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Abstract. Parallelism has become more and more commonplace with
the advent of the multicore processors. Although different parallel pro-
gramming models have arisen to exploit the computing capabilities of
such processors, developing applications that take benefit of these pro-
cessors may not be easy. And what is worse, the performance achieved
by the parallel version of the application may not be what the developer
expected, as a result of a dubious utilization of the resources offered by
the processor.

We present in this paper a fruitful synergy of a shared memory parallel
compiler and runtime, and a performance extraction library. The objec-
tive of this work is not only to reduce the performance analysis life-cycle
when doing the parallelization of an application, but also to extend the
analysis experience of the parallel application by incorporating data that
is only known in the compiler and runtime side. Additionally we present
performance results obtained with the execution of instrumented appli-
cation and evaluate the overhead of the instrumentation.

1 Introduction

Current supercomputers offer large computational power by connecting multiple
computing nodes using a fast interconnection network. According to the TOP500
list [5], most of the supercomputers use multicore processors which increase
the inter-node parallelism. It is not surprising to observe that parallelism has
currently hit the desktop segment. However, all the compute power offered by
these processors needs some guidance to achieve real parallel execution. And not
only this, but guaranteeing that the parallel execution is taking real benefit of
the system resources is also an important task.

OpenMP* [7] is a widely known shared memory parallel programming model
that allows implementing parallel applications by using a set of compiler direc-
tives. The OpenMP runtime deals with the parallel thread execution (including
fork, execution and join of the slave threads) and offers the user incremental
parallel development by adding the compiler directives gradually. Other paral-
lel programming models may require the developer a major adaptation of the
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application (for instance, MPI* [14]) or deal with the thread management (if
using the pthread library). In addition, OpenMP allows to express irregular par-
allelism through a set of new constructs: the OpenMP Tasking constructs (which
includes task and taskwait since version 3.0 and taskyield since version 3.1).
A task is a unit of parallel work used to express unstructured parallelism that
will be executed by one of the threads at a time, but different parts of a task
may be executed by different threads.

OmpSs [6] is a parallel programming model based on the OpenMP standard
that extends the OpenMP Tasking constructs to support asynchronous task
parallelism and execution on heterogeneous devices. Asynchronous parallelism
is enabled by the use of data-dependencies between the different tasks of the pro-
gram (by extending the OpenMP task construct with input, output and inout
clauses with respect to the variables used in the task). These data-dependencies
are annotated in a task dependency graph created at runtime. The OmpSs run-
time starts scheduling tasks that have their dependencies satisfied (i.e., their
required data is ready). Then, as soon as tasks finish, the dependency graph
gets updated allowing the dependent tasks to become ready for execution.

Performance tools are pieces of software devoted to analyze the performance of
applications by looking for bottlenecks. Among the variety of performance tools,
Paraver [22] is a flexible parallel program visualization and performance analysis
tool. Its key features include: detailed quantitative analysis of program perfor-
mance, concurrent comparative analysis of different traces, support for mixed
message passing and shared memory applications, and customized semantics of
the visualized information.

In this paper, we present the result of the synergy between OmpSs runtime
and a Paraver trace generation tool. We not only demonstrate the utility of being
capable of emitting the internal values of the OmpSs runtime into tracefiles, but
we also improve the performance analysis life-cycle by providing an integrated
mechanism to gather the application performance data. We present a new display
mechanism for tasking constructs in the visualization tool that facilitates the
understanding of the execution of the application from the task perspective. We
also evaluate the overhead of our proposal by using a set of benchmarks. And,
finally, we demonstrate the usefulness of this work by analyzing an application.

The remainder of this paper is organized as follows: we present a summary
of the tools involved in this document in Section 2. Section 3 follows, where we
describe our implementation. Section 4 describes the experimental results using
several benchmarks. We discuss the related work in Section 5. Finally, we draw
some conclusions and present future directions of this work in Section 6.

2 Background

Extrae [1] is a performance extraction tool that generates Paraver [22] trace-
files. Extrae requires a two-stage execution process. The first step gathers data
like hardware performance counters and source code references from multiple
parallel runtimes (including OpenMP, MPI, CUDA* and pthread) by using ei-
ther instrumentation or sampling on compiled optimized binaries as long as the
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application executes. The second step generates the tracefile and occurs after
the application execution. The information gathered by Extrae depends on the
parallel runtime and it is only limited by the available documentation.

