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Chapter

Regulation of Morphological and 
Functional Aspects of Sexual 
Dimorphism in the Brain
Chitose Orikasa

Abstract

Sexual dimorphism of the adult brain regulates sex-dependent functions 
including reproductive and neuroendocrine activities in rodents. It is determined 
by sex steroid hormones during a critical perinatal period in female and male 
rodents. Sex steroids act on each nuclear receptor in the brain and control different 
physiological and neuroendocrine functions and behaviors. Several regions of the 
brain show evident morphological sex differences that are involved in their physi-
ological functions. This review addresses and focuses largely on the role of sex-
dependent differences in the brain, and their crucial functions in animal models. 
Particularly, recent intriguing data concerning the diversity of neuronal functions 
and sexual dimorphism are discussed.

Keywords: Sexual dimorphism, Sex steroid: Estrogen, ERα, ERβ, Neuronal plasticity

1. Introduction

Sexual dimorphism is characterized by morphological and physiological changes 
driven by sex steroids. In the rodent brain, it occurs during a critical period char-
acterized by higher plasticity of neurons allowing changes in neuronal circuits and 
connectivity. For instance, hormonal manipulation during this time window, such 
as castration in males or replacement therapy in females (injections of androgen or 
estrogen), resulted in the conversion of intrinsic features and alteration of struc-
tures and functions of neural circuits in the brain. In rodents, critical time span for 
brain sex differentiation extends from embryonic day (ED) 18 to the postnatal day 
10 [1], while in human it is exclusively embryonic day (ED12–22). Post this critical 
period, neuronal plasticity is lost and the effects of sex steroids can be diverted to 
activational effects in the brain. The mechanisms involved in defining the timing 
and duration of the neonatal critical period for the brain sexual differentiation 
remains to be determined. It is proposed that epigenetic modifications such as DNA 
methylation and histone acetylation might control the expression of genes impli-
cated in brain sexual dimorphism [2].

The neuroendocrine systems, which control the action of sex steroids, including 
that on neural circuits, are differentiated in a sex-dependent manner, resulting in 
the regulation of reproductive and sex-specific behaviors. The actions of sex steroids 
in masculinization and feminization of the brain are mediated by steroid hormone 
receptors. In both human and nonhuman primates, young male and females show sex 
differences in toy preferences [3, 4]. Girls with congenital adrenal hyperplasia (CAH)  
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show to preference toward toys of males and to have decreased female-typical 
behavior [5]. These results argue that behavioral sex differences are caused by sex 
steroids. Estrogen is produced locally in the brain from testosterone by the aroma-
tase cytochrome P450 enzyme [6, 7] and affects sexual differentiation by biding to 
estrogen receptor (ER) in rodents. Maternal and fetal estrogen can be bound by the 
α-fetoprotein produced by fetal liver cells and yolk-sac cells, thereby preventing their 
passage through the blood–brain barrier [8]. This mechanism results in female  
brain being free from estrogen. In contrast, in males, testosterone crosses the blood–
brain barrier and is converted by aromatase to elicit sexual differentiation of the brain 
[6, 7, 9]. The effects of testosterone and its enzymatic derivative, estradiol, on their 
receptors are therefore critical for the sexual differentiation of the brain.

2. Region-specific regulation of the ER

2.1 Sex-specific differences in the anteroventral periventricular nucleus

The crucial role of estrogens in the sexual differentiation of the brain is medi-
ated by estrogen receptors subtypes ERα [10, 11] and ERβ [12]. The amount of ste-
roid hormone receptors differentiated and available development differs between 
sexes. The anteroventral periventricular nucleus (AVPV) is greater in size and cell 
number in females than in males [13, 14]. In the AVPV, the distribution of ERα is 
similar in both sexes, but its expression levels are higher in females than in males 
in prepubertal and adult rats [15]. In contrast, the distribution pattern for ERβ 
detected by nonisotopic in situ hybridization and immunohistochemistry is differ-
ent between sexes [16]. Specifically, in females, a vast majority of ERβ-positive cells 
is located in the most medial portion of the AVPV, whereas the ERβ-containing cells 
in males are dispersed more laterally in the AVPV (Figure 1). The distribution of 
ERβ is reversed by neonatal hormonal manipulations [16]. Therefore, sex-specific 
physiological functions are predictable for sexual dimorphism in the AVPV.

