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Abstract

Extracellular vesicles (EVs) are a heterogeneous group of endogenous nanoscale 
vesicles that are secreted by various cell types. Based on their biogenesis and 
size distribution, EVs can be broadly classified as exosomes and microvesicles. 
Exosomes are enveloped by lipid bilayers with a size of 30–150 nm in diameter, 
which contain diverse biomolecules, including lipids, proteins and nucleic acids. 
Exosomes transport their bioactive cargoes from original cells to recipient cells, 
thus play crucial roles in mediating intercellular communication. Breast cancer is 
the most common malignancy among women and remains a major health problem 
worldwide, diagnostic strategies and therapies aimed at breast cancer are still 
limited. Growing evidence shows that exosomes are involved in the pathogenesis of 
breast cancer, including tumorigenesis, invasion and metastasis. Here, we provide 
a straightforward overview of exosomes and highlight the role of exosomes in the 
pathogenesis of breast cancer, moreover, we discuss the potential application of 
exosomes as biomarkers and therapeutic tools in breast cancer diagnostics and 
therapeutics.
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1. Introduction

Extracellular vesicles (EVs) are heterogeneous membrane-bound vesicles which 
originate from endosomal or plasma membrane called exosomes or microvesicles, 
respectively [1]. The release of EVs was initially identified as a mode for cells to 
eliminate unwanted substances, however, the initial view with regard to EVs has 
changed dramatically with the deepening of research, and their crucial roles in 
diverse physiological and pathological processes have attracted extensive attention. 
According to their original cells, EVs are loaded with a specific set of preassembled 
bioactive cargoes, and give rise to phenotypic and genotypic changes in recipient 
cells [2, 3]. These cargoes enclosed within EVs are biologically significant, for exam-
ple, three EV subtypes including one microvesicle and two exosome populations 
released by LIM1863 CRC (colorectal cancer) cells have distinct miRNA expression 
profiles [4]. EVs contribute to numerous aspects of normal physiological processes, 
including blood coagulation, immune surveillance, tissue repair and stem cell 
maintenance [5]. They are also closely related with diverse human diseases, includ-
ing cancer, infectious diseases, neurologic diseases and cardiometabolic diseases 
[6]. Exosomes are a subtype of EVs and the application of exosomes as biomarkers 
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and therapeutic tools has appeared as a promising area of research due to some 
preponderant properties of exosomes. Exosomes can be released according to the 
command received from adjacent and distant cells, or in response to the stimula-
tion induced by local conditions [7]. Both normal and pathological cells are capable 
of secreting exosomes and they are stable in biological fluids [8]. Breast cancer is 
the most common malignancy affecting women, and its morbidity and mortality 
are estimated to increase in the coming years [9]. One in eight to ten women will 
be diagnosed with breast cancer during their lifetime [10], and breast cancer has 
seriously affected women’s health. Accumulating evidence indicates that exosomes 
are involved in the pathogenesis of breast cancer, including tumorigenesis, invasion 
and metastasis. Studies focused on exosomes might provide novel perspectives for 
revealing breast cancer pathogenesis and improving the current poor diagnostic 
and therapeutic status of breast cancer.

2. Extracellular vesicles

Cells naturally release EVs into the extracellular space, these nanoscale vesicles 
encompassing bioactive cargoes play crucial roles in diverse physiological and 
pathological processes. The term EVs represent several subtypes of vesicles, stan-
dardized criteria for distinguishing EVs subtypes are still under discussion, but it 
is universally acknowledged that they can be classified as two main categories: exo-
somes and microvesicles. Other EVs subtypes such as apoptotic bodies [11], sphere-
somes [12] and large oncosomes [13], are not mentioned in this review. Exosomes 
have endosomal origin, they are 30–150 nm in diameter and float at a density of 
1.13–1.19 g/ml in sucrose gradient [14, 15]. Exosomes are essentially intraluminal 
vesicles (ILVs) generated by inward budding of endosomal membrane during the 
maturation of endosomes, then released to the extracellular space when multivesic-
ular bodies (MVBs) (also referred to late endosomes) fuse with plasma membranes 
[16, 17]. Microvesicles, typically larger than exosomes (100–1000 nm in diameter), 
arise through direct outward budding and fission of plasma membrane [18], hence, 
the membrane composition of microvesicles can better reflect the membrane com-
position of original cells in contrast to exosomes. Although the origin of exosomes 
and microvesicles occurs at distinct intracellular locations, some common mecha-
nisms participate in both processes. The modes by which recipient cells take up EVs 
including endocytosis, direct membrane fusion and receptor ligand binding [19], 
but the specific molecular mechanisms deserve further investigation.

