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Chapter

Quarks Mixing in Chiral
Symmetries
Zbigniew Szadkowski

Abstract

We discuss a subject of the quarks mixing in SU4 ∗ SU4 and SU6 ∗ SU6

symmetries trying to calculate the quarks mixing angles and the complex phase
responsible for the CP non-conservation on the basis of the Gell-Mann Oakes
Renner model. Assuming symmetry breaking in a limit of exact sub-symmetries for
simultaneous quarks rotations in both electric charge sub-spaces we can estimate all
mention above parameters. A perfect agreement of the experimental value of the
Cabibbo angles with a sum of simultaneous quarks mixing angles in doublets (u,c)
and (d,s) in the SU4 ∗ SU4 symmetry suggests that a quarks mixing is realized in a
maximal allowed range. The same assumption used for the SU6 ∗ SU6 and a simul-
taneous maximal allowed quarks mixing in both electric charge triplets (u,c,t) and
(d,s,b) gives a perfect agreement with the experimental value of the Cabibbo angle
and estimation on the angles Θ2 and Θ3 as well as a bond for the complex phase δ.

Keywords: quarks mixing, chiral symmetries, Cabibbo angle, Kobayashi-Maskawa
mixing matrix, symmetry breaking

1. Quarks mixing in chiral SUn ∗ SUn broken symmetry in the limit of
exact SUk ∗ SUk symmetry

The hierarchy of chiral symmetry breaking [1–3] has been investigated since
seventies of the previous century [4–8]. The symmetry breaking and mixing of
quarks are connected with the rotation of quark currents and Hamiltonian densities.
The determination of the rotation angle becomes an important problem. For the
first time the procedure of chiral symmetry breaking, based on the Gell-Mann,
Oakes, Renner (GMOR) model [9] has been used in SU3 ∗ SU3 symmetry in the
limit of exact SU2 ∗ SU2 symmetry [4] to determine the value of the Cabibbo angle
[10]. The transformation of rotation is connected with the seventh generator of the
SU3 group. After the charmed particles have been discovered the SU3 ∗ SU3 sym-
metry is no longer adequate to describe the strong interactions. The SU4 ∗ SU4

symmetry introduced earlier [11] to explain the behavior of charged and neutral
currents becomes quite satisfactory model describing the hadron world. The prob-
lem of determining the Cabibbo angle in SU4 ∗ SU4 symmetry has arisen. It is
considered in [5–6] and the method of calculating the Cabibbo angle in SU4 ∗ SU4

symmetry is described in [7]. It is known that the formula describing the rotation
angle is not changed if the symmetry is extended. This is not unexpected because
the Cabibbo angle is connected with the mixing of the d and s quarks and the
rotation is performed around the seventh axis in SU3 subspace too.
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The problem of chiral SU4 ∗ SU4 symmetry breaking in the limit of exact
SU2 ∗ SU2 symmetry is considered in [6]. Symmetry breaking is connected with the
transformation of rotation around the tenth axis in SU4 space. The rotation angle is
determined in [7].

The other variant of the SU4 ∗ SU4 symmetry breaking in the limit of the exact
SU3 ∗ SU3 symmetry is described in [8]. It is connected with the rotation around the
fourteenth axis in SU4 space. In this paper we introduce the general method of
rotation angle description in the broken SUn ∗ SUn symmetry. The chiral SUn ∗ SUn

symmetry is broken according to the GMOR model. In the first step we introduce
the Hamiltonian density breaking SUn ∗ SUn symmetry but invariant under
SUk ∗ SUk symmetry. In the second step we introduce quark mixing and the
resulting exact symmetry is SUk�1 ∗ SUk�1 The particular investigation of cases like
the above is not necessary.

The generalized GMOR model is used. It is assumed that by enlargement to a
higher symmetry the new quantum numbers are the charges (as for example:
electric charge, strangeness, charm but not isospin). Then the SUn ∗ SUn symmetry
breaking Hamiltonian density can be written as a linear combination of diagonal
operators ui.