2.2 ERβ sexual dimorphism in the AVPV

Steroid-mediated organization of the brain might involve cell apoptosis, cell 
migration, neurogenesis, cell differentiation and synaptogenesis. Estrogen and 
androgen induce programmed cell death [17] by the sequential activation of 
cysteine-dependent asparate-specific proteases (caspase) during the development 
of the hypothalamus [18] in the dimorphism of dopaminergic neurons in the AVPV 
[19–21]. The total number of ERβ-positive cells within the AVPV is not different 
between intact females and males [15, 22]. This is assumed to be caused by mecha-
nisms other than apoptosis namely the sexual dimorphic expression of ERβ in the 
AVPV. The sexual dimorphic features of the brain caused by sex steroids do not 
always coincide with larger nuclei exclusively in one sex. Indeed, a region-specific 
ERβ gene expression is observed in the AVPV [22]. Moreover, the steroids might act 
on specific regions in the brain [22]. In brain slices from developing mouse brain, 
estradiol but not dihydrotestosterone induces and modulates neuronal migration 
[23, 24]. These results suggest that sexual dimorphism of ERβ in the AVPV might 
contribute to migration rather than apoptosis or neurogenesis.

2.3 Functional implications in ERα and ERβ localization in the AVPV

In the AVPV of female rats, a majority of ERβ-positive cells also express ERα [16]. 
It has been shown that ERα together with kisspeptin regulates ovulation, while ERβ is 
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rather modified by these events [25]. At the molecular level, ERs bind to an estrogen 
responsive element (ERE) [26] after heterodimer formation [27], which allows the 
integration and collaboration of various signaling pathways for the completion of 
ovulation. The experimental infusion of antisense oligonucleotides in females results 
in decreased ERβ expression in the AVPV and consequently a persistent estrous [16]. 
Moreover, ERβ-positive cells and dopaminergic neurons have comparable distribu-
tion patterns in the AVPV [16]. Both ERα and ERβ have a role in the sexual dimor-
phism of dopaminergic neurons in the AVPV in both sexes [16, 28]. The secretion of 
luteinizing hormone (LH) is controlled by dopaminergic projections to neurons pro-
ducing the gonadotropin-releasing hormone (GnRH) [29]. The cycle of female rats 
stalls ovulation state by small lesions of the AVPV [30]. Altogether, these data suggest 
that ERα and ERβ are colocalized with GnRH and are involved in LH secretion  
[31, 32]. In particular, ERα exerts a positive role for GnRH neurons, while ERβ exerts 
a negative control of those neurons [25]. Nonclassical ERE-independent ERα effects 
are involved in negative regulation on pulsatile GnRH secretion, while ERβ effects 
are involved in positive regulation on that secretion [31, 33]. It is still controversial to 

Figure 1. 
Sexual dimorphism in the AVPV. ERβ positive cells aggregated densely in females (A-C), whereas the ERβ-
containing cells in males (D-F) dispersed more laterally in the AVPV in the AVPV. Scale, 100 μm. From [16].
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regulate GnRH neurons by ERs. Considering the inherent male distribution pattern 
of ERβ, a peculiar characteristic of the dopaminergic innervation in the AVPV [28] 
might be responsible for the GnRH secretion in the brain of males.

