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Abstract

The proprioception from the head is mainly mediated via the trigeminal nerve 
and originates from special sensitive receptors located within muscles called 
proprioceptors. Only muscles innervated by the trigeminal nerve, and rarely some 
muscles supplied by the facial nerve, contain typical proprioceptors, i.e. muscle 
spindles. In the other cephalic muscles (at the exception of the extrinsic muscles of 
the eye) the muscle spindles are replaced by sensory nerve formations (of differ-
ent morphologies and in different densities) and isolated nerve fibers expressing 
mechanproteins (especially PIEZO2) related to proprioception. This chapter exam-
ines the cephalic proprioceptors corresponding to the territories of the trigeminal, 
facial, glossopharyngeal and hypoglossal nerves.

Keywords: proprioception, muscle spindles, atypical proprioceptors, cephalic 
muscles, PIEZO2, mechanoproteins

1. Introduction

Proprioception is a quality of the somatosensory system that informs the central 
nervous system about the static and dynamics conditions of muscles and joints. 
This type of sensitivity has been studied in deep in the muscles depending on the 
spinal nerves and today the neurobiology of spinal proprioception is well known 
[1–4]. On the contrary, the neuroanatomy as well as the cellular and molecular bases 
of the proprioception in the cephalic muscles is not well known. Nevertheless, it is 
clear that cephalic muscles permanently develop fine adjustments of stretching and 
tone in facial movements, regulation of chewing force, oromotor reflex behaviors, 
verbal and nonverbal facial communication, swallowing, coughing, vomiting or 
breathing [5–7].

The skeletal muscles contain an intrinsic mechanosensory system, the pro-
prioceptive system, which provides unconscious and conscious information to the 
central nervous system. The proprioceptive inputs originate in specialized sensory 
organs (proprioceptors) present in muscles (muscle spindles [8, 9]), tendons 
(Golgi’s tendon organs [10]), joint capsules (Ruffini-like sensory corpuscles, 
Pacinian corpuscles and free nerve endings [11]), and presumably also the skin but 
their physiological properties suggest they are not the alternative to muscle spindles 
[2, 12–14]. The information encoded by the propioceptors gives rise to unconscious 
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and conscious sensations, necessary for most basic motor functions [15]. For those 
interested in a recent review and in detail on both types of proprioceptors, we refer 
to the Banks [8] and Macefield and Knellwolf [16].

Some decades ago, Baumel [17] suggested that proprioceptive impulses from 
facial muscles are conveyed to the central nervous system via different branches of 
trigeminal nerve throughout multiple communications with the branches of the 
facial nerve. Actually, it is accepted that the proprioception of all cephalic muscles 
depends on the trigeminal nerve [6, 18].

Therefore, the first unresolved issue in cephalic proprioception is whether all 
cranial nerves that innervate striated muscles also collect their proprioceptive 
innervation. According to Lazarov [18] the proprioceptive innervation of all 
cephalic muscles depends exclusively on the trigeminal nerve. In other words: 
the sensory ganglia of cranial nerves lack of primary sensory neurons and the 
proprioceptors of the cephalic muscles are supplied by neurons from the trigeminal 
mesencephalic nucleus [19].

The second aspect pending clarification is: if the proprioception of the cephalic 
muscles depends exclusively, or mainly, on the trigeminal nerve, how do the fibers 
of this nerve reach the muscles of the territories of other nerves? This question can 
be answered because to extensive communications of the trigeminal nerve with 
other cranial nerves. The trigeminal nerve has numerous connections to the facial 
nerve [20–34] and the data collected from animal models indicate that the nerve 
fiber interchange is always from the trigeminal to the facial nerve and not on the 
contrary [35]. To serve facial proprioception additional connections between the 
facial and cervical spinal nerves exists [36, 37]. Apart from those communications 
no specific reference of communications between the trigeminal nerve with the 
glossopharyngeal, vagal and hypoglossal nerves were found. But presumably the 
trigeminal proprioceptive fibers pass from the trigeminal nerve to them directly 
on the target organs themselves (tongue, pharynx, palate) or through their 
connections with the facial nerve [28, 31, 32].

And the third main question of cephalic proprioception regards the identifica-
tion and characterization of proprioceptors in the cephalic muscles. The skeletal 
muscles innervated by spinal nerves contain neuromuscular spindles and Golgi 
tendon organs, in addition to other types of corpuscles with less functional entity 
[8–11]. However, only the cephalic muscles supplied by the mandibular branch of 
the trigeminal nerve, and the platysma colli muscle contain neuromuscular spindles 
[38–40]. Therefore, cephalic proprioceptors, if any, have to be represented by 
other sensory nerve formations other than neuromuscular spindles. Recent studies, 
using immunohistochemistry techniques associated with specific markers related 
to mechanization, have shown that facial muscles [34, 41, 42] and some pharyn-
geal muscles [43] have differentiated sensory structures that presumably replace 
proprioceptors. However, it cannot be ruled out that sensitive nerve fibers reaching 
the muscles (especially nociceptive ones) can function as mechanoreceptors-
proprioceptors (see [44]).

2. Distribution of typical proprioceptors in cephalic muscles

Typical proprioceptors of human cephalic muscles are represented by 
neuromuscular spindles as most of them lack Golgi tendon organs since they lack 
true tendons.

Muscle spindles have been found in muscles innervated by the trigeminal 
nerve while in the territory of the other cranial nerves, with very rare exceptions, 
are absent [6]. Recently, Junquera [45] determined the relative density of muscle 
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spindles in human jaw muscles (Figure 1; Table 1). The M. temporalis, m. masseter, 
m. perygoideus medialis and m. pterygoideus lateralis contained numerous muscle 
spindles whereas they were less abundant in the digastricus and mylohyoideus 
muscles [45, 46]. The absence [45, 47] or presence [48] of muscle spindles in 
the tensor veli palatini muscle, also innervated by the trigeminal nerve, has been 
reported. It should be noted that atypical proprioceptors were also found in these 
muscles (Table 1; see below).

In muscles where the density of muscle spindles is higher, they consist of thick 
capsule, a shallow intracapsular space filled with variable number of intrafusal 
muscle fibers (ranging from 4 to 12). In muscles where the density of neuromus-
cular spindles was low, in general, the size of the spindles was smaller, had fewer 
intrafusal fibers and the capsule was less developed [45].

In the territory of the facial nerve one muscle spindle was found in the muscle 
orbicularis oculi in one pediatric specimen [49] whereas abundant muscle spindles 
have been found in the platysma colli [40]. Junquera [45] in her doctoral dissertation 
also observed typical muscle spindles in the plastysma colly more numerous in the 
cervical segment of the muscle than in the suprahyoid one.

3. Atypical putative proprioceptors cephalic muscles

3.1 Criteria to characterize atypical proprioceptors

The identification of putative sensory receptors in the cephalic muscles that 
may serve as proprioceptors was based on the following criteria: independence 
of the nerve trajectory, be placed in close relation to muscle fibers, show a mor-
phologically differentiated aspect, and display immunoreactivity for any putative 
mechanoprotein [34].

Figure 1. 
Longitudinal and transversal sections of muscle spindles from different cephalic muscles. MS: muscle spinde.
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In agreement with the above premises, capsulated and non-capsulated corpus-
cle-like structures of variable size and shape containing numerous axon profiles 
complexly arranged, have been identified. Given the morphologic heterogeneity 
of the corpuscle-like structures that fulfill the preestablished criteria we attempt 
to classify them into three types: type I, capsulated by a thin capsule, the glial cells 
variably arranged and showing different morphologies; type II, partially capsulated 
(the capsule being continuous with the perimysium), with variable morphology 
and in most of the cases the direction of the long axis was parallel to the one of 
muscular fibers; type III, non-capsulated and both the axon and Schwann-like cells 
are variably arranged (Figure 2).

On the other hand, it is now well established that at the basis of mechano-
sensitivity are mechanically-gated ion channels [50]. At present acid-sensing ion 

Muscle MS Type I Type II Type III INS*

M. temporalis 14 6 8 6 Yes

M. masseter 23 3 3 6 Yes

M. pterygoideus lateralis 18 3 14 7 Yes

M. pterygoideus medialis 21 5 10 3 Yes

Venter anterior m. digastricus 2 3 1 1 Yes

M. mylohyoideus 1 3 1 1 Yes

M. tensor veli palatini 0 2 2 1 Yes

M. corrugator supercilii + 

M. depresor supercilii

1 3 7 Yes

M. orbicularis oculii

pars palpebralis

pars orbitalis

0

0

3

1

11

7

9

9

Yes

Yes

M. orbicularis oris

pars marginalis

pars labialis

0

0

5

7

19

13

12

7

Yes

Yes

M. zygomaticus maior 0 1 4 4 Yes

M. zygomaticus minor 0 1 2 0 Yes

M. buccinator 0 19 28 10 Yes

M. depressor labii inferioris + 

mentalis

0 0 8 2

M. levator labii superioris 0 1 1 3 Yes

Platysma colli** 12/8 11/7 4/7 6/8 Yes/

Yes

M. genioglossus 1 16 28 10 Yes

M. palatoglossus 0 0 5 3 Yes

M. uvulae 0 0 7 3 Yes

M. constrictor pharyngis superior 0 0 6 14 Yes

M. constrictor pharyngis inferior 0 0 5 9 Yes

*Isolated nerve fibers displaying immunoreactivity for any of the mechanoproteins investigated.
**facial/cervical segments.

Table 1. 
Distribution and density of muscle spindles (MS), atypical proprioceptors (types I to III) and isolated nerve 
fibers (INF) in muscles supplied by the trigeminal nerve (green), facial nerve (blue), hypoglossal nerve (white) 
and glossopharyngeal nerve (brown).
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channel 2 (ASIC2) and Piezo2 have been detected in muscle spindles and are strong 
candidates to initiate the mechanotransduction in proprioceptors [50–56]. Also, 
the putative mechanoprotein transient-receptor potential vanilloid 4 (TRPV4) was 
detected in proprioceptors of the facial and pharyngeal muscles [42, 43].

3.2 Distribution in the territory of the facial nerve

No typical muscle spindles have been found in the human facial muscles  
[42, 57–61] with the exception of on the facial part of the muscle platysma colli 
[40, 45]. Conversely, they contain numerous atypical proprioceptors (Table 1) 
the type II of being the predominating and the greater density being observed in 
the buccinator and orbicularis oris muscles.

3.3 Distribution in the territory of the glossopharyngeal nerve

Most research have not found typical muscle spindles in the muscles innervated 
by the glossopharyngeal nerve although they are present in the human palatoglossus 
muscle [48].

Regarding the pharyngeal muscles, typical muscle spindles were never found 
with the exception of the constrictor pharyngis inferior of the crab-eating monkey 
(Macaca irus) [62]. Nevertheless, human pharyngeal muscles are richly innervated. 
In particular, the constrictor pharyngis superior and muscle constrictor pharyngis 
inferior (innervated by branches of the pharyngeal plexus, derived from the glos-
sopharyngeal and vagal nerves, and a small contribution of facial nerve; [63]) 
contain type II and III putative proprioceptors and isolated nerve fibers that display 
immunoreactivity for mechanoproteins (Table 1) [43].

3.4 Distribution in the territory of the hypoglossal nerve

As far as we know no muscles spindles have been reported in togue muscles. 
Junquera [45] observed one muscle spindle in the genioglossus muscle as well as 
numerous putative proprioceptors (Table 1).

Figure 2. 
Types of putative proprioceptors in human cephalic muscles. INF: Isolated nerve fibers.
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Therefore, as a whole, the cephalic muscles have proprioceptive inervation, 
although only the muscles innervated by the trigeminal nerve and the platysma colli 
muscle innervated by the facial nerve contain neuromuscular spindles. The cephalic 
proprioceptors may be is involved in the coordination of facial movements and non-
verbal communication, in language, swallowing and some other reflexes [64–66].

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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