HE ¼
X

n

j¼1

c j2�1u
j2�1 (1)

where the scalar densities ui ¼ qλiq and pseudo-scalar densities vi ¼ iqλiγ5q
satisfy the equal-time commutation rules

Q i, u j
� �

¼ if ijku
k Q i, v j

� �

¼ if ijkv
k (2)

Q
i
, u j

h i

¼ idijkv
k Q

i
, v j

h i

¼ �idijku
k

where f ijk are the structure constants, dijk - symmetric generators of the
SUn ∗ SUn group. If the SUk ∗ SUk symmetry is exact then

∂
μVi

μ ¼ ∂
μAi

μ ¼ 0 i ¼ 1, 2, … , k2 � 1
� �

(3)

In the GMOR model the divergences of currents can be calculated as follows

∂
μVi

μ ¼ i HE,Q i
� �

∂
μAi

μ ¼ i HE,Q
i

h i

(4)

We require that the SUk ∗ SUk symmetry be exact, then the following con-
straints are obeyed

cj2�1 ¼ 0 j ¼ 2, … , kð Þ (5)
ffiffiffi

2
n

r

 c0 þ
X

n

j¼kþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
j jþ 1ð Þ

s

 c j2�1 ¼ 0

The symmetry breaking Hamiltonian density can be written as follows

HE ¼ c0 u0 �
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

un
2�1

� �

þ
X

n�1

j¼kþ1

cj2�1 uj
2�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n� 1ð Þ
j j� 1ð Þ

s

un
2�1

 !

(6)
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Using the standard representation of λ matrices one obtains

u0 ¼
ffiffiffi

2
n

r

X

n

j¼1

q jq j (7)

uj
2�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
j j� 1ð Þ

s

X

j�1

l¼1

qlql � j� 1ð Þq jq j

 !

(8)

u0 �
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

un
2�1 ¼

ffiffiffiffiffi

2n
p

qnqn (9)

u j2�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n� 1ð Þ
j j� 1ð Þ

s

un
2�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
j j� 1ð Þ

s

n� 1ð Þ qnqn � j q jq j �
X

n�1

l¼ jþ1

qlql

0

@

1

A (10)

Let us note that the term qkqk does not exist in Eq. 11.

HE ¼
ffiffiffiffiffi

2n
p

c0 þ n� 1ð Þ
X

n�1

j¼kþ1

cj2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
j j� 1ð Þ

s

qnqn

0

@

1

A

�
X

n�1

j¼kþ1

cj2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
j j� 1ð Þ

s

j q jq j þ
X

n�1

l¼ jþ1

qlql

0

@

1

A (11)

The chiral SUn ∗ SUn symmetry with the exact SUk ∗ SUk sub-symmetry is
broken by the rotation of the SUk ∗ SUk invariant Hamiltonian density around the
axis with the index m ¼ n� 1ð Þ2 þ 2k� 1.

HSB ¼ e�2iαQm

HE e2iαQ
m

(12)

Only the quarks qk and qn are mixed. The SUk ∗ SUk symmetry is no longer
exact. Only the term qnqn is rotated under transformation (12), because there is no
qkqk term in the Hamiltonian density (11).

e�2iαQm

HEe
2iαQm ¼ qnqn � qnqn � qkqk

� �

sin 2α� 1
2

qkqn þ qnqk
� �

sin 2α (13)

The above consideration is limited to processes not having the change of the
quantum number N connected with the SUn symmetry. So in the broken
Hamiltonian density HSB ΔN¼0ð Þ the terms qnqk and qkqn do not appear. The broken
Hamiltonian density is a linear combination of the diagonal operators ui only.

HSB ΔN¼0ð Þ ¼ HE þ A
X

n�1

j¼k

ffiffiffiffiffiffiffiffiffiffi

jþ 1
2 j

s

u jþ1ð Þ2�1 �
ffiffiffiffiffiffiffiffiffiffi

j� 1
2 j

s

uj2�1

 !

sin 2α (14)

where

A ¼
ffiffiffiffiffi

2n
p

c0 þ n� 1ð Þ
X

n�1

j¼kþ1

cj2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
j j� 1ð Þ

s

(15)
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In more detail Eq. (14) is given as follows:

HSB ΔN¼0ð Þ ¼ c0 u0 � A

ffiffiffiffiffiffiffiffiffiffiffi

k� 1
2k

r

sin 2α uk
2�1 þ

X

n�1

j¼kþ1

u j2�1 cj2�1 þ A sin 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 j j� 1ð Þ

s !

þ

�un
2�1 c0

ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

þ
X

n�1

j¼kþ1

cj2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n� 1ð Þ
j j� 1ð Þ

s

0

@

1

A� A un
2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

2 n� 1ð Þ

r

sin 2 α

(16)

If the SUk ∗ SUk symmetry is exact then the pseudo-scalar mesons corresponding
to the indices j ¼ 1, … , k2 � 1

