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Inclusion of hydrodynamic interactions is essential for a quantitatively accurate Brownian Dynamics simulation of
colloidal suspensions or polymer solutions. We use the generalized Rotne-Prager-Yamakawa (GRPY) approximation,
which takes into account all long-ranged terms in the hydrodynamic interactions, to derive the complete set of hydro-
dynamic matrices in different geometries: unbounded space, periodic boundary conditions of Lees-Edwards type and
vicinity of a free surface. The construction is carried out both for non-overlapping as well as for overlapping particles.
We include the dipolar degrees of freedom, which allows one to use this formalism to simulate the dynamics of sus-
pensions in a shear flow and to study the evolution of their rheological properties. Finally, we provide an open-source
numerical package which implements GRPY algorithm in Lees-Edwards periodic boundary conditions.

I. INTRODUCTION

Brownian dynamics is one of the most versatile and pow-
erful methods of simulating biological and soft matter sys-
tems!=. It treats the solvent implicitly, projecting out the
fluid degrees of freedom and taking their effect into ac-
count through the correlations in the stochastic displacements.
These are caused by the so-called hydrodynamic interactions
(HI): the motion of one particle induces a flow which acts on
all the other particles. As repeatedly demonstrated, the proper
inclusion of hydrodynamic interactions is crucial for correct
capturing of soft matter dynamics*~!>2. However, this is not
an easy task due to the long ranged and multi-body charac-
ter of HI. To make the problem tractable, one usually resorts
to approximations. The minimum requirement for a good ap-
proximation is that it correctly represents all the long-range
terms, decaying with a rate slower or equal to 7~ at large dis-
tances, where d is the spatial dimensionality of the system.
For translational and rotational components, such an approx-
imation was proposed by Rotne, Prager and Yamakawa!3:14,
The Rotne-Prager-Yamakawa (RPY) approximation performs
well in far-field, but it becomes less accurate at smaller dis-
tances. In particular, when the particles overlap, the hydro-
dynamic tensors calculated based on RPY may become non-
positive definite, which causes a problem in the Brownian dy-
namics simulations where the square root of the mobility ma-
trix is needed. Calculation of hydrodynamic tensors for over-
lapping particles is also important for bead models of rigid
macromolecules'>~!?. Overlapping bead models allow for a
faithful representation of complex macromolecular shapes us-
ing a significantly smaller number of beads than the nonover-
lapping models.

Recently, we proposed a generalization of RPY approach
(GRPY)!'#2021 which works both for non-overlapping and
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overlapping particles, and guarantees that the resulting mo-
bility matrix will be positive definite. ~However, as ar-
gued in??, when dipolar degrees of freedom are included,
the correct derivation of GRPY should be based on the in-
verse friction matrix, m'%22 and not on the mobility matrix,
1820 A similar, m-based approach was taken by Durlofsky,
Brady and Bossis in their construction of Stokesian Dynamics
algorithm?>24,

Both approaches lead to the same results if only trans-
lational and rotational components are considered but they
differ in the problems involving dipolar degrees of freedom
e.g. dynamics in shear flows and calculation of hydrodynamic
stresses. Physically, these differences correspond to the fact
that the particles placed in a shear flow modify the effective
value of a shear rate. This is a very significant effect, which
cannot be neglected even at relatively low volume fractions
of suspended particles. Thus the range of applicability of p-
based approach is very limited and m-based approach needs
to be developed, which is the main goal of this study.

In this communication, we show how these ideas can be
used for a construction of hydrodynamic matrices for Brow-
nian dynamics simulation in the presence of a shear flow.
We are building on our previous paper”!, but with a revised
scheme of calculating the dipolar elements of the hydrody-
namic tensors, based on the inverse friction matrix. We derive
a complete set of explicit formulae for the translational, rota-
tional and dipolar components of the inverse friction matrix
for nonoverlapping particles as well as regularizing correc-
tions to these matrices accounting for particle overlaps. We
also extend the method to the case of a general Green’s func-
tions of Stokes flow and carry out the construction for three
different geometries of the system: unbounded space, free sur-
face, and periodic boundary conditions of Lees-Edwards kind.