2.4 Formation of the sexually dimorphic nucleus in the preoptic area

The sexually dimorphic nucleus in the preoptic area (SDN-POA) was first 
characterized by Nissl staining, revealing in a larger volume in the brain of male 
rats than that in the brain of female rats [1, 34]. The volume of this nucleus is 
altered by gonadal steroids during the perinatal critical period [1]. Somatostatin 
might also be involved in sexual dimorphism in the SDN-POA. Indeed, during 
development, cells positive for somatostatin are expressed in a sex-dependent 
manner in the SDN-POA. Sex reversal of the dimorphism of somatostatin expres-
sion is observed in orchidectomized males and estrogen treated female pups 
[35]. The somatostatin mRNA-positive cells are significantly more in males than 
in females, but eventually the difference recedes. Somatostatin expression in 
females is steady during the postnatal development. The transcription of soma-
tostatin is transient and seems to contribute to the development of the SDN-POA. 
Somatostatin might prompt neuronal differentiation and survival via the soma-
tostatin receptor.

Immunostaining against calbindin D28k, a major cytoplasmic calcium-binding 
and buffering protein, has been successfully used to identify the rat hypothala-
mus [36], SDN-POA [35, 37] and provides an alternative to Nissl staining [37]. 
Distribution of calbindin-labeled cells in the SDN-POA is similar to somatostatin in 
both sexes. It has been suggested that apoptosis has a role in sexual differentiation 
of the SDN-POA [38]. However, no difference in the total numbers of calbindin pos-
itive cells was observed in the SDN-POA after perinatal administration of bromo-
deoxyuridine in both sexes [39]. On the contrary, in the postnatal SDN-POA, these 
neurons still show an aggregated distribution in females, while they are dispersed 
laterally in males [39]. Altogether, these data suggest that, besides apoptosis, cell 
proliferation and migration might contribute to the morphological difference in the 
rat SDN-POA. Moreover, ERα are reported to be expressed in the SDN-POA [40], 
suggesting the presence of estrogenic action in the SDN-POA sexual dimorphism.

Moreover, Nissl stained SDN-POA had not been reported in mouse until recently 
identified by calbindin immunohistochemistry [41] (Figure 2). The morphological sex-
dependent differences of the mouse SDN-POA were first demonstrated and established 
in terms of morphology and linked to gonadal steroid hormones during the prenatal 
critical period. Male mice have a greater number of calbindin-positive cells than females 
[41]. Similar differences within medial POA/anterior hypothalamic area (AHA) are 
observed in sheep, which are smaller in females than in males [42]. The volume of this 
nucleus in males is smaller in male-oriented than in female-oriented individuals. In 
humans, interstitial nuclei of the anterior hypothalamus (INAH) are considered com-
parable to those of rodent and sheep. The INAH is smaller in females than in males and 
smaller in homosexual men than in heterosexual men [43]. These results suggested that 
the sexual dimorphic nucleus in the two species is involved in sexual orientation. The 
male mice copulatory behavior and the preference for females is attributed to this dif-
ference in the SDN-POA [44–47]. Further functional analysis is required to completely 
understand the mechanisms involved in the sexual dimorphism of the SDN-POA.

2.5 Sexual dimorphic expression and function of ERs in the preoptic area

In the preoptic area (POA), ERα expression is much higher in females than in 
males [48]. This sex difference occurs during the perinatal period. After birth, the 
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expression of ERs is down regulated in the POA by estrogen [49]. The decreased 
ERα expression occurs in both sexes but the differential expression in the POA 
between females and males persists throughout life. Although the ERα levels 