A Paraver tracefile is a container of timestamped records related to the ac-
tual execution of an application. The performance information is mapped into
the application resources that were assigned in the execution up to three lev-
els (namely: application, process and thread). Among the types of records that
can be stored in a tracefile, we focus on two of them: events and relationships.
Events are punctual information that occurs in an object (thread or process) of
the application. Typical events include entry and exit points of user routines,
hardware counter values, callstack information, among others. On the other side,
relationships refer to MPI point-to-point communications between two partners
of an application. Information contained in a relationship includes: the two ob-
jects involved, the timestamps for the point-to-point operations, the size and tag
of the communication.

The OmpSs programming model is built on top of the Mercurium compiler [2]
and the Nanos++ runtime system [3]. On the one hand, Mercurium is a source-
to-source compilation infrastructure aimed at fast prototyping. It is mainly used
to implement OpenMP and OmpSs, but since it is extensible, it has been used to
implement other programming models and compiler transformations. Extending
Mercurium is achieved by using a plugin architecture, where plugins are dynam-
ically loaded by the compiler according to the given user configuration. Code
transformations are implemented in terms of source code (that is, there is nei-
ther a need to modify nor a need to know the internal syntactic representation of
the compiler). On the other hand, Nanos++ is an extensible runtime library de-
signed to serve as a runtime support in parallel environments. Nanos++ supports
OmpSs, among other programming models, and it is responsible for scheduling
and executing parallel tasks specified by the compiler based on the constrains
specified by the user.

3 Implementation

We discuss in this section the modifications applied to the Nanos++ runtime
library and to the Extrae instrumentation package. The modifications discussed
below include how to generate instrumentation events, how to manage task
switching from the Nanos++ runtime point of view and how to postpone such
management to the Extrae post-process phase. We show also the modifications
applied when visualizing the tasks without having to modify the display tool.

3.1 Implementation of the Instrumentation Plugin for Nanos++

The Extrae instrumentation library provides an API to emit events into the
tracefile. Despite being accessible from Nanos++, Extrae needs a mechanism to
identify which thread is executing the function called. We have added a call to the
API of Extrae that allows identifying the calling thread by providing a callback
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Table 1. Comparison between the performance (PFM) and instrumented (INST) ver-
sions of the runtime (top). Comparison between the user source code and compiler
transformations for the performance and instrumented versions (bottom).

1 task nanos_create_task(f) {

2 creating a task for f

3 }

4 nanos_submit_task(task) {

5 submitting a task

6 }
PFM runtime

1 task nanos_create_task(f) {
2 Extrae_event(begin, "CREATING_TASK");
3 creating a task for f

4 Extrae_event(end, "CREATING_TASK");
5 }

6 nanos_submit_task(task) {
7 Extrae_event(begin, "SCHEDULING");
8 submitting a task

9 Extrae_event(end, "SCHEDULING");
10 }

INST runtime

1 {
2 user code 1

3 #pragma omp task
4 {
5 code for task A

6 }

7 user code 2

8 }

User code

1 void Outlined$A$(params) {
2 code for task A

3 }

4 {
5 user code 1

6 task_t A =
7 nanos_create_task();
8 nanos_submit_task (A);
9 user code 2

10 }

PFM user code

1 void Outlined$A$(params) {
2 Extrae_event (begin, "Outlined$A$");
3 code for task A

4 Extrae_event (end, "Outlined$A$");
5 }

6 {
7 user code 1

8 task_t A =
9 nanos_create_task(Outlined$A$);

10 nanos_submit_task (A);
11 user code 2

12 }
INST user code

function. Nanos++ is then responsible for initializing the Extrae package, and
also to set up the appropriate thread identifier routine by using this new API
function so as the events are properly assigned to the executing thread. Once the
OpenMP/OmpSs application is running, Nanos++ uses the Extrae API to emit
events into the tracefile and also to notify to Extrae whether the application has
finished.