Il. HYDRODYNAMIC INTERACTIONS

We consider a suspension of N identical spherical particles
of different radii a;, in an incompressible fluid of viscosity 1
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at a low Reynolds number. The particles are immersed in an
external flow V..

Due to the linearity of the Stokes equations, translational
and rotational velocities of the particles (U;, €2;) depend lin-
early on the forces and torques exerted by the fluid on the
particles (F; and T7). This relation defines the grand mobility
matrix g

f] — D tr td F

L ptop 3
Q—&. — Mrt urr Hrd . T .
_s Hdt udr Ndd E.

The elements p”? (with p,q = t,r,d) are the Cartesian tensors
and the superscripts ¢, 7,d denote translational, rotational and
dipolar components, respectively. Here, F' = (Fy, F», ..., Fy)
are the 3N dimensional vectors of forces with which parti-
cles act on the fluid and analogously for the torques T, as
well as translational and rotational velocities of the parti-
cles, U = (Uy,...,Uy) and Q = (2y,...,Qy). Next, Do =
(Veo(R1),- ..,V (Ry)) are the values of external flow veloc-
ity calculated at the centers of the particles, R;. Similarly, &
gives the vector of vorticities at the centers of the particles,
with We = 1V X V. Finally, Ew = (Ew(R1), ..., E«(Ry))
is the vector of strain rates, with Ew = § (V0w + (Vv)") and
T standing for transposition. Finally, § = (S|,..., Sy) are the
particle stresses. Both E.. and S are 5N —dimensional, due to
the symmetric and traceless character of strain and stress ten-
SOrS.

Note that on the RHS of equation (1) we find two quantities
related to the forces (F and T') and one quantity related to the
flow (E..). Although seemingly inconsistent, such a choice
reflects the quantities that can be controlled in most situations
of practical interest (forces, torques and external flows acting
on a particle). However, from the point of view of theoretical
analysis, the inverse friction matrix, m plays a much more
important role. This matrix, introduced by Durlofsky, Brady,
and Bossis > links force and velocity multipoles

Voo — U m'" m'" m! F
B —0 - _ m" m mrd . T (2)
E. mdt mdr mdd S

The inverse friction matrix will play a central role in the con-
struction of the generalized Rotne-Prager- Yamakawa approx-
imation (GRPY), as detailed in the next section.

Ill. BROWNIAN DYNAMICS IN A SHEAR FLOW

We consider the particles immersed in an external linear
shear flow
Voo (r) = Ko7, 3)

where K., is the constant velocity gradient matrix, e.g. for a
simple shear flow

, ¥ = const. “4)

(=Nl
O O

0
K.=1|0
0

In such case the strain rate, F., is simply a symmetric part of
the K., tensor.

The hydrodynamic tensors defined in Sec. II can then be
used in the Brownian dynamics scheme describing the evolu-
tion of the position vector R; and the direction vector é; (e.g.
the magnetic dipole moment) of each particle i =1, ... ,N!

R,’([‘FAI) :Ri(t)+Koo'Ri(t)At

+ <Zui~}'Fj+Zu§§'Tj + Y Ew) A+ T,
J j /
®)
1
&i(1+Ar) =& (1) + ye: Kult x &(1)

A

+ Xei(t)7

Yo ul Fide+ Y plf-Tide+ Y pff - Bt + T}
J Jj Jj

where € is the Levi-Civita tensor and : stands for tensor con-
traction. The stochastic displacement I" is a Gaussian random
variable with zero mean and the covariance

(T' (A1) T (At)) = 2DAr = 2kpT pAt (6)

kBT[l,:8~8T, <gigj>:5ija I‘(At):\/ﬂé’g

In the above we have neglected the terms involving diver-
gence of mobility tensors (cf. Ref.!), since they vanish within
the RPY approximation. However, when one goes beyond
RPY approximation and includes many-body effects in hydro-
dynamic interactions or introduces lubrication correction, the
divergence of mobility matrix becomes non-zero and needs
to be taken into account in Brownian dynamics simulation
schemes?.