Figure 2. 
Sexual dimorphism in the SDN-POA. Calbindin (CB)-immunoreactive cells in the mouse SDN-POA in males 
(A-E) and in females (F-J) in the rostral-caudal direction. In males (B-D), but not females, a cell aggregate of 
CB-positive cells is prominent. Sale, 400 μm. From [41].
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are higher in females than in males, a comparable distribution pattern of ERα is 
observed [16, 48]. The POA has been implicated to be involved in steroid activa-
tion of the male copulatory behavior [50]. In particular, dopamine neurons in the 
mPOA prompt male sexual behavior [51]. ERα and oxytocin containing neurons 
in the mPOA participate to control copulatory behavior in male rats [52–54]. In 
females, the POA and the adjacent bed nucleus of the stria terminalis (BNST) 
is considered essential for controlling maternal [55–58] and mating behaviors 
[59]. ERα in the mPOA is involved in the regulation of maternal care, maternal 
aggression and sexual behavior [56]. ERβ is detected by in situ hybridization and 
immunohistochemistry in the medial preoptic nucleus (mPOA) and more caudally 
in the BNST [16] (Figure 3). In males, ERβ in the mPOA is involved in aggressive 
behavior [60]. Overall in rodents, identical brain regions control specific behav-
iors depending on the sex. Recently, it is shown that the male-typical mounting 
behavior and female-typical pup retrieval behavior are induced by ERα located in 
the same region of the POA [61]. These data suggest that the sex specific neural 
circuits are able to control opposite behaviors. Therefore, sex-typical behaviors are 
likely induced by the harmonic expression of sex specific receptors together with 
sex steroid. Besides the neural circuit with a high degree of plasticity in the sexual 
dimorphic nervous system assuring precise sex-specific behavior events, there may 
be a possible the involvement of circumstances in ensuring responsiveness of the 
sex steroids.

2.6 Functional diversity of the ventromedial hypothalamus

The volume of the ventromedial hypothalamus (VMH) is larger in males than 
in females [62, 63]. ERα and ERβ are expressed in the VMH of rodents [22, 48]. 

Figure 3. 
Schematic representation of the distribution of ERβ mRNA-positive cells in the forebrain of rats through 
rostrocaudal axis. Scale, 100 μm. AC, anterior commissure; AVPV, anteroventral periventricular nucleus; 
BST, bed nucleus of the stria terminals; Fx, fornix; MPN, medial preoptic nucleus; OC, optic chiasm; SCN, 
suprachiasmatic nucleus; V3, third ventricle. From [16].
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However, ERα expression is abundant in the ventrolateral portion of the VMH and 
is higher in female rats than in male rats [48]. The sex difference is most likely due 
to the conversion of testosterone into estrogen, which downregulates ERα expres-
sion. Moreover, the aromatase signal in males is more robust than in females [64]. 
A sex difference in ERβ expression is observed in both postnatal day 14 and in the 
adult rat brain, indicating that the sexual dimorphism is also maintained through-
out life [22]. ERβ expression in the adult VMH is downregulated by estrogen or 
testosterone administration. The difference in expression is reversed by administra-
tion of estrogen in female rats or orchidectomy male rats. This sexual dimorphism 
is entirely attributable to the effects of sex steroids on the brain organization and 
plasticity during the critical neonatal period of the brain. Estrogen, converted from 
circulating androgen in males, downregulates ERα and ERβ expression in the VMH 
[22, 48] and consequently physiological functions. Estrogen together with proges-
terone in the VMH induces female sexual reproductive behavior such as lordosis, 
sexual receptivity and odor preference [65].

In adult males, the expression of ERα is lower than that in females. Cells in the 
male VMH are activated during fighting [66]. In these processes, ERα is involved 
in sexual [67] and aggressive behaviors in mice [68, 69], whereas ERβ is assume to 
be inhibitory to the aggressive behavior [68]. Other studies have demonstrated that 
male sexual behavior is not affected by ERβ in the VMH [70], but is profoundly 
regulated by ERα and the androgen receptor (AR), suggesting a possible distinct 
role for ERβ and ERα on each behavior. Opposing social behaviors, such as mount-
ing and attack, are regulated by ERα [67] or progesterone receptor [71] cells located 
in discrete regions of the VMH. Sex steroid receptor expression in the VMH is 
induced by environmental hormonal milieu during the critical period and in turn 
controls the dynamic action of the sex hormones on sex-specific behavior in adults 
[66, 72]. These data suggest that males and females seem to exhibit identical neural 
circuits in the VMH, but the activated receptors might contribute to inducing the 
sex-typical behavior. The sex-specific neural circuit dictated by sex steroids could 
work in conjunction with estrogen-mediated ERs.