Code in the bottom part of Table 1 shows an example of use of the tasking
constructs accompanied by the transformations done by the compiler when us-
ing the performance and instrumentation version of the generated code. In the
instrumented version the compiler uses the Extrae API to generate two events
to delimit the user function task. Also, the instrumented runtime adds events at
nanos_create_task and nanos_submit_task services allowing a further analy-
sis in the Nanos++ runtime, as shown in the top part of Table 1. For example,
task creation will change thread/task state to an specific CREATING_TASK value,
while submitting a task will change the state to SCHEDULING.

From the perspective of the runtime and regarding the events generated by
the Nanos++, we classify them in four categories:

– Punctual events: a stateless event that occurs in a specific timestamp.
– Burst events: an event delimited by a starting and an ending timestamps

(e.g. function execution).
– State events: it is an specific case of a burst event but due its importance it

has been treated in a different manner (e.g. whether thread/task is idle).
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(a) Task execution without context
switches.

(b) Task execution with context switch.

Fig. 1. Execution pattern of OpenMP/OmpSs tasks

– Point to point events: it is a relation between two objects at different times-
tamps (e.g. task a sends data to task b, or task b is blocked because of task
a).

Most of the generated events during instrumentation are burst or state events,
which means that they are delimited by a starting point and an ending point.
Task instrumentation of such kind of events requires data bookkeeping along
with the cooperation of the runtime library. We refer the saved data as instru-
mentation context and it contains task instance instrumentation information
that needs to be backed up and restored when a task is suspended or resumed,
respectively. Figure 1 illustrates this problem.

Figure 1(a) shows a timeline displaying the routine that is being executed
by the thread. As long as the application executes, the thread enters in three
different nested routines (colored in green, red and blue, respectively), and then
leaves them, returning to the previous one. If a task context switch occurs, as
in Figure 1(b), it is necessary to save the state of the thread, so as it can be
restored whenever it gets resumed (eventually, in a different thread).

Managing such amount of data structures during program execution would
incur at additional overhead cost. So as to avoid adding overhead in the instru-
mentation, we have decided to move the stack management at the trace gen-
eration step. Thus the runtime library needs to register in the instrumentation
library which events must be considered part of the instrumentation context.
During trace generation, the process keeps track of the registered events. If the
trace generation process encounters a suspend or resume event, it will backup
or restore the instrumentation context in the tracefile.

The nature of the unstructured parallelism due to the usage of the tasking
constructs, and more precisely in the case of the untied tasks and the existence of
dependencies in OmpSs, makes the task migration and task dependency tracking
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also important to be visualized. So as to fulfill this need, we have extended the
API of Extrae by introducing two new event types so as to provide a mecha-
nism that creates a relation between two threads (for example when a task is
suspended in a thread and resumed in another thread). The new API calls emit
information that is later translated by the tracefile construction. For the trace-
file construction, we reuse the matching mechanism that Extrae has for MPI
point-to-point operations in order to provide these new task relationships.

We have also implemented a mechanism that performs a deferred emission of
events. This mechanism allows queuing events into a task which will be emitted
when the task starts executing. Deferred events allow the runtime to place events
into the tracefile without knowing when they will actually happen. One example
of this usage involves task dependency tracking. During execution, a task only
knows its successor tasks but does not know its predecessor tasks. Furthermore,
when a task gets started it does not know whether it had predecessors or not.
So the predecessor is the responsible for tracking the dependency between them
without knowing which thread will execute the successor task. So as to track
the dependency, the predecessor issues two events. While the first event is gen-
erated in its own instrumentation context, the second event is generated in the
instrumentation context of the successor task. These two events are meant to be
combined in the Paraver tracefile so as to generate a point-to-point event, and
thus, correlate the two threads involved in the dependency.