In general, there are two ways in which the uniform shear
can be introduced in the molecular or Brownian dynamics
simulations. The first is to confine the system between two
parallel plates and translate one plate parallel to another at
a constant speed. The disadvantage of such a setup is the
presence of strong wall effects, which are undesirable, unless
our intention is to model the flow in nanochannels. Alter-
natively, to mitigate wall effects and more effectively simu-
late the bulk, one uses the periodic cell of the Lees-Edwards
kind?%27, which deforms, becoming progressively more titled
with time (cf. Fig. 1(a)). For a simple shear of a form }ze, the
tilting angle (i.e. the angle between the instantaneous direc-
tion of the tilted z axis and its original direction) varies with
the shear rate 7 and time  as?’

@)

yL, L
0 = arctan (yjmodx) .

L,

where Ly, L, and L, determine the initial size of the cell and
mod stands for the modulo operation. Similarly, for the sim-
ulations elongational flow, Kraynik-Reinelt boundary condi-
tions”® can be used. Again, the orthogonal cell is transformed
into a parallelogram, albeit this time the deformation takes
place along two orthogonal directions.
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FIG. 1. Schematics of different geometries of the system. (a) Lees-Edwards periodic boundary conditions for the shear flow. The tilt of
periodic cells changes as a function of time. (b) Vicinity of a free surface. Grey particle (i) feels the hydrodynamic disturbance generated by

the white particle j (solid line) as well as its images (dashed line).

IV. GENERALIZED ROTNE-PRAGER-YAMAKAWA
APPROXIMATION

The relation between the velocities of particles moving in
a Stokes flow and induced force density localized on particle
surfaces can be written as

(Ui + Qi X pi = Veo(T) 5, = Z/TA(T —7)fi ()
J

(®)
Here p; = r — R; with R; denoting the position of particle
i. On the other hand, —f;(r’) is the density of the forces
with which the particle j is acting on the fluid. Finally, T} is
the Green’s function for the Stokes problem for a particular
geometry. In the present study, we will consider specifically
the case of unbounded space, where the Green’s function is
the Oseen tensor, Ty, periodic boundary conditions, where the
fundamental solution is given by the Hasimoto tensor, 7y and
the vicinity of a free surface, with the tensor 7r (see Sec. V
for more details).
The key idea behind the GRPY approximation is to describe
force density in terms of its three multipoles only:

fi=w) Fj+w) - Tj+w}:S; )

where wj’ are operators associated with different multipoles

(p=t,rd)

1 ; 3
w;(r)=ﬁa515(p; aj), U’j("):@epﬁ(l’j_“ﬂ
d 3 .
wj (r) = m5(Pj—aj)Pj'I- (10)

J

In the above [€- Bj]qp = €qpylPj]y and Z, is the fourth rank
isotropic tensor, traceless and symmetric in its first and last

index pairs:

1 2
Iotﬁﬁy = 5 <5a56,5y+ 6017/5/35 — 35(1555),) (11

Next, the velocity field in the LHS of Eq. (8) is approximated
by a linear flow. The multipoles characterizing this flow:
velocity, U; — v (R;), vorticity, £2; — ww, and strain rate, -
E(R;), can be obtained from [U; +£2; X p; — Veo(T)],.c5, bY
integration of this expression multiplied by the transposed w;.”
operators. This leads to the following relation for the elements
of the inverse friction matrix

mi . = (w}'|Ta|w])
z// [w? (’I‘/)]T-TA (r/—r”)-w;? (r")dr'dr”, (12)

where we have used the relation (2) together with an approxi-
mation (9).
The inverse friction matrix is symmetric, thus

ml = [mjf’] ! (13)

Finally, we need to keep in mind that the Brownian dynam-
ics simulation uses the mobility matrix, g, and not the inverse
friction matrix, m. The latter needs then to be partially in-
verted to get p, which is the last step of the construction. This
is a difference to the previous approach'®2%2! where the for-
mulas analogous to (12) were used directly to generate the
mobility matrix. As commented in the Introduction, if the
problem does not entail dipolar degrees of freedom then both
approaches lead to the same results. However, if the problem
involves shear flow or calculation of particle stresses, then the
m-based approach is a correct one, since the particles placed
in a shear flow modify the effective value of a shear rate.
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V. FUNDAMENTAL SOLUTIONS

A. Unbounded space: Oseen tensor

The Oseen tensor is a fundamental solution of the Stokes
equations in unbounded domain

4

The second tensor on the LHS in Eq. (14), Qg gives the asso-
ciated pressure:

Qu(r)= 7. (16)

 Axr?

B. Periodic case: Hasimoto tensor

The generalization of (14) to the case of periodic boundary
conditions is given by

nV*Ty—VQy=—18(r), V-Ty=0, (14) NVTy—VQu=-1 Y [8(r—r,)—1], V-Ty=0,
ny,ny,n3
a7
which defines the Hasimoto tensor, T (r) and its associated
d read pressure tensor, Qp(r)?°. Here n = [ny,ny,n3] is a vector of
and reads integers numbering the cells in the real lattice and L - n are
the images of the origin in successive cells. In the above, L is
the lattice matrix the columns of which are the lattice vectors.
1 Using Ewald summation technique, the Hasimoto tensor
Ty (r) = s (L477). (15)  can be written as?!30-33
or
|
2 2 2 ~2
n efr'n./z‘:7 A o 1 ’ 22\ s g —ky,0°/2
T; = fc| — | Tq —_— ——=14+— 1—(1+=0%;, )| knk S(kn-T).
hr) ;[m@m) )t awino | eyt v L [ (1 ke | T costha )

(18)

2 2 2 <2

n 1 e—rn/ZG 1 ' e—kno /2
Qu(r)= erfc () Qo(rp)+——7Pn| +=) kn sin (k,, - T (19)
™) ;’ V20?2 (rm) ' 2V2m30 V; kn ( )

where o is a splitting parameter for the Ewald summations
whereas

rn=r+L-n, (20)
and in the reciprocal lattice,
k,, =2nn-L ' 21

The prime at the summation symbol in (19) indicates that the
term 1 = 0 is to be omitted.

In a simulation, the implementation of the Lees-Edwards
boundary conditions requires that the lattice matrix depends
on time, as given by Eq. (7). In the case at hand, for the co-
ordinate axes defined as in (4), the lattice matrix takes the fol-
lowing form

L, 0 fyL;tmodL,

L=|0 L, 0 , (22)
00 L,
We define the volume of basic cell as
V =detL (23)
and the splitting parameter, o is taken to be
o= 3; (24)

which corresponds to optimization of the numerical cost of
real and reciprocal sum. Further details on performing the
Ewald summation in skewed cells can be found in Ref.?!.

C. Free surface

In the presence of boundaries, the Oseen solution gains an
additional part describing the flow reflected from interfaces.
For a free surface (cf. Fig. 1(b)), the flow field due to the force
density localized at the source point 7', i.e. f(r) = Fyd(r —
'), is given by3+¥

v(r) =T (r,7) Fy=To (r—7') - F
+To (r—r")-P-F (25

where P = 1 —2é.,€é, denotes the reflection operator which
transforms any point into its mirror image with respect to the
surface and €, a unit vector perpendicular to the surface. Fi-
nally, 7"* = P -7’ is the image of ' with respect to the surface.
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VI. INVERSE FRICTION MATRIX

The expression (12) allows one to calculate the inverse fric-
tion matrix for any propagator T', corresponding to a particu-
lar geometry of the system. Below, we will consider specifi-
cally the cases discussed in Sec. V: unbounded space (Oseen
tensor), the periodic system (Hasimoto tensor) or vicinity of
a free surface. An analogous construction can be carried out
for systems bounded by a cylinder and a sphere®®—3%, for the
system bounded by two hard walls*® or elastic membrane*’,
in a liquid film between two fluids*'*?, or any other system in
which the fundamental solution can be derived.

The construction below is written out for a specific exam-
ple of a Hasimoto tensor corresponding to periodic boundary
conditions, but it can be applied to any of the tensors discussed
above as long as it is characterized by the same singularities
as the Oseen tensor as the particles begin to overlap.