3. Alternative mechanism for sexual dimorphism in the medial amygdala

The medial amygdala (MeA) is larger volume in males than in females [73] and 
this difference is abolished after castration in males and androgen treatment in 
females [74]. In adults, the size and volume of neurons is modified by circulating 
androgen. After castration of adult male rats, the cell soma size in the posterodorsal 
MeA (MePD) is similar to the one observed in females [74]. However, the number 
of MeA neurons in both sexes is not affected by adult androgens [75]. Steroid 
hormones also influence the organization of the MePD during the neonatal period 
[76, 77] and its metabolite, estrogen, results in masculinization of the MePD. ERα 
and ERβ are abundantly expressed in the MePD [22, 48, 78, 79] where the aromatase 
enzyme is also detected [80, 81]. ERs mediate estrogen-induced modifications in the 
MePD associated with masculinization and male-specific behaviors [82]. However, 
the masculinization in the MePD in the adult brain is mostly driven by circulating 
androgen [82]. Both the action of ER [82] and AR [83] in the MePD on the size 
of neuronal somas and in the sexual behavior mostly occurs in the adults [82]. In 
adults, there is no sex-dependent difference in ER subtype and expression in the 
MePD, but there is a sexual dimorphic expression of ERβ but not ERα in newborns 
[84]. Neonatal hormonal manipulations could not reverse the sex differences in ERβ 
in both sexes, suggesting that ERβ-mediated estrogen actions are not involved in 
the sexual dimorphism in the MePD. Furthermore, ERβ is highly expressed in the 
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MePD of adult female and male rats and is not affected by gonadectomy or estrogen 
treatment in both sexes [22]. Therefore, the ERβ expression also acts independent of 
activity in this structure.

In the MePD, sexual dimorphism involves mechanisms distinct from other 
regions of the brain. The MePD receives inputs from the olfactory and pheromonal 
systems, suggesting a functional role of this structure in sex arousal and regula-
tion of adult social behaviors, including mating, aggressive [85, 86], and territorial 
behavior [87]. Acquisition of mating stimuli induces Fos in the ERs in the MeA 
[88]. Finally, the mechanisms induced by the ERs in the MeA and those involved in 
sexual stimuli [89], gonadotropin secretion [90], ovulation [91] sex and courtship 
behaviors [87], onset of puberty [92], parenting, and reproduction [85, 89, 93] still 
remain to be identified.

4. Conclusion

Sexual dimorphism is characterized by morphological differences in several 
regions of the brain. Morphological sex differences in the POA/AHA and the INAH 
were revealed in sheep and human brains, which are assumed to be important for 
determining sexual orientation. Expression of the phenotypes i.e., behavioral sex 
differences, are suggested to be derived from morphological sex differences in 
the brain. However, the morphological sex differences are subtly evident in other 
human brain regions; hence, their association with functional sex differences in the 
human brain remains controversial. Consequently, CAH results in masculinized 
female brain, thereby leading to male-typical preferences, which are the congenital 
characteristics inherently caused by steroid and not acquired by learning. Striking 
sex differences in animal models contribute in establishing the mechanisms of 
sexual dimorphism in the brain of all living beings.

ER expression levels contribute substantially to the physiological and behavioral 
differences. However, the extent to which the amounts of ER control the develop-
ment of sexual dimorphism remains to be clarified. Sex-specific neural circuits 
activated by sex steroids might contribute to the functional role of ERs activated by 
estrogens. Recently it was evidenced that a high neuronal plasticity rate in neural 
circuits is necessary to ensure precise sex-specific responsiveness to sex steroids. 
The mechanism involved in the regulating the local action of sex steroids remains 
to be elucidated. Particularly, the expression and regulation of genes implicated in 
sexual dimorphism must be investigated.
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