3.2 Displaying OpenMP and OmpSs Tasking Traces

The Paraver resource mapping has fulfilled the needs of many types of executions,
including multiple hybrid executions like MPI and OpenMP at the same time.
However, adding support for tasks poses a difficulty to understand the logical
execution of the threads because tasks may express irregular parallelism which
is executed at any thread. Also, for the particular case of the untied tasks, a
task can migrate from one thread to another, which turns that we would need
an additional resource level to support representing a full-fledged execution. An
example of this difficulty is shown in Figure 2(a), where the timeline shows
information of the sort benchmark included in the Barcelona OpenMP Task
Suite compilation [11]. In this Figure we see more than a hundred tasks (each
colored differently) when the benchmark has been executed using eight threads.
This Figure shows the reader the difficulty of following a set of tasks and establish
their hierarchy. However, it is possible by using the visualization tool to track
a particular set of tasks by selecting them by hand, as we depict in Figure
2(c). In the Figure we show in the execution of a particular thread including
its migrations and its children tasks using the original display mode. From the
picture we observe that the blue task was created at the first thread, it first
executed at the second thread, then moves to the seventh thread and it finished
its execution at the third thread. The blue task creates six tasks, four to execute
the sort phase and two to execute the merge phase of the benchmark.

In order to mitigate this problem, we are experimenting with a new visualiza-
tion mechanism to help on the task analysis. While the original timeline displays
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(a) Timeline showing the actual distri-
bution of the OpenMP tasks within the
threads.

(b) Timeline showing the state of every
OpenMP task created during the execu-
tion.

(c) Timeline showing the actual distri-
bution of an OpenMP task and its de-
scendants within the threads.

(d) Timeline showing the state of a se-
lected set of OpenMP tasks.

Fig. 2. Comparison of the two timeline display modes for the very same execution

information in terms of the application resources (i.e. every line in the Y-axis
represents a combination of application, process and thread), the new visualiza-
tion renders information in terms of tasks within a process (i.e. every line in the
Y-axis represents a combination of application, process and task). For example,
the whole execution of the sort benchmark by using the new display mechanism
is shown in Figure 2(b). In this Figure we see the evolution of every task in
the whole execution and their state. Considering that yellow means running and
blue means blocked, we observe that there are two main running regions. First
region is shown as a diagonal from the upper left to half-bottom right, which
represents the sort phase in the benchmark. Second region is shown as a small
diagonal (almost horizontal in the Figure) from the half-bottom right to bottom
right, representing the merge phase in the benchmark. When both phases final-
ize, the main task (shown in the first row) finalizes. Figure 2(d) shows the state
of the blue task referred previously in Figure 2(c) (identified as 1.1.28) and its
descendants (1.1.94 to 1.1.97 for the sort phase and from 1.1.108 to 1.1.109 for
the merge phase). As opposite Figure 2(c) we observe in the Figure 2(d) that
task 1.1.28 spawns tasks 1.1.94 to 1.1.97 (colored in dark green, light green, pur-
ple and red, respectively, in Figure 2(c)), then waits for their completion, then
spawns tasks 1.1.108 and 1.1.108 (colored in light brown and orange, respectively,
in Figure 2(c)) and finally waits for their finalization.

We think that both display modes complement each other. While the original
display mode is useful to determine the proper usage of the threads and task
migrations, the new visualization mechanism can display more naturally the
logical execution of tasks and their dependencies. A detailed application analysis
would probably need using both of them so as to understand exactly which is
the application behavior.

4 Experimental Results

We have done a twofold experiment of the environment we have presented.
In the first experiment we evaluate the performance penalty of using the
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instrumentation mechanism in Nanos++. To perform this evaluation, we use
a set of benchmarks that use unstructured parallelism by using the OpenMP
task clause and an application named Hydro [16]. In the second experiment
we do a performance analysis of the Hydro application to show which kind of
analyses can be done by using the integrated environment.

All the experiments described in this section have been executed on a system
containing four hexa-core IntelR© XeonR© E7450 processors running at 2.4GHz
and 48 GBytes of RAM. The applications have been compiled using a develop-
ment branch of the Mercurium version 1.3.5.8 and Nanos++ version 0.7a, which
relies on the GNU C compiler version 4.3.4, using -O3 as optimization flags. For
the particular case of Hydro, we have compiled the application using OpenMPI
version 1.4.4.