At present, the biogenesis of EVs, the substances they contain and the biologi-
cal effects they promote have been extensively studied, which make people find 
out the potential of EVs in clinical application. EVs subtypes like exosomes and 
microvesicles may perform different functions, and it is absolutely necessary to 
isolate high-purity EVs subtypes, which will be crucial for EV-related functionality 
and therapeutic value studies. But even in EV preparations with high-purity, elec-
tron microscopy (EM) results imply that they still contain co-purifying elements 
[20]. The isolation of EVs is challenging because EVs subtypes have some similari-
ties, including their size, density, composition, and surface marker proteins [21]. 
Meanwhile, EVs derived from biological fluids contain a mixture of multiple EVs 
secreted by various cell types [22]. Therefore, it is imperative to formulate universal 
standard protocols for the preparation of EVs.

Due to some peculiar characteristics of EVs, they have prominent biotechnologi-
cal potential. EVs are biocompatible and safe, coupled with nanoscale diameter, 
resulting in their long blood circulation half-life and high drug loading capacity, 
which makes them possible to be ideal drug delivery vehicles [23]. EVs represent 
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an attractive group of therapeutic biomarkers and has tremendous potential in 
immune response regulation and tissue regeneration [5, 24]. EVs are extensively 
found in diverse bodily fluids, and it is a promising area to serve EVs as biomarkers 
for early diagnosis and accurate prognosis. Since EVs are derived from bodily fluids, 
the diagnostic methods are probably non-invasive and considerably less painful 
than some existing diagnostic methods (for example, liver biopsy). Meanwhile, 
the clinical application of EVs can also monitor the response of therapy, which will 
contribute to convalescent process.

3. Exosomes

Exosomes are enveloped by lipid bilayers and act as mediators of intercel-
lular communication through transmitting diverse functional biomolecules from 
original cells to recipient cells, and they are secreted by virtually all cell types, 
such as stem cells, immune cells and tumor cells [25]. The cargoes transported by 
exosomes including lipids, proteins, RNA (coding and non-coding) and even DNA 
(genomic and mitochondrial) [26]. Exosomes can be detected and isolated from 
diverse bodily fluids, exemplified by blood, urine, saliva, cerebrospinal fluid and 
breast milk [27], they can also be obtained from cell culture-conditioned media 
[28]. Some specific surface proteins are considered as the makers of exosome, such 
as tetraspanin family (CD9, CD63 and CD81), heat shock protein 70 (HSP70) and 
major histocompatibility complex (MHC) molecules [29]. Exosomes also contain 
abundant ceramide, cholesterol and sphingomyelin, which may relate to their lipid 
raft microdomains [30]. Multiple genetic materials are detected in exosomes, and 
exosome-encapsulated miRNAs have obtained extra attention because of their vital 
roles in regulating gene expression and can be used as biomarkers for a variety of 
diseases [31].

Exosomes exhibit unique biogenesis mechanism. Plasma membrane buds 
inward through endocytosis, resulting the generation of early endosomes [32]. The 
process from early endosomes to late endosomes (also referred to MVBs) requires 
the involvement of Golgi complex, during which ILVs also accumulate by the 
invagination of endosomal membrane in their lumen [15]. Then, MVBs either fuse 
with lysosomes, which ILVs are degraded, or fuse with plasma membranes, which 
ILVs are released to the extracellular space as exosomes [33]. Fusion of MVBs with 
plasma membrane requires the assistance of soluble N-ethylmaleimide-sensitive 
fusion attachment protein receptor (SNARE) complexes [34]. The endosomal 
sorting complex required for transport (ESCRT) machinery, a vital participant 
in exosome biogenesis, is responsible for ILVs formation and protein sorting [35]. 
ESCRT machinery contains four complexes, ESCRT-0, ESCRT-I, ESCRT-II and 
ESCRT-III, as well as associated proteins, including ALIX, VPS4 and VTA1 [36]. 
ESCRT-0 recognizes the ubiquitinated cargoes, ESCRT-I and ESCRT-II initiate 
the budding process of ILVs, whereas ESCRT-III terminates this process [3, 37]. 
ESCRT-independent mechanisms also exist by the evidence that MVBs still form in 
the absence of ESCRTs [38], further studies report that the mechanisms are related 
with the sphingolipid ceramide [39] or some members of the tetraspanin family 
[40]. In single MVBs, a competitive relationship between ESCRT-dependent and 
ESCRT-independent mechanisms exists, which affects the size of ILVs formed inside 
[41], this makes it possible to identify different subpopulations of MVBs based on 
their ILVs size. A group of Rab GTPases including Rab11, Rab27a, and Rab27b, are 
also involved in the release of exosomes [42]. Once exosomes are released to the 
extracellular space, they may exist in the circulation or be taken up by adjacent and 
distant cells [43, 44].
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Exosomal preparations with high-purity are significant for further exploration 
of exosomal biogenesis and functions, and techniques for exosomal isolation have 
made great advances. At present, the commonly used isolation techniques including 
ultracentrifugation-based techniques, size-based techniques, precipitation, immu-
nocapture and microfluidic-based techniques [35, 45] (Table 1). Among them, 
ultracentrifugation is the most extensively used exosomal isolation technique for 
bodily fluids and cell culture supernatant [46]. Each technique has its own merits 
and demerits, and the combination of aforementioned techniques may lead to a 
more desirable isolation. Recent study showed that the acidic condition was more 
suitable for the isolation of exosomes [47], indicating that local pH of exosomes 
should be taken into account for future researches.

Specific roles of the tumor microenvironment during cancer progression and 
metastasis have been widely studied [48], and cancer cell–derived exosomes can 
establish a favorable microenvironment to induce cell proliferation, angiogenesis, 
resistance to apoptosis and initiation of pre-metastatic niches through their bioac-
tive content [22, 49]. The secretion of exosome appears to have an impact on drug 
resistance, for example, exosomes enriched in TAG72 imply that CRC patients 
might be resistant to 5-FU [50]. And cells under pathological status release even 
more exosomes, it is estimated that there are approximately 2,000 trillion exosomes 
presented in normal human blood and 4,000 trillion exosomes presented in the 
blood of cancer patients [51]. According to these results, it is feasible to serve 
exosomes as biomarkers for diagnosis and prognosis. Exosomes are capable of 
inducing anti-tumor responses through delivering tumor antigens to immune cells, 
and exosomes derived from T cells can suppress tumor development [52], demon-
strating their great potential in modulating immune responses. Enlightened by the 
capability of exosomes that transmits biomolecules from original cells to recipient 
cells, accompanied with their biocompatibility, low immunogenicity and toxic-
ity, high stability in the circulation, biological barrier permeability and potential 
targeting to specific sites [53], diverse strategies have been developed for loading 
therapeutic cargoes into exosomes, which have a broad application prospect.

Exosome plays important roles in tumor diagnostics and therapeutics. Tissue 
biopsy is usually acquired from the site of primary tumor and reflects its molecular 
traits over a period of time, therapies will be determined according to the results of 
tissue biopsy. However, the limitations of tissue biopsy are obvious, it is not com-
prehensive enough to reflect heterogeneity and dynamic evolution of tumor [54]. 

Isolation techniques Advantages Disadvantages References

Ultracentrifugation-based 

techniques

Low cost, most 

commonly used

Time-consuming, high 

equipment cost, low recovery

[15, 45]

Size-based techniques Fast, convenient, high 

yield

Lack specificity, requires 

dedicated equipment

[17, 46]

Precipitation Easy, does not require 

specialized equipment

Lack specificity, 

time-consuming

[15, 45, 46]

Immunocapture High purity Expensive, low capacity [28, 35]

Microfluidic-based 

techniques

Fast, low cost, 

convenient

Lack standardization and 

large-scale tests on clinical 

samples, lack method 

validation

[45, 52]

Table 1. 
The advantages and disadvantages of different techniques used for exosome isolation.
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Exosome related liquid biopsy techniques including surface-enhanced Raman 
spectroscopy (SERS), next generation sequencing (NGS), digital droplet PCR 
(ddPCR) and molecular barcoding, have drawn extra attention due to its unique 
advantages of minimally invasive and serial biochemical tests [55]. Among diversi-
fied methods developed for liquid biopsy, SERS-based technique for detection of 
circulating tumor markers including exosomes is one of the most powerful meth-
ods, it owns the advantages of high sensitivity, specificity, tremendous spectral 
multiplexing capacity for simultaneous target detection, and its unique capability 
for obtaining intrinsic fingerprint spectra of biomolecules [56]. The application of 
exosome related liquid biopsy enables the improvement of various aspects of tumor 
management including early diagnosis and screening, prediction of prognosis, 
early detection of relapse, serial sampling and efficient longitudinal monitoring of 
disease progress and response to treatment [57]. Although exosome related liquid 
biopsy is a promising area, there are still some loopholes including difficult extrac-
tion and did not analyze the phenotypic studies of cells from tumor, that require 
further refinement and validation [58].

4. Breast cancer

Breast cancer is a disease with high heterogeneity, containing multiple tumor 
entities that have diverse clinical behavior and biological features [59], which com-
plicate its diagnosis and treatment. Among women, breast cancer is the most com-
mon malignancy and the second leading causes of cancer-related death [60]. The 
5-year overall survival rate for non-metastatic breast cancer patients is greater than 
80%, whereas distant metastasis can reduce this rate to approximately 25%, and 
the main metastatic sites including bone, brain, liver and lung [61]. The diagnosis 
and treatment of patients are evaluated by clinical assessment, breast imaging, 
tumor size, histologic grade, lymph node involvement or acknowledged biomark-
ers, including estrogen receptor (ER), human epidermal growth factor receptor 2 
(HER2) and progesterone receptor (PR) [62]. The clinical classification of breast 
cancer should be reasonable, so as to select the most appropriate diagnostic strat-
egy and therapy for each patient, and the molecular subtypes of breast cancer are 
represented by basal-like, HER2-enriched, normal breast-like, luminal A, luminal 
B and claudin-low [63]. The occurrence of breast cancer is influenced by age, race, 
obesity, smoke, drinking, oral contraceptives and other exogenous estrogens, age 
at menarche, age at menopause, age at first live birth and environmental toxins 
[64, 65], also, inherited genetic mutations are responsible for 5–10% of all breast 
cancer cases, and mutations in BRCA1 and BRCA2 are believed to increase the 
lifetime risk of being diagnosed with breast cancer by more than four times [66].

Breast cancer is generally diagnosed by mammography, computed tomogra-
phy (CT), magnetic resonance imaging (MRI), ultrasound, core needle biopsy, 
excisional biopsy and histopathologic evaluation [65, 67]. Diagnosed patients 
with parallel clinical and biological characteristics may exhibit distinct responses 
to treatment and bring about different outcomes [68], therefore, the research on 
breast cancer treatment needs to be further deepened. At present, surgery and radi-
ation are mentioned frequently in treatment, and three approaches are primarily 
adopted in medical oncology: ER + -related breast cancer aimed at anti-endocrine 
strategies, HER2 + -related breast cancer treated with HER2-targeted drugs and 
triple-negative breast cancer (TNBC) managed with traditional cytotoxic therapy 
[69]. More importantly, it is not just about choosing the appropriate treatment for 
each patient, the sequencing of therapies should also be considered.
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5. Exosomal functionality and therapeutic value in breast cancer

It has been widely acknowledged that exosomes are important players in the 
pathogenesis of breast cancer (Figure 1). The release of exosomes induced by 
heparanase, hypoxia and other stimulation is involved in breast cancer angiogen-
esis, which facilitate tumorigenesis process of breast cancer [70]. Also, exosomes 
promote breast cancer tumorigenesis by modifying tumor microenvironment to 
permissive niches. Typically, alteration in miRNAs expression have been found to 
influence initiation and development of breast cancer [71], for example, compared 
with non-malignant breast cells or non-metastatic breast cancer cells, exosomal 
miR-10b is significantly upregulated in metastatic breast cancer cells [72]. Further 
research shows that RNA induced silencing complex-loading complex (RLC) 
proteins Dicer, AGO2 and TRBP, which have been proved to participate in miRNA 
biogenesis, can be detected in exosomes derived from the serum of breast cancer 
patients and breast cancer cells, moreover, Dicer inhibition in cancer exosomes 
obviously decelerates tumor growth in recipient cells [73]. Invasion plays an impor-
tant role in cancer development, invasion ability of non-malignant breast cells can 
be induced by exosomes derived from metastatic breast cancer cells [72]. Metastatic 
breast cancer cells specifically express and release miR-105, during which exosomal 
miR-105 can transfer to endothelial cells and acts as an effective regulator of their 
migration [74]. Recent study also suggested that miR-7641 was identified as an 
important component of exosomes that could promote breast tumor metastasis 
[75]. Drug resistance are also closely related with exosomes as they are capable of 
transporting anti-cancer drugs outside breast cancer cells. Chen et al. reported 
that drug-resistant breast cancer cells might spread their drug-resistant capacity 
to sensitive cells through secreting exosomes, they further confirmed that this 

Figure 1. 
Exosome in the pathogenesis of breast cancer. Exosome contribute to oncogenic transformation, angiogenesis, 
permissive niche formation and drug resistance in breast cancer.
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process was mediated by exosomal miRNAs [76]. Trastuzumab is a commonly used 
drugs to treat breast cancer, while exosome-transmitted cicHIPK3 could promote 
trastuzumab chemoresistance of drug-sensitive BC cells, decreasing the therapeutic 
effect [77]. Recent study showed that exosomal miR-155 regulated drug resistance 
of breast cancer [78] and chemotherapy with miR-155-targeting therapies may lead 
to satisfactory outcomes.

Breast cancer is a disease which tends to metastasis, patients with early diagno-
sis, reasonable prognosis and accurate treatment usually have more favorable out-
comes, yet approaches against breast cancer are still limited, and exosomes could be 
employed as novel biomarkers and therapeutic tools for patients with breast cancer. 
Hannafon and colleagues found that exosomes derived from breast cancer cells 
were enriched with specific miRNAs (miR-1246 and miR-21), what’s more, these 
miRNAs in plasma exosomes of breast cancer patients were significantly higher 
than those of healthy control subjects [79], and exosomes may play crucial roles as 
biomarkers for breast cancer. Distant metastasis or local recurrence of breast cancer 
are strongly related with exosomal miRNAs, including miR-17-5p, miR-93-5p, miR-
130a-3p, miR-340-5p [80], which can serve as indicators for prognosis. Now that 
exosomes remain stable in biological fluids, they are also promising for early diag-
nosis or monitoring the treatment process of breast cancer. In contrast to delivering 
anticancer drugs outside breast cancer cells, exosomes can also target anticancer 
drugs to breast cancer cells after appropriate modifications, for example, exosomes 
modified by targeting ligands deliver doxorubicin to tumors [81], which improve 
the therapeutic efficacy. Exosomes derived from mesenchymal stem cells (MSCs) 
can be used as drug delivery vehicles to transport locked nucleic acid (LNA)-anti-
miR-142-3p, therefore reducing tumorigenicity in breast cancer [82].

6. Summary

Over the past few decades, on account of great advances in our understanding 
of breast cancer biology, diverse diagnostic and prognostic strategies, as well as 
targeted therapies are continuously evolving, while the situation of breast cancer 
patients remains unsatisfactory. For prevention and treatment of breast cancer, we 
need not only to develop new biomarkers and therapeutic tools, but also to further 
investigate the potential molecular mechanisms. Fortunately, accompany by our 
comprehension of exosomes is becoming more refined, the role of exosomes in 
initiation and development of breast cancer has been widely explored, and it is 
meaningful to translate exosomal research achievements to develop safe and effec-
tive therapies, diagnostic methods, along with drug delivery vehicles, which may 
conduce to improve the unsatisfactory situation of breast cancer patients.
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