software architectures for health care cyber-

physical systems: A systematic literature review," Journal of Software:

Evolution and Process, vol. 30, no. 1, 2018.

[26] Arm Limited, "Mbed," [Online]. Available: https://os.mbed.com/. [Accessed

October 2020].

[27] J. Voas, "Network of 'Things'," NIST Special Publication, 2016.

[28] C. Perera, P. P. Jayaraman, A. Zaslavsky, P. Christen and D. Georgakopoulos,

"MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile

Devices," 47th Hawaii Int'l Conf. on System Sciences, pp. 1053-1062, 2014.

[29] "IFTTT," 2019. [Online]. Available: https://ifttt.com.

[30] B. Ur, M. Ho, S. Brawner, J. Lee, S. Mennicken and N. Picard, "Trigger-Action

Programming in the Wild: An Analysis of 200,000 IFTTT Recipes," CHI, pp.

3227-3231, 2016.

References Wyatt Lindquist

 147

[31] J. Yun, I.-Y. Ahn, S.-C. Choi and J. Kim, "TTEO (Things Talk to Each Other):

Programming smart spaces based on IoT systems," Sensors 16, vol. 4, p. 467,

2016.

[32] L. Atzori, A. Iera, G. Morabito and M. Nitti, "The Social Internet of Things (SIoT)

– When social networks meet the Internet of Things: Concept, architecture

and network characterization," Computer Networks, vol. 56, no. 16, 2012.

[33] R. Girau, M. Nitti and L. Atzori, "Implementation of an Experimental Platform

for the Social Internet of Things," 7th International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing, pp. 500-505, 2013.

[34] W3C, "Web of Things," [Online]. Available: https://www.w3.org/WoT/.

[Accessed November 2020].

[35] W3C, "Web of Things Thing Description Proposal," 2020. [Online]. Available:

https://www.w3.org/TR/2020/PR-wot-thing-description-20200130/.

[Accessed November 2020].

[36] K.-H. Le, S. K. Datta, C. Bonnet and F. Hamon, "WoT-AD: A Descriptive

Language for Group of Things in Massive IoT," IEEE 5th World Forum on

Internet of Things, 2019.

[37] C. Chen and S. Helal, "Sifting Through the Jungle of Sensor Standards," IEEE

Pervasive Computing, vol. 7, no. 4, pp. 84-88, 2008.

[38] C. Chen and A. Helal, "Device Integration in SODA Using the Device

Description Language," in 2009 Ninth Annual International Symposium on

Applications and the Internet, 2009.

[39] A. Khaled, Architecture and Programming Model for the Social Internet of

Things, PhD Thesis, 2018.

[40] A. Khaled, A. Helal, W. Lindquist and C. Lee, "IoT-DDL – Device Description

Language for the “T” in IoT," IEEE Access, vol. 6, pp. 24048-24063, 2018.

References Wyatt Lindquist

 148

[41] J. King, R. Bose, H.-I. Yang, S. Pickles and A. Helal, "Atlas: A service-oriented

sensor platform: Hardware and middleware to enable programmable

pervasive spaces," in 31st IEEE Conference on Local Computer Networks, 2014.

[42] S. de Deugd, R. Carroll, K. Kelly, B. Millett and J. Ricker, "SODA: Service

Oriented Device Architecture," IEEE Pervasive Computing, vol. 5, no. 3, 2006.

[43] A. Khaled and S. Helal, "Interoperable communication framework for bridging

RESTful and topic-based communication in IoT," Future Generation Computer

Systems, vol. 92, no. 1, 2018.

[44] A. Khaled, W. Lindquist and A. Helal, "Service-Relationship Programming

Framework for the Social IoT," Open Journal of Internet of Things, vol. 4, pp.

35-53, 2018.

[45] I. Azimi, A. Anzanpour, A. Rahmani, T. Pahikkala, M. Levorato and P. Liljeberg,

"HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT,"

ACM Transactions on Embedded Computing Systems, 2017.

[46] L. Catarinucci, D. d. Donno, L. Mainetti, L. Palano, L. Patrono and M. Stefanizzi,

"An IoT-Aware Architecture for Smart Healthcare Systems," IEEE Internet of

Things Journal, vol. 2, no. 6, 2015.

[47] U.S. Food and Drug Administration, "General Wellness: Policy for Low Risk

Devices," 2016. [Online]. Available:

https://www.fda.gov/media/90652/download. [Accessed October 2020].

[48] U.S. Department of Health & Human Services, "HIPAA Privacy," [Online].

Available: https://www.hhs.gov/hipaa/index.html. [Accessed October 2020].

[49] European Parliament and Council of European Union, "Regulation (EU)

2016/679," 2016. [Online]. Available: https://eur-lex.europa.eu/legal-

content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN. [Accessed

October 2020].

References Wyatt Lindquist

 149

[50] L. van Velsen, D. Beaujean and J. Gemert-Pij, "Why mobile health app

overload drives us crazy, and how to restore the sanity," BMC medical

informatics and decision making, vol. 13, no. 23, 2013.

[51] Withings, "Smart Temporal Thermometer," [Online]. Available:

https://www.withings.com/nl/en/thermo. [Accessed July 2020].

[52] iHealth, "Gluco+ Smart Glucometer," [Online]. Available:

https://ihealthlabs.eu/en/64-glucometre-connecte-ihealth-gluco.html.

[Accessed October 2020].

[53] D. Dimitrov, "Medical Internet of Things and Big Data in Healthcare,"

Healthcare Inform. Res., vol. 22, no. 3, pp. 156-163, 2016.

[54] Q. Limbourg and J. Vanderdonckt, "UsiXML: A User Interface Description

Language Supporting Multiple Levels of Independence," Engineering Advanced

Web Applications, p. 325–338, 2004.

[55] A. Ribeiro and A. Silva, "XIS-mobile: a DSL for mobile applications," ACM

Symposium on Applied Computing, 2014.

[56] Apple, "HealthKit," [Online]. Available:

https://developer.apple.com/documentation/healthkit. [Accessed October

2020].

[57] HL7, "FHIR Standard Release 4," 2019. [Online]. Available:

https://hl7.org/FHIR/. [Accessed July 2020].

[58] AliveCor, "KardiaMobile," [Online]. Available:

https://www.alivecor.com/kardiamobile. [Accessed July 2020].

[59] A&D Medical, "UB-543 Automatic Wrist Blood Pressure Monitor," [Online].

Available: https://medical.andprecision.com/product/ub-543-automatic-

wrist-blood- pressure- monitor/. [Accessed July 2020].

[60] X. Kang, L. Zhao, F. Leung, H. Luo, L. Wang and J. Wu, "Delivery of Instructions

via Mobile Social Media App Increases Quality of Bowel Preparation," Clinical

Gastroenterology and Hepatology, vol. 14, no. 10, 2015.

References Wyatt Lindquist

 150

[61] S. A. Weinzimer, G. M. Steil, K. L. Swan, J. Dziura, N. Kurtz and W. V.

Tamborlane, "Fully Automated Closed-Loop Insulin Delivery Versus

Semiautomated Hybrid Control in Pediatric Patients with Type 1 Diabetes

Using an Artificial Pancreas," Diabetes Care, vol. 31, no. 5, pp. 934-939, 2008.

[62] R. Bergenstal, S. Garg and S. Weinzimer, "Safety of a Hybrid Closed-Loop

Insulin Delivery System in Patients with Type 1 Diabetes," JAMA, vol. 316, no.

13, pp. 1407-1408, 2016.

[63] Medtronic Diabetes, "Minimed 780G System," [Online]. Available:

https://www.medtronic-diabetes.co.uk/insulin-pump-therapy/minimed-780g-

system. [Accessed October 2020].

[64] W. Lindquist, A. Khaled and S. Helal, "IoT-DDL: Device Description Language

for a Programmable IoT," International Conference on Smart and Sustainable

Technologies., 2020.

[65] W. Dunn, "Designing safety-critical computer systems," Computer, vol. 36, no.

11, pp. 40-46, 2003.

[66] E. Thomaz, I. Essa and G. Abowd, "A Practical Approach for Recognizing Eating

Moments with Wrist-Mounted Inertial Sensing," ACM International Joint

Conference on Pervasive and Ubiquitous Computing, pp. 1029-1040, 2015.

[67] IQVIA, "The Growing Value of Digital Health," 2017. [Online]. Available:

www.iqvia.com/institute/reports/the-growing-value-of-digital-health.

[Accessed July 2019].

[68] Research2Guidance, "mHealth App Economics 2017," 2017. [Online].

Available: research2guidance.com/product/mhealth-economics-2017-

current-status-and-future-trends-in-mobile-health. [Accessed 2019 July].

[69] B. Jimmy and J. Jose, "Patient Medication Adherence: Measures in Daily

Practice," Oman Medical Journal, vol. 26, no. 5, pp. 155-159, 2011.

References Wyatt Lindquist

 151

[70] N. Small, P. Bower, C. Chew-Graham, D. Whalley and J. Protheroe, "Patient

empowerment in long-term conditions: Development and preliminary testing

of a new measure," BMC Health Services Research, vol. 13, no. 7, p. 263, 2013.

[71] D. Lee, A. Helal, Y. Sung and S. Anton, "ituation-Based Assess Tree for User

Behavior Assessment in Persuasive Telehealth," IEEE Transactions on Human-

Machine Systems, vol. 45, no. 10, pp. 624-634, 2015.

[72] D. Lee, S. Helal, S. Anton, S. de Deugd and A. Smith, "Participatory and

Persuasive Telehealth," Gerontology, vol. 58, pp. 269-281, 2011.

[73] C. Jaffe, C. Mata and S. Kamvar, "Motivating Urban Cycling through a

Blockchain-Based Financial Incentives System," ACM International Joint

Conference on Pervasive and Ubiquitous Computing, pp. 81-84, 2017.

[74] Raspberry Pi Foundation, "Raspberry Pi," [Online]. Available:

https://www.raspberrypi.org/. [Accessed October 2020].

[75] S. Li, L. Da Xu and S. Zhao, "The Internet of Things: A Survey," Information

Systems Frontiers, vol. 17, no. 2, pp. 243-259, 2015.

[76] R. Khan, S. U. Khan, R. Zaheer and S. Khan, "Future Internet: The Internet of

Things architecture, possible applications and key challenges," Frontiers of

Information Technology, pp. 257-260, 2012.

[77] A. Khaled, W. Lindquist and S. Helal, "DIY Health IoT Apps," ACM Conference

on Embedded Network Systems, pp. 406-407, November 2018.

[78] P. Bratley and J. Millo, "Computer Recreations," Software – Practice and

Experience, vol. 2, pp. 397-400, 1972.

[79] S. Helal, A. E. Khaled and V. Gutta, "Demo: Atlas Thing Architecture: Enabling

Mobile Apps as Things in the IoT.," Proceedings of the 23rd Annual

International Conference on Mobile Computing and Networking (MobiCom

'17), pp. 480-482, 2017.

References Wyatt Lindquist

 152

[80] Google, "Android Toast Overview," [Online]. Available:

https://developer.android.com/guide/topics/ui/notifiers/toasts. [Accessed

October 2020].

[81] Android Developer Documentation, "WebView," [Online]. Available:

https://developer.android.com/reference/android/webkit/WebView.

[Accessed October 2020].

[82] Android Developer Documentation, "Intent," [Online]. Available:

https://developer.android.com/reference/android/content/Intent. [Accessed

October 2020].

[83] Android Developer Documentation, "Input Controls," [Online]. Available:

https://google-developer-training.github.io/android-developer-fundamentals-

course-concepts-v2/. [Accessed October 2020].

[84] "Semantic UI," [Online]. Available: https://semantic-ui.com/. [Accessed

October 2020].

[85] Ajax.org, "Ace Editor," [Online]. Available: https://ace.c9.io/. [Accessed

October 2020].

[86] Android Developer Documentation, "LinearLayout," [Online]. Available:

https://developer.android.com/reference/android/widget/LinearLayout.

[Accessed October 2020].

[87] Google, "Download Android Studio," [Online]. Available:

https://developer.android.com/studio. [Accessed October 2020].

[88] G. A. Miller, "WordNet: a lexical database for English," Communications of the

ACM, vol. 38, no. 11, pp. 39-41, 1995.

[89] Princeton University, "WordNet," [Online]. Available:

https://wordnet.princeton.edu/. [Accessed October 2020].

[90] J. Ramos, "Using TF-IDF to Determine Word Relevance in Document Queries,"

in The First Instructional Conference on Machine Learning, 2003.

References Wyatt Lindquist

 153

[91] Google, "Android Services Overview," [Online]. Available:

https://developer.android.com/guide/components/services. [Accessed

October 2020].

[92] Google, "Work with Observable Data Objects," [Online]. Available:

https://developer.android.com/topic/libraries/data-binding/observability.

[Accessed October 2020].

[93] Android Developer Documentation, "ViewGroup," [Online]. Available:

https://developer.android.com/reference/android/view/ViewGroup.

[Accessed October 2020].

[94] JetBrains, "IntelliJ IDEA Intention Actions," [Online]. Available:

https://www.jetbrains.com/help/idea/intention-actions.html. [Accessed

October 2020].

[95] Intel, "Intel Edison Product Brief," [Online]. Available:

https://www.intel.com/content/dam/ support/us/en/documents/

edison/sb/edison_pb_331179002.pdf. [Accessed October 2020].

[96] CppMicroServices, "C++ Micro Services," [Online]. Available:

http://cppmicroservices.org/. [Accessed October 2020].

[97] Google, "Introduction to Android Activities," [Online]. Available:

https://developer.android.com/guide/components/activities/intro-activities.

[Accessed November 2020].

[98] C. Lallemand and G. Gronier, "Enhancing User eXperience during waiting time

in HCI: Contributions of cognitive psychology," in Proceedings of the Designing

Interactive Systems Conference, DIS’12, 2012.

[99] F. Nah, "A Study on Tolerable Waiting Time: How Long Are Web Users Willing

to Wait?," Behaviour & Information Technology - Behaviour & IT, vol. 23, no.

285, 2003.

[100] Google, "Android Source Tree - config.xml," 2019. [Online]. Available:

android.googlesource.com/platform/frameworks/base/+/

References Wyatt Lindquist

 154

refs/heads/master/core/res/ res/values/config.xml. [Accessed December

2019].

[101] Android Developer Documentation, "System," [Online]. Available:

https://developer.android.com/reference/java/lang/System. [Accessed

November 2020].

[102] cppreference.com, "std::chrono::system_clock," January 2020. [Online].

Available: https://en.cppreference.com/w/cpp/chrono/system_clock.

[Accessed November 2020].

[103] T. Tullis and W. Albert, "Measuring the User Experience: Collecting, Analyzing,

and Presenting Usability Metrics," 2008.

[104] iHealth Labs, "iHealth Air Pulse Oximeter," [Online]. Available:

https://ihealthlabs.com/product/ihealth-air-po3/. [Accessed November 2020].

[105] Withings, "Under-Mattress Sleep Tracker," [Online]. Available:

https://www.withings.com/uk/en/sleep-analyzer. [Accessed November 2020].

[106] Google, "Profile Battery Usage with Batterystats and Battery Historian,"

[Online]. Available: https://developer.android.com/topic/

performance/power/setup- battery- historian. [Accessed November 2020].

[107] Wellue, "O2Ring Continuous Ring Oximeter," [Online]. Available:

https://getwellue.com/pages/o2ring-oxygen-monitor. [Accessed November

2020].

[108] Nordic Semiconductor, "nRF52840 Bluetooth 5.2 SoC," [Online]. Available:

https://www.nordicsemi.com/Products/ Low-power-short-range-

wireless/nRF52840. [Accessed November 2020].

APPENDIX A: IOT-DDL SCHEMA DEFINITION

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:annotation><xs:documentation>
 This document describes the schema for the IoT Device Description
 Language (IoT-DDL). This includes functional attributes (services,
 network properties, etc.), as well as a variety of metadata fields.
 </xs:documentation></xs:annotation>

 <xs:simpleType name="identifier">
 <xs:annotation><xs:documentation>
 An identifier is used to specify the machine-usable name of the
 thing and space, as well as services, unbounded services, and
 relationships. An identifier is almost always paired with a human-
 readable identifier, called the "Name".
 </xs:documentation></xs:annotation>
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-zA-Z0-9_]+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="range">
 <xs:sequence>
 <xs:element name="Lower_Bound" type="xs:integer" />
 <xs:element name="Upper_Bound" type="xs:integer" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="ipAddress">
 <xs:restriction base="xs:string">
 <xs:pattern value="((25[0-5]|2[0-4][0-9]|1?[0-9][0-9]?)(\.|$)){4}" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="address">
 <xs:union memberTypes="xs:anyURI ipAddress" />
 </xs:simpleType>

 <xs:simpleType name="port">
 <xs:restriction base="xs:positiveInteger">
 <xs:maxInclusive value="65535" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="endpoint">
 <xs:sequence>
 <xs:element name="Address" type="address" />
 <xs:element name="Port" type="port" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="authEndpoint"><xs:complexContent>
 <xs:extension base="endpoint"><xs:sequence>
 <xs:element name="Username" type="xs:string" />
 <xs:element name="Password" type="xs:string" />
 </xs:sequence></xs:extension>
 </xs:complexContent></xs:complexType>

 <xs:simpleType name="path">
 <xs:restriction base="xs:string">
 <xs:pattern value="(\/[a-zA-Z0-9_])+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="keywords">
 <xs:annotation><xs:documentation>
 Descriptive keywords are a core part of the IoT-DDL functionality.
 These keywords are used to match service and relationship

Appendix A: IoT-DDL Schema Definition Wyatt Lindquist

 156

 functionality, as well as to enable features such as MAAT. Because
 a full keyword match looks for similar words and uses IDF, this
 list should usually be short (less than 4).
 </xs:documentation></xs:annotation>
 <xs:restriction base="xs:string">
 <xs:pattern value="([a-z]+(\.|$))+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="interval">
 <xs:sequence>
 <xs:element name="Start_Time" type="xs:time" />
 <xs:element name="End_Time" type="xs:time" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="dataType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="integer" />
 <xs:enumeration value="float" />
 <xs:enumeration value="string" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="parameter">
 <xs:sequence>
 <xs:element name="Description" type="xs:string" />
 <xs:element name="Type" type="dataType" />
 <xs:element name="Range" type="range" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="hexadecimal">
 <xs:restriction base="xs:string">
 <xs:pattern value="0x[0-9A-F]+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="metadata">
 <xs:annotation><xs:documentation>
 Most types contain some form of metadata - therefore, many fields
 extend from this type. That is, entities, services, relationships,
 etc. will all require a name, ID, and optional description. Note
 that any references to other elements (such as in relationships)
 will always refer to the ID, not the Name.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="ID" type="identifier" />
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Description" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="partMetadata"><xs:complexContent>
 <xs:annotation><xs:documentation>
 Physical parts (the thing and its entities) use this metadata.
 </xs:documentation></xs:annotation>
 <xs:extension base="metadata"><xs:sequence>
 <xs:element name="Owner" type="xs:string" />
 <xs:element name="Vendor" type="xs:string" />
 </xs:sequence></xs:extension>
 </xs:complexContent></xs:complexType>

 <xs:simpleType name="thingType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Platform Thing" />
 <xs:enumeration value="Sensor Mote Thing" />
 <xs:enumeration value="Bit Thing" />
 <xs:enumeration value="Soft Thing" />
 <xs:enumeration value="Edge Thing" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="thingOS">
 <xs:annotation><xs:documentation>

Appendix A: IoT-DDL Schema Definition Wyatt Lindquist

 157

 This enumeration represents the current platform support (full or
 partial) the architecture offers.
 </xs:documentation></xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Raspberry Linux" />
 <xs:enumeration value="Debian Linux" />
 <xs:enumeration value="mbedOS" />
 <xs:enumeration value="Android" />
 <xs:enumeration value="Arduino" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="thingMetadata"><xs:complexContent>
 <xs:extension base="partMetadata"><xs:sequence>
 <xs:element name="Model" type="xs:string" />
 <xs:element name="Release_Date" type="xs:date" />
 <xs:element name="Type" type="thingType" />
 <xs:element name="Operating_System" type="thingOS" />
 </xs:sequence></xs:extension>
 </xs:complexContent></xs:complexType>

 <xs:complexType name="spaceConstraints">
 <xs:annotation><xs:documentation>
 Space constraints currently are mostly metadata/descriptive.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="Temperature" type="range" />
 <xs:element name="Humidity" type="range" />
 <xs:element name="Voltage" type="range" />
 <xs:element name="Interference_Radius" type="xs:positiveInteger" />
 <xs:element name="Temperature_Radius" type="xs:positiveInteger" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="spaceMetadata"><xs:complexContent>
 <xs:extension base="metadata"><xs:sequence>
 <xs:element name="Constraints" type="spaceConstraints" />
 </xs:sequence></xs:extension>
 </xs:complexContent></xs:complexType>

 <xs:complexType name="atlasMetadata">
 <xs:sequence>
 <xs:element name="Thing_Metadata" type="thingMetadata" />
 <xs:element name="Space_Metadata" type="spaceMetadata" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="networkModule">
 <xs:restriction base="xs:string">
 <xs:enumeration value="WiFi" />
 <xs:enumeration value="Ethernet" />
 <xs:enumeration value="Bluetooth" />
 <xs:enumeration value="Bluetooth Low Energy" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="networkType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Built-In" />
 <xs:enumeration value="Attached" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="networkProtocol">
 <xs:restriction base="xs:string">
 <xs:enumeration value="IP" />
 <xs:enumeration value="MQTT" />
 <xs:enumeration value="REST" />
 <xs:enumeration value="CoAP" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="networkMetadata">
 <xs:sequence>
 <xs:element name="Module" type="networkModule" />

Appendix A: IoT-DDL Schema Definition Wyatt Lindquist

 158

 <xs:element name="Type" type="networkType" />
 <xs:element name="Protocol" type="networkProtocol" />
 <xs:element name="WiFi_SSID" type="xs:string" minOccurs="0" />
 <xs:element name="WiFi_Password" type="xs:string" minOccurs="0" />
 <xs:element name="Multicast_Group" type="endpoint" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="atlasThing">
 <xs:sequence>
 <xs:element name="Descriptive_Metadata" type="atlasMetadata" />
 <xs:element name="Administrative_Metadata" type="networkMetadata" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="protocolTopics">
 <xs:sequence>
 <xs:element name="Root" type="path" />
 <xs:element name="MQTT_Client" type="path" />
 <xs:element name="Private_Broker" type="path" />
 <xs:element name="Tweet_ThingIdentity" type="path" />
 <xs:element name="Tweet_EntityIdentity" type="path" />
 <xs:element name="API" type="path" />
 <xs:element name="Interaction" type="path" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="protocolTranslator">
 <xs:sequence>
 <xs:element name="Broker" type="authEndpoint" />
 <xs:element name="Topic" type="protocolTopics" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="attachments">
 <xs:annotation><xs:documentation>
 The attachment section is optional; it contains endpoints to
 external thing services that are on offer in the smart space. Of
 interest is the App Generator, which is used for the DIY Health Apps
 demo and examples.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="App_Generator" type="endpoint" minOccurs="0" />
 <xs:element name="Log_Server" type="authEndpoint" minOccurs="0" />
 <xs:element name="Protocol_Translator" type="protocolTranslator" minOccurs="0" />
 <xs:element name="OMA_DM" type="authEndpoint" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="entityCategory">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Software" />
 <xs:enumeration value="Hardware" />
 <xs:enumeration value="Hybrid" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="entityType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Built-In" />
 <xs:enumeration value="Connected" />
 <xs:enumeration value="Remote" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="entityMetadata"><xs:complexContent>
 <xs:extension base="partMetadata"><xs:sequence>
 <xs:element name="Category" type="entityCategory" />
 <xs:element name="Type" type="entityType" />
 </xs:sequence></xs:extension>
 </xs:complexContent></xs:complexType>

 <xs:simpleType name="proxyProtocol">
 <xs:restriction base="xs:string">
 <xs:enumeration value="BLE" />

Appendix A: IoT-DDL Schema Definition Wyatt Lindquist

 159

 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="proxyAddress">
 <xs:restriction base="xs:string">
 <xs:pattern value="([0-9A-F]{2}(\:|$)){6}" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="proxyAccess">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Async" />
 <xs:enumeration value="Write" />
 <xs:enumeration value="Notify" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="proxyAttribute">
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Handle" type="hexadecimal" />
 <xs:element name="Access" type="proxyAccess" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="proxyInterface">
 <xs:annotation><xs:documentation>
 A proxy interface (currently only BLE) represents an external
 device that is incapable of running the thing architcture itself.
 This proxy-ing thing will instead expose the listed interfaces as
 its own services for use internally / by other things.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="Protocol" type="proxyProtocol" />
 <xs:element name="Address" type="proxyAddress" />
 <xs:element name="Attribute" type="proxyAttribute" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="proxyInterfaces">
 <xs:sequence>
 <xs:element name="Proxy_Interface" type="proxyInterface" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="serviceType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Action" />
 <xs:enumeration value="Report" />
 <xs:enumeration value="Condition" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="contextConstraints">
 <xs:sequence>
 <xs:element name="Interval" type="xs:integer" />
 <xs:element name="Concurrent" type="xs:boolean" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="timeConstraints">
 <xs:sequence>
 <xs:element name="Working" type="interval" />
 <xs:element name="Callable" type="interval" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="serviceInputs">
 <xs:sequence>
 <xs:element name="Input" type="parameter" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="service"><xs:complexContent>

Appendix A: IoT-DDL Schema Definition Wyatt Lindquist

 160

 <xs:annotation><xs:documentation>
 A service's entire description is metadata, however, it is also
 used to construct the service runtimes for the thing. The fields
 used for this are "Input", "Output", and "Formula".
 </xs:documentation></xs:annotation>
 <xs:extension base="metadata"><xs:sequence>
 <xs:element name="Category" type="xs:string" />
 <xs:element name="Type" type="serviceType" />
 <xs:element name="Keywords" type="keywords" />
 <xs:element name="Contextual_Constraints" type="contextConstraints" />
 <xs:element name="Temporal_Constraints" type="timeConstraints" />
 <xs:element name="Inputs" type="serviceInputs" />
 <xs:element name="Output" type="parameter" minOccurs="0" />
 <xs:element name="Formula" type="xs:string" />
 </xs:sequence></xs:extension>
 </xs:complexContent></xs:complexType>

 <xs:complexType name="entityServices">
 <xs:sequence>
 <xs:element name="Service" type="service" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="unbounded"><xs:complexContent>
 <xs:annotation><xs:documentation>
 An unbounded service represents an external thing service (different
 from a proxy interface, however, as this is a service running on a
 device with the thing architecture). If any metadata of shared
 services match, it can "bind", allowing it to be used by other
 things and smart space users in relationships, etc.
 </xs:documentation></xs:annotation>
 <xs:extension base="metadata"><xs:sequence>
 <xs:element name="Type" type="serviceType" />
 <xs:element name="Vendors" type="keywords" minOccurs="0" />
 <xs:element name="Keywords" type="keywords" minOccurs="0" />
 <xs:element name="Match_Value" type="xs:positiveInteger" />
 </xs:sequence></xs:extension>
 </xs:complexContent></xs:complexType>

 <xs:complexType name="entityUnboundeds">
 <xs:sequence>
 <xs:element name="Unbounded_Service" type="unbounded" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="relationshipType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Control" />
 <xs:enumeration value="Drive" />
 <xs:enumeration value="Support" />
 <xs:enumeration value="Extend" />
 <xs:enumeration value="Contest" />
 <xs:enumeration value="Interfere" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="relationship"><xs:complexContent>
 <xs:annotation><xs:documentation>
 A relationship is a metadata construct that defines links between
 (unbounded) services to be used by external applications.
 </xs:documentation></xs:annotation>
 <xs:extension base="metadata"><xs:sequence>
 <xs:element name="Establisher" type="xs:string" />
 <xs:element name="Type" type="relationshipType" />
 <xs:element name="Service_LHS" type="identifier" />
 <xs:element name="Service_RHS" type="identifier" />
 </xs:sequence></xs:extension>
 </xs:complexContent></xs:complexType>

 <xs:complexType name="entityRelationships">
 <xs:sequence>
 <xs:element name="Relationship" type="relationship" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>

Appendix A: IoT-DDL Schema Definition Wyatt Lindquist

 161

 </xs:complexType>

 <xs:complexType name="entity">
 <xs:annotation><xs:documentation>
 An entity represents an entire "bundle" of service behaviors for a
 single feature of the thing. All services within an entity share a
 "context" of data and computation. Before services are created,
 shared state can be set up in the "Entrypoint", which is a code
 block in the style of a service's formula.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="Descriptive_Metadata" type="entityMetadata" />
 <xs:element name="Entrypoint" type="xs:string" />
 <xs:element name="Proxy_Interfaces" type="proxyInterfaces" minOccurs="0" />
 <xs:element name="Services" type="entityServices" minOccurs="0" />
 <xs:element name="Unbounded_Services" type="entityUnboundeds" minOccurs="0" />
 <xs:element name="Relationships" type="entityRelationships" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="entities">
 <xs:sequence>
 <xs:element name="Entity" type="entity" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ddl">
 <xs:sequence>
 <xs:element name="Atlas_Thing" type="atlasThing" />
 <xs:element name="Thing_Attachments" type="attachments" minOccurs="0" />
 <xs:element name="Atlas_Entities" type="entities" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="IoT_DDL" type="ddl" />

</xs:schema>

APPENDIX B: MAAT USER STUDY CONSENT FORM

Research Participant Consent Form

PROJECT TITLES: MAAT Plugin USABILITY STUDY

INVESTIGATORS: Wyatt Lindquist

PARTICIPANT NAME: ___________________________________

 TITLE: ___________________________________

I agree to participate in the project named above, the particulars of which have been explained to me. I
have read the Research Project Description a written copy of which has been given to me to keep.

I understand that any information I provide is confidential, and that, subject to the limitations of the
law, no information that could lead to the identification of any individual will be directly disclosed in
any reports on the project, or to any other party.

I agree to being: (tick as appropriate):

o observed;
o interviewed;
o part of a focus group (questionnaire)

I agree to the following data being collected:

 o Time taken for me to complete specified tasks
 o The amount of task completed (i.e. percent of task compled)
 o Number of errors made per task;

o Number of times I request for help to complete a task
o Time needed for me to work around a task

I also agree to the data above being used for later analysis by the researchers above only. To preserve
anonymity, I understand that all written work referring to this data will use pseudonyms for me unless
written permission is later obtained. I also understand that direct access to the identity of participants is
restricted to named researchers above only.

Appendix B: MAAT User Study Consent Form Wyatt Lindquist

 163

I acknowledge that:

a) I have been informed that I am free to withdraw from the project at any time without explanation

or prejudice and to withdraw data previously supplied.
b) Participation in this project is voluntary.

Signature: ___________________________ Date: _______________
 (Participant)