Let us introduce the following auxiliary matrices

M (r;a,b) :Dp(r;a)~TA(r)~D<_q(r;b) (26)

where p,g =t,r,d.
The differential operators in (26) are given by

2
1
D'(r;a)= (1 +a6V$,> I, D'(r;a)= —ES-VT,

2
D%(r;a) = (1+;10V3,)I:Vr. (27)

Next, the arrow above D means that the differential operator
acts to the left, changing the sign of each differentiation, e.g.

F(OV 0 = (Vo f(r) and £(r) V2, = (2, £(1)).

A. Unbounded space

In unbounded space, the self terms of the m matrix (corre-
sponding to i = j) are simply single particle mobilities

my’ =mg? (a;) (28)

Single particle mobilities, mgq are only nonzero for p = g and
read

md (a) Z (29

- 3
~ 20mna’

For i # j the form of the expression for the elements of the
inverse friction matrix depends on the distance between the
particles. For nonoverlapping particles, the elements of the in-
verse friction matrix, m”? are equal to the respective elements
of the M matrix:

mye = My (Rij;aiaj) Rij>ai+a, (30)

R;; = R; — R;. On the other hand, for partially overlapping
configurations ( ’ai—aj‘ < R;j < a;+aj), Eq. (26) can no
longer be used and m”? is calculated directly using the inte-
gral formula (12) (see??)

mg{ij = mg({ov(R,'j;a,-,aj) (31)
where we introduced the subscript ov to emphasize that we
use Eq. (12) for the overlapping particles. Finally, when the
smaller particle becomes fully immersed in a larger one (
R;; < |a,~ —a j|) then the shape of the surface over which we
integrate (12) changes and the formulas for m”?(R;;) become
much simpler. We will use subscript im to indicate such an
immersed configuration.

Note that for p = ¢ the components m[’, (a;,a;) of the
inverse friction matrix can be directly obtained from the single
particle mobilities, since

mg‘)’im(R,’j;ai,aj) =m}!(max(a;,a;)), p=q (32

On the other hand, for p # g the components mg);, (ai,a;)
read

mg,im (r;a,b) = ®(a_b)m6r(a)'6'r (33)

m’od’l-m (r;a,b) =00 —a)r- mgd (a) (34)

rd
whereas my; ;,, = 0.

B. Periodic case

Analogously to Eq. (30), for nonoverlapping particles in pe-
riodic boundary conditions (Fig. 1(a)) the inverse friction ma-
trix can be expressed through the differential operators (26)
as

mzq,ij = M} (Rij;a;a,) Rijj>a;+aj, (35)
The matrix elements of M} can be calculated using the
Ewald summation formula for the Hasimoto tensor (19).

For partially overlapping particles ((’ai - aj‘ <Rjj<a+
aj) we recover the elements of the inverse friction matrix by
splitting the Hasimoto tensor as Ty = Tp + (Ty — Tp) and
calculating the respective contributions to the inverse friction
matrix, using either the integral formula (12) (for the first
term), or the differential formula (26) (for the second term):

my; = my, (Rijsai.a;) + Myt (Rijsaia;) (36)

In the above, index HO corresponds to putting into Eq. (26)
the difference between the propagators

Tho =Ty —To (37)

Note that 7y has no singularities at the particles overlap. The
construction of Ty using the Ewald summation formula is
described in the Appendix.
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The relation analogous to (36), although with mg,, re-
placed by 1m0 i, is used to calculate m in the situation when
one sphere is fully immersed within the other.

Finally, the self terms of the m matrix are:

me’; = mg? (@) + Mt (Rij = 0;a;,a;) (38)

Some of the components of the above-presented solution
have been reported previously in the literature. In particu-
lar, the ¢t component of the Rotne-Prager mobility matrix for
periodic systems has been obtained by Beenakker (1986)%°
(see also Refs.31:3243) Next, Jain et al. (2012)** have mod-
ified it to account for bead overlaps, but still for translational
degrees of freedom only. On the other hand, Stoltz et al.
(2006)*3 have considered the particles immersed in an ex-
ternal shear flow and the Lees-Edwards boundary conditions,
however they again limited themselves to translational degrees
of freedom only, neglecting the stresslet that arises as a par-
ticle is exposed to flow. The same regularizing correction for
overlaps as derived above has also been used by Zhou & Chen
(2006)», but, again only in the case of translational degrees
of freedom and in absence of external shear. Finally, as men-
tioned in the Introduction, Mizerski et al.>! have performed
a similar construction to the one presented above, but based
on the g matrix, which fails to take into account the modi-
fications of the effective shear rate due to the presence of the
particles. An approach closest to the present one, based on the
1 matrix was originally developed by Brady et al. (1988) as
a part of the Stokesian Dynamics method??. Ref.3? considers
equal-sized particles only and does not consider the regulariz-
ing corrections for particle overlaps. Subsequently, however,
Fiore, Swan and collaborators**#® have developed this ap-
proach further within so-called Fast Stokesian dynamics. Fol-
lowing the standard Ewald splitting into real and reciprocal
space part, they subsequently approximate the real space sum
by one term only, corresponding to the base cell, effectively
assuming that the size of the cell is much larger than the in-
verse of the splitting parameter, Lo >> 1. This allows them to
calculate this part analytically. On the other hand, the recipro-
cal space part of the Ewald summation is calculated using fast
Fourier transform technique, which requires a prior mapping
of the particle force moment to a regular spatial grid. It is an
alternative approach to the one presented here, well-suited to
handle large numbers of particles in an efficient manner, but
with a somewhat less controllable accuracy. We also note that
in Refs.**8 only translational and dipolar degrees of freedom
are considered, and rotation is not included in the computa-
tional scheme.

C. Free surface

Since the fundamental solution in this case (Fig. 1(b)) can
be expressed in a relatively simple way in terms of the Os-
een tensor (Eq. 25), a similar decomposition holds for the el-
ements of the inverse friction matrix*® (for i # j)

mFl/(RR) mOU(R R)“i’molj(leRj)Pq:;g
(39)

where R’ is the image point defined analogously to that in
Eq. (25) and

P =P, P =-P,

1 2
PaBy(S =5 <POWP[35 + PosPpy — §5aﬁ 5y5) (40)

The overlaps between the particles as well as between the par-
ticle and the wall can be accounted for by introducing the
terms mo whenever the arguments of the respective m’(’;’i ;
function becomes smaller than ai+aj.

The self terms of the 1 matrix (corresponding to i = j) are

calculated as

miyl (Ri) = my! (a;) + mygy. (Ria;) - P1 (41)

where z; is the distance between the particle and the sur-
face and mO .. 1s the inverse friction matrix element for the
particle i and its image for unbounded space and is equal to

b _{M”"(R ~Rjana), 7> a; “2)

mil. =
0,ii*
! mO()V(R R »ai,a l)a i < a,

where z; is the distance between the center of particle i and the
surface. Note that R; — R} = 2z;€é;.

VIl. CONCLUDING REMARKS

We presented the reformulation of the GRPY approxima-
tion based on the inverse friction matrix and derived a com-
plete set of all matrices m?9 for translational, rotational and
dipolar degrees of freedom, including the regularizing correc-
tions for overlapping particles. Latter can be used whenever
due to the finite time step the particles overlap. In such a case
standard formulas for mobility may lead to a matrix which
is not positive definite leading to numerical problems in the
Brownian dynamics simulations, where a square-root of the
mobility matrix is needed. In the literature, such cases as dealt
with in variety of ways: by introduction of a short-ranged re-
pulsive potential to prevent the overlaps’*~>*, by rescaling the
radii of the spheres for the sake of calculation p so that the gap
between the particles becomes positive’™ 7 or to reflect the
particles elastically each time they overlap®>>7%. The regu-
larizing corrections derived above allow one to simply con-
tinue the simulations, without a need for extra rescaling or
reflection. As noted in Refs.>>>’ hydrodynamic interactions
will cause the particle to leave the overlapping configuration
in few time steps.

Additionally, the possibility of calculating hydrodynamic
tensors for overlapping particles is important in the construc-
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tion of bead models of rigid macromolecules!>'°. Such mod-
els allow for a faithful representation of complex macromolec-
ular shapes using a significantly smaller number of beads than
the nonoverlapping models.

Moreover, for the system with free surface we have shown
how to take into account the overlaps of the particles with the
surface. We did not give the formulas for hydrodynamic ten-
sors in the presence of the hard wall, since these were provided
by Swan and Brady>?, but without the regularizing corrections
for particle overlaps or for the overlap between particles and
the wall. The former can be constructed relatively easily fol-
lowing the procedure outlined in Eq. (36). The derivation of
the latter is needed for the Brownian Dynamics simulations in
the vicinity of the wall®, but the proper account of overlaps is
here significantly more complex than in the free surface case
and will be the subject of the future work. We also note that
a similar construction to ours (but for translational degrees of
freedom only) has been carried out in Ref.*? for cylindrical
objects embedded in a viscous sheet.

Finally, by inclusion of the dipolar degrees of freedom as
well as Lees-Edwards boundary conditions the presented for-
malism can be used to study the rheological properties of com-
plex fluids and non-equilibrium phenomena such as shear-
thickening or shear-thinning .

J

DATA AVAILABILITY STATEMENT

The Fortran implementation of GRPY algorithm in periodic
boundary conditions is are available for download from github
repository https://github.com/pjzuk/GRPerY. The ex-
amples included demonstrate the usage of this code both in
Brownian and non-Brownian simulations.

Appendix A: The elements of the inverse friction matrix for
unbounded space and periodic boundary conditions

In this Appendix, we give explicit expressions for 7, r and d
components of the inverse friction matrix with GRPY approx-
imations and show construction of Ty tensor on the example
of translational degrees of freedom. The formulas are given
both for unbounded and periodic systems and for the cases
of non-overlapping as well as overlapping particles. For the
sake of brevity, we will only give the nonzero m components.
Additionally, we omit d¢, rt and dr components, since they
can be obtained from #d, tr and rd matrix elements using the
symmetry of inverse friction matrix (Eq. (13)).

Components tt In the case of Oseen tensor, the auxilliary matrix (26) is as follows

1

a*>+b? a* +b?

M (r;a,b) = sanr

o

L+ (1- = )ﬁﬁ] (Al)

According to Eq. (30) this also gives the elements of the inverse friction matrix, m/) for nonoverlapping particles. For overlap-
ping particles (|a — b| < r < a+ b) the inverse friction matrix is calculated accordmg to Eq. (31) with

™Moo (r30,b) =

a—b)?+ 3r2)2

2
N 3 ((afb)2 frz)

1 1613 (a+b) —
6mnab

3213

3213 ﬁﬁ} '

Next, when the smaller particle is fully immersed in a larger one (for r < |a — b|) the the matrix element is no longer dependent

on r and attains the form given by Eq. (32).
Next we move to the periodic (Hasimoto) case. Then

1 1 1 1
M (’r;a,b):Z{M’O’ (rn;a,b)erfc (\/r;?> + [(az—i—bz) (66 +37n ) 1+ ((az—l—bz) (6rn6 4 362—rn2> + 1)

n
1 2 /262} o? 1
X e Tn L P
42m3no v v

1 P 24 p?
’ {1 _ (1 + 2&1&) kznkn} (k:f - “Z) e 205 (kn ), (A2)

For an overlapping configuration, we use the construction (36) to calculate the inverse friction matrix. The key element here
is M}, which can be calculated by the formula analogous to (A2) but with the the first term in the sum (for n = 0) replaced by

M (r;a,b) (erfc( ) - 1) — MY (r;a,b) erf(

,
V262

Mjj, (r;a,b) = —

(ramm< >+Z

f*)”

1 1
(rn;a,b) erfc(\/rzn?> +; {(a2+b2) (66 +3rn2) 1+...

(A3)

Finally, the self terms are constructed using Eq. (38), i.e. putting @ = b and r = 0 into Eq. (A3) and then adding the single

particle mobility,

my. This might seem problematic, because the individual terms corresponding to n = 0 in (A2) are diverging



as r — 0. However, together they converge to a finite limit, which we denote by M 1o (a). Explicitly

M (a) = Ii M (r: (L ! @ (02 Ny loa(-9"_r2) i1 )sr
to (@) = Jigy ~Mo (maa)ert | 72 Tvamne 3\ 2 )t ) )T

1 a? )
= -1+ -—=)1 (A9
4V2m3on ( 902

The construction of other components of the inverse friction matrix is analogous to the one presented above for t# components.
For the sake of brevity, we give below only the final formulas for the other components.

1

My (ria,b) = Tornr

(377 —1) (AS)

1

W( (r;a,b)].“rsl (r,a,b)'f"ﬁ) (A6)

Mmoo (130,0) =

s* (r;a,b) = 5% =27/ (a2 +b2) +327° (a3 +b3) —9r? (02 *bz)z —(a—b)* (az +4ba+b2) J
s! (r;a,b):3((a—b)z—rz)z(a2—|—4ba+b2—r2)- (AT)

™ ( 'n 1 1 ) (1 42 1 5 3 z) ] —r2 /202}
M, (rp;a,b)erfc | — | — o 24+ r2)1+(-0*% -0 Prfn| ————e'n
il ;{ nib) <v262> [(4 2" 4 vo2 2/m ) Tnn 4230

1 1 -

+ M—VZ [1 - (1 + 20%) knkn} e n 205 (kyy 1), (A8)
M (a) = ———— 1 (A9)

48V2m3o3n

rt 1 .
MO (T‘;a,b) = WG'T‘, (AIO)
mgp,, (r;a,b) = W(aberr)z (b*+2b(a+r)—3(a—r)*)e-7 (A11)
(r;a,b) Z (rn;a,b) erfc( n ) + € n ! e’%/zaﬂ 4—L /ﬁe’kiaz/zsin(kz ) (Al2)

- " V20?2 ' 4V2m3n0 2V 4 kn "
MY (r,a,b) = TS [h0(r;a,b)p° (#) + ' (r;a,b)p" (#)] (A13)
0 (a . s 20 oy s (s ]

paﬁy(r):5aﬁry+5ayrﬁ—§5ﬁyroc, paﬁy(r):ra rﬁr'y_gaﬁy (Al14)

1 5
K (r;a,b) = 6b2(5“2 +36°)r 4, hb(ria,b) = 6b2 (3r % — (54> +3b%) r ) (A15)

The matrix m{  (r,a,b) is given by a formula analogous to (A13) but with 4°(r;a, b) and h'(r;a, b) replaced by

1
Hy n(ria,b) = — 5 (10/°—24ar° — 157 (b — @) (b + @) + (b—a)*(a+5b) )
5

s ((@=6)7 =) ((@=b)(a+56) =), (A16)

th,()v<r;aab) =
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1 2
My (r:a,b) = {M"j Trn,a,b erfC( n )4{ O(rp,a,0)p° (7)) +x ' (rn,a,b)p' (7 e’n/z"}
i ( ); 0 (Tn,a,b) 5o X (rn,a,b)p” (fn) +x (rn )p(n)]4\/ﬁnc
ooy 2,2\ 1/, _5a*+3b , 1 e
+217V; [P (kn) = 2+ 0%k P! (k)] (1= =55 hn, e sin(kn-7) (A7)
1
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1 1 1
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. 3 . , 3 2 .
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. 1 3 1 2 1952
M (r,a,b) = 4 (r,,,a,b)erfc e + <+> ) —— e 'n/20
; ) <\/262> 802 8y al )\/2717 170
417VZ q(ky) e *n*/2¢0s (kn-7), (A22)
M (r;a,b) = 407[”&;,93 [1o(r;a,b)d(7) + fo(rsa,b)d! (7) +f5(r;a,b)d*(7)] (A23)
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73 (ria,b) = &0 (% . w) . f3(nab) =223
fg (r;a,b) = =2f} (r;a,b) — 25 (r;a,b) (A25)

The matrix m‘é‘fov(r,a, b) is given by a formula analogous to (A23) but with f(r;a,b) replaced by
1
3oy (r3a,b) = 32 —— [Sr — 30/ (@ +b%) + 32 (3 + b°) —102(a— b)* (a® +4ab+b?) +3(a—b)° (a®+6ab + bz)}
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1
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n
1 2 . R
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