4.1 Overhead Analysis

So as to analyze the instrumentation overhead of our integrated solution, we have
chosen some benchmarks from the Barcelona OpenMP Task Suite (BOTS). This
compilation of benchmarks is focused in testing such unstructured parallelism in
combination with other OpenMP worksharing constructs or recursive techniques.
Most of them include a cut-off mechanism that is used not to generate more
tasks and continue executing in a serial fashion. The cut-off allows to handle
task granularity (i.e. the amount of work executed by each task) allowing users
to manage a trade-off between application parallelism and the runtime overhead.

Due to space restrictions we have selected a subset of the BOTS benchmarks.
This subset includes:

– SparseLU computes a LU matrix factorization over sparse matrices. A first
level matrix is composed by pointers to smaller submatrices (blocks) that
may not be allocated. In each of the SparseLU phases, a task is created for
each block of the matrix that is allocated. We have used a matrix of 50 ∗ 50
blocks, and several block sizes from 25 ∗ 25 up to 200 ∗ 200. Due to space
restrictions, we show the results for blocks of 50 ∗ 50 and 200 ∗ 200.

– Floorplan kernel computes the optimal floorplan distribution of a number of
cells (each cell with its own shape description) which has been provided as a
parameter. The algorithm calculates the minimum area size which includes
all cells through a recursive branch and bound search. Floorplan application
implements a cut-off based on the depth of the tree. In our experiments we
have tested 20 cells input with three cut-off values (4, 5 and 6).

Table 2. TLB miss ratio of NQueens with different cut-off values

.00−.01 .01−.02 .02−.03 .03−.04 .04−.05 .05−.06 .06−.07 .07−.08 .08−.09 .09−.10
Cut-off set to 2 99.99% 0.01%
Cut-off set to 3 99.99% 0.01%
Cut-off set to 4 99.99% 0.01% 0,00%
Cut-off set to 5 44.02% 8.51% 8.55% 10.76% 11.52% 6.94% 4.30% 2.75% 1.69% 0.96%
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(a) SparseLU (M=50, N=200). (b) SparseLU (M=50, N=50).

(c) Floorplan (20 cells). (d) NQueens 13 ∗ 13 cheessboard.

(e) Strassen 4K ∗ 4K matrix. (f) Hydro 2K∗2K matrix with block size
of 256 ∗ 256 elements.

Fig. 3. Execution time for instrumented (INS) and performance (PFM) version of
different applications

– NQueens computes all solutions of the n-queens problem, whose objective
is to find a placement for n queens on an n ∗ n chessboard such that none
of the queens attack any other. The benchmark uses a backtracking search
algorithm with pruning, creating a task for each step of the solution. The
algorithm has a cut-off mechanism based on the recursion level of the kernel.
In our experiments we have tested a chessboard of 13 ∗ 13 and four cut-off
values (2, 3, 4 and 5).

– Strassen algorithm uses hierarchical decomposition to multiply large dense
matrices. Decomposition is done by dividing each dimension of the matrix
into two sections of equal size and a task is created for each decomposition
step. In our experiments we have used a matrix 4K ∗4K of complex numbers
and three cut-off levels (3, 4 and 5).

Figure 3 shows the results obtained when executing the aforementioned BOTS
benchmarks plus the Hydro application. The Figure shows the comparison of
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the application times by using the standard performance and the instrumented
versions. The X-axis shows the number of threads and also the runtime version,
while the Y-axis shows the execution time. The plots also show the execution
time with different cut-offs where applicable.

In all cases, the reader can see that the instrumented version adds some over-
head with respect the performance one. Overhead depends on the task granu-
larity, which is related also with cut-off values as in Floorplan, NQueens and
Strassen, or block size like in SparseLU. While on large task granularity the
overhead is less than 1% we find that reducing the task granularity increases the
overhead. For example in Figure 3(b) we see that the overhead for SparseLU is
about 43% with 1 thread, in Figure 3(e) we observe up to a 56% and Figure 3(d)
shows the largest overhead by using 1 thread (243%).

So as to understand the reasons of the large overhead experienced in the
NQueens benchmark, we have executed an instrumented version of the bench-
mark using one thread with the different cut-off values and adding hardware
performance counters metrics into the tracefile. Table 2 shows on each row the
TLB miss ratio analysis (i.e. number of TLB misses per instruction) for each
cut-off value shown in Figure 3(d). Each column in the table represents the TLB
miss ratios ranging from 0 to 0.1 in buckets of 0.01. The value in each cell is the
percentage of time that the thread has been experiencing that TLB miss ratio.
Using a cut-off level of 2 we observe that 99.99% of the total time the number
of TLB misses has been between 0 and 0.01, whereas the remaining time a TLB
miss ratio between 0.01 and 0.02. By comparing cut-off levels between 2 and 4
we do not observe a fluctuation on this behavior. This is no longer true when
the cut-off value is set to 5 where 44.02% of the total time experiences a TLB
miss ratio between 0 and 0.01. More than 25% of the execution time shows a
TLB miss ratio between 0.03 and 0.06. This large proportion of TLB misses per
instruction is clearly increasing the overhead of the instrumentation. Our pre-
liminary analysis of the situation indicates that the issue may appear because
the large number of tasks created consumes more memory pages because of the
generation of the events.

4.2 Hydro Analysis

The Hydro application is a proxy benchmark of the RAMSES [4] application,
that solves a large scale structure and galaxy formation problem using a rect-
angular 2D space domain split in blocks. Hydro is a mixed application that
combines OmpSs tasking constructs with data dependencies and MPI. The appli-
cation input requires to execute using 4 MPI processes and works with matrices
of 2K ∗ 2K elements split in blocks of 256 ∗ 256 elements.

First, we have analyzed the overhead of the instrumentation which is plotted
in Figure 3(f). The diagram shows a minimal overhead, typically close to 1% and
that the application does not scale linearly in respect to the number of threads
used. In fact, the application does not even scale when using more than four
threads.
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(a) Task-view perspective. (b) Thread-view perspective.

(c) Instruction Per Cycle achieved. (d) TLB miss ratio.

Fig. 4. Different time-line perspectives of the Hydro execution

Due to space restrictions, we study the case that gives better performance
from those shown in Figure 3(f). In Figure 4(a) we show a portion of the whole
application execution in a timeline using the task view. Within the Figure three
different types of OmpSs tasks appear colored in blue, yellow and red, which cor-
respond to three outlined routines generated by the Mercurium compiler that
are executed as OmpSs tasks. We observe that the yellow tasks do not start
until the blue tasks finish and that the red tasks do not execute until the yellow
tasks finish, this is because of the data dependencies in the source code. Al-
though data dependencies limit the concurrency of the application because blue,
red and yellow tasks do not overlap in time, we observe in Figure 4(b) that 4
instances of tasks are executed in parallel. This parallelism exists because the
data dependencies in the loop are intra-iteration but not inter-iteration, giving
the runtime the possibility to execute up to four iterations at a time.

Figures 4(c) and 4(d) show the achieved Instructions Per Cycle (IPC) and
the TLB miss ratio, respectively. The data in these timelines are colored by a
gradient that goes from green to blue, where green represents the lowest value
and blue represents the highest value. We can correlate Figure 4(a) with Figure
4(c) and we can note that the tasks coded in yellow are the task achieving the
highest IPC (0.57) whereas the rest of the code task runs at much slower IPC
(0.13). By comparing Figures 4(a) and 4(d) we notice also that the yellow task
has the lowest TLB miss ratio (less than 1 TLB miss per kilo-instruction). It is
also noteworthy that the red and blue tasks present two different behaviors with
respect to TLB misses. Half invocations of these tasks experience a high number
of TLB misses (about 80 TLB misses per kilo-instruction in the red task, for
instance) whereas the other do not miss so much in the TLB (less than 1 TLB
miss per kilo-instruction again in the red task). These tasks execute the func-
tions named updateConservativeVars and gatherConservativeVars, which
depending on one of its parameters traverses a matrix by its leading dimension
or not. Those invocations of the routine that do not traverse the matrix by its
leading dimension present the highest miss rates in the TLB.
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5 Related Work

POMP [20] is an extension to OpenMP proposed by Mohr et al.. POMP ex-
tensions include different mechanisms to obtain information from the OpenMP
runtime, mostly using callback functions. POMP issues these callbacks when-
ever the OpenMP runtime reaches a selected specific code locations like: fork
and join threads, invoking a parallel outlined function, entering and leaving a
barrier, among others. To our knowledge, POMP has been fully implemented
by Sun Microsystems[15] and partially implemented by IBM [10]. POMP is cur-
rently incomplete [10], i.e. not everything needed for a working implementation
is specified. Compared to the work we present, it differs from POMP in the
sense that the parallel programming runtime is responsible for emitting events
through the instrumentation library.

Scalasca [24], Vampir [21] and TAU [23] are performance tools that collect
data from OpenMP applications, among other types of applications. OpenMP
data collection in these tools can be done through OPARI [19], DynInst [8].
OPARI implements POMP by performing a source to source translation of the
user code, and thus limits the optimization opportunities of the application and
also presents some other drawbacks as making implicit barriers explicit and not
being able to instrument the worksharing constructs. DynInst is a binary rewriter
library that allows adding monitors in specific locations of the code. The devel-
oper of the tool needs to know the OpenMP runtime calls, and this is not always
possible. Also, each OpenMP manufacturer has its own runtime, which limits
the chances of instrumenting all the OpenMP applications. The solution we pro-
pose relies on a tight cooperation between the parallel programming model and
the performance analysis tool, this way the tool does not only know information
about when events (like entering or leaving parallel constructs) occur but also
information of the internal runtime state and also migration information of un-
tied tasks. Also, the usage of Paraver allows a more flexible and precise analysis
of the performance data.

Fürlinger et al. have written about a performance profiling for OpenMP 3.0
in [13]. They use a more recent version of OPARI, OPARI2 [18], to instrument
OpenMP applications that use OpenMP tasking constructs. In their work, they
provide a summary of the time spent on each task construct, the function exe-
cuted as a such, in addition to imbalance, overhead and synchronization time.
Because of the nature of the profile, it provides a summary of the execution and
it cannot provide the rich details of the execution we can show by using a trace-
file and a visualization tool as Paraver. Moreover, although OPARI2 provides
support for OpenMP tasks, to our knowledge other performance tools have not
extended their visualizations tools so as to display the execution of the OpenMP
tasks.

Finally, ROSE [17] is an open source compiler infrastructure to build source-
to-source program transformations and analysis tools. Authors proved their
system by providing a transformation interface for the OpenMP programming
model that tested lock misuse by replacing runtime library calls. Although the
work is only developed for runtimes of the GNU and Omni compilers, it could
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probably be extended to support other runtimes and to generate event trace
based performance data. However, we believe that the emitting performance
information of the runtime within it, can provide richer analysis rather than
information gathered at runtime library calls.

6 Conclusions and Future Work

In this paper we have summarized the integration of a parallel runtime library
that supports tasking constructs and an instrumentation library. Mercurium and
Nanos++ work together to support OpenMP Tasking model and they also can
produce all the information needed by instrumentation which will be used by
Extrae to generate a Paraver trace. The close cooperation between them allows
to generate highly detailed information about the program execution including
information from the programming model perspective and also from the runtime
internal information.

We have also presented a new trace display based on task, which complements
the classic view by showing the application execution from the task perspective.
This new view mode allows us to follow the liveness of a certain task through
timeline without taking into account how it switches from one thread to another.
Using task view mode we can easily follow task dependencies and we can also
combine it with other existing events (e.g. hardware counters) to correlate them,
as we have shown in the Hydro application study.

We have analyzed the overhead and we have studied the impact of our instru-
mentation in several application kernels and using different configurations. We
are aware about the current limitations on terms of overhead of our implemen-
tation. As of today, we are gathering a huge amount of information from the
runtime including: the number of ready tasks, the number of tasks blocked, the
number of yields executed and the idle loop executions among others. We think
that gathering all such information will easily excess the capabilities of the anal-
ysis tool for large runs and we would like to tackle this issue by rethinking which
of the generated events are really required and which could be optional. Addi-
tionally, we are also working on a version of Nanos++ for distributed-memory
systems [9] and accelerators [12]. We plan to extend the instrumentation mech-
anism in order to support these versions of the runtime.
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