� �

are massless [9]. After the SUk ∗ SUk has been
broken, the SUk�1 ∗ SUk�1 symmetry is still exact, because the operator Qm does not
mix the quarks q1, … , qk�1 neither with themselves nor with other quarks. The

mesons corresponding to the indices j ¼ 1, … , k� 1ð Þ2 � 1
� �

after symmetry

breaking are still massless, while the mesons corresponding to the indices

j ¼ k� 1ð Þ2, … k2 � 1
� �

belong to the massive multiplet kð Þ1 The masses of mesons

are determined in the GMOR model. Before the SUn ∗ SUn symmetry is broken the
masses are described by the coefficients c0, … , cn2�1 from Eq. (1). After the sym-
metry has been broken the new factors c00, … , c0n2�1 are obtained as the coefficients
standing by the operators ui in the broken Hamiltonian density (16) [7].

c00 ¼ c0 (17)

c0
k2�1 ¼ A

ffiffiffiffiffiffiffiffiffiffiffi

k� 1
2k

r

sin 2α

c0
j2�1 ¼ cj2�1 þ A sin 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 j j� 1ð Þ

s

k< j< nð Þ

c0n2�1 ¼ �c0
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

�
X

n�1

j¼kþ1

cj2�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n� 1ð Þ
j j� 1ð Þ

s

þ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

2ðn� 1Þ

r

sin 2α

The masses of the mesons are determined as follows [12].

m2
aJ

2
aδab ¼

ffiffiffi

2
n

r

c0 d0ab þ
X

n

j¼kþ1

c0
j2�1d j2�1ð Þab

0

@

1

A< u0 > 0 (18)

The relation between the indices a, b, j and meson states is described, for
example, for the SU4 ∗ SU4 symmetry in [12, 13]. For a ¼ b ¼ k2 � l, the mass of the
(k) meson is given as follows

m2
kð Þ f

2
kð Þ ¼

ffiffiffi

2
n

r ffiffiffi

2
n

r

c0 þ
X

n

j¼kþ1

d j2�1ð Þab c
0
j2�1

0

@

1

A< u0 > 0 ¼ 1
k

ffiffiffi

2
n

r

A sin 2α < u0 > 0

(19)

For a ¼ b ¼ m ¼ n� 1ð Þ2 þ 2k� 1, the mass of the (n) meson is given by

m2
nð Þ f

2
nð Þ ¼

ffiffiffi

2
n

r ffiffiffi

2
n

r

c0 þ
X

n

j¼kþ1

d j2�1ð Þmm c0
j2�1

0

@

1

A< u0 > 0 (20)
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Because

d j2�1ð Þmm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 j j� 1ð Þ

s

j< nð Þ (21)

d n2�1ð Þmm ¼ 2� n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n n� 1ð Þ
p (22)

m2
nð Þ f

2
nð Þ ¼

ffiffiffiffiffi

1
2n

r

A 1� 1� 1
k

	 


sin 2α

	 


< u0 > 0 (23)

In formulas (19) and (23) to determine the masses of (k) and (n) mesons one
has (n-k + 3) unknown quantities with which to deal (< u0 > 0, c0,
c kþ1ð Þ2�1, … , cn2�1, sin αÞ. Nevertheless the angle a is determined by the masses and
decay constants of two pseudo-scalar mesons (k) and (n) only.

sin 2α ¼
k m2

kð Þ f
2
kð Þ

2 m2
nð Þ f

2
nð Þ þ k� 1ð Þ m2

kð Þ f
2
kð Þ

(24)

All the cases of symmetry breaking considered in [4–8] can be described by
formula (24). Let us give simple examples: a) for k = 2, n = 3 a is the original
Cabibbo angle Θ associated with rotation around the seventh axis in SU3 subspace
[4–7].

sin 2
Θ ¼ 2 m2

π f
2
π

2 m2
K f

2
K þ m2

π f
2
π

(25)

b) for k = 2, n = 4 and rotation around the tenth axis [6–7] one obtains

sin 2α ¼ 2 m2
π f

2
π

2 m2
D f

2
D þ m2

π f
2
π

(26)

c) for k = 3, n = 4 and rotation around the fourteenth axis [7–8] one obtains

sin 2α ¼ 3 m2
K f

2
K

2 m2
D f 2D þ m2

K f
2
K

� � (27)

In general the determination of the rotation angle (24) in SUn ∗ SUn symmetry is
possible only if the new quantum numbers introduced by a transition to the higher
symmetry are scalars of the charge type (additiv). So the Hamiltonian density (1)
can be constructed as a linear combination of the diagonal operators ui; only
i ¼ j2 � 1, j ¼ 1, … , n
� �

. The method of determining the rotation angle, discussing
and interpreting the symmetry breaking is described in more detail in [7] on
SU4 ∗ SU4 symmetry as an example.

2. Quarks mixing and the Cabibbo angle in the SU4 ∗ SU4 broken
symmetry

It is known that the Cabibbo angle has been introduced into SU3 symmetry to
explain the suppression of processes in which strangeness is not conserved [4]. The
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Cabibbo angle is connected with the mixing of d and s quarks for weak interactions
of hadrons. Its value, calculated by Oakes, does not contradict the experimental
data. Before the charmed particles were discovered Glashow, Iliopoulos and Maiani
[11] have suggested the generalization of a strong interaction symmetry to SU4 [6].
The charged weak current is then given as follows

Jμ ¼ q γμ 1� γ5ð Þ A q (28)

where

A ¼

0 0 cosΘ sinΘ

0 0 � sinΘ cosΘ

0 0 0 0

0 0 0 0

0

B

B

B

@

1

C

C

C

A

(29)

The current (28) can be expressed in another form

Jμ ¼ u, cð Þ γμ 1� γ5ð Þ cosΘ sinΘ

� sinΘ cosΘ

	 


d

s

	 


(30)

so, quark mixing is described by an orthogonal matrix. On the grounds of
Eq. (30) we cannot come to a conclusion about quarks in which the doublets are
mixed. If the matrix A is generalized to the following form

A ¼

0 0 cosΘ sinΘ

0 0 � sinΘ cosΘ

cosϕ sinϕ 0 0

� sinϕ cosϕ 0 0

0

B

B

B

@

1

C

C

C

A

(31)

the quarks in the doublets (u, c) and (d, s) are mixed independently. The zeros
in Eq. (31) are associated with the fact that the neutral currents which change the
strangeness and/or charm are not observed. So, the current (28) can be given in the
following form

Jμ ¼ u, cð Þ γμ 1� γ5ð Þ
cos Θþ ϕð Þ sin Θþ ϕð Þ
� sin Θþ ϕð Þ cos Θþ ϕð Þ

	 


d

s

	 


(32)

If the currents only are taken into consideration we cannot solve the problem if
the quarks are mixed in one or both doublets. This is not unexpected because the
currents are built as a bi-linear combination of quark states and the angles Θ and ϕ,
can always be substituted the effective angle Θþ ϕð Þ. To solve the problem the Gell-
Mann, Oakes, Renner (GMOR) model [9] will be used.

The charged weak current in SU3 symmetry can be written as follows

Jμ Θð Þ ¼ cosΘ J1μ þ i J2μ

� �

þ sinΘ J4μ þ i J5μ

� �

Θ� Cabibbo angle (33)

Jμ ¼ q γμ 1� γ5ð Þλk q q ¼

u

d

s

c

0

B

B

B

@

1

C

C

C

A

(34)
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The current (33) can be obtained from the isospin component of the current

J1μ þ i J2μ

� �

by rotation through an angle 2Θ about the seventh axis in SU3 space

according to

Jμ Θð Þ ¼ e�2iΘF7
J1μ þ i J2μ

� �

e2iΘF
7

(35)

where

Fk ¼
ð

d3x qþ xð Þ λk

2
q xð Þ (36)

The charged weak current in SU4 symmetry (30) can be expressed in the
following form

Jμ Θð Þ ¼ cosΘ J1μ þ i J2μ

� �

þ sinΘ J4μ þ i J5μ

� �

� sinΘ J11μ � i J12μ

� �

þ cosΘ J13μ � i J14μ

� �

(37)

The current (37) can be obtained by rotation of the components ΔS ¼ ΔC
through an angle 2Θ about the seventh axis in SU4 space

Jμ Θð Þ ¼ e�2iΘF7
J1μ þ i J2μ þ J13μ � i J14μ

� �

e2iΘF
7

(38)

The transformation (38) changes the strangeness but not the charm because

F7, q1
� �

¼ F7, q4
� �

¼ 0 (39)

The transformation (38) is connected with the mixing of d and s quarks (as in
the case of SU3 symmetry). In the SU4 symmetry the mixing in electric charge
subspace +2/3 can be taken into consideration. This is not possible in the SU3

symmetry where only one state with the +2/3 charge exists. The possibility of
expressing the current (37) by the transformation which changes charm but not
strangeness should exist. The transformation has been described by Ebrahim in [6].

Jμ ϕð Þ ¼ e�2iϕF10
J1μ þ i J2μ þ J13μ � i J14μ

� �

e2iϕF
10

(40)

F10, q2
� �

¼ F10, q3
� �

¼ 0 (41)

The transformation (40) is connected with the mixing of u and c quarks. The
fact that there exist two transformations giving the current (37) but connected with
different generators of the SU4 group changing strangeness or charm respectively
suggests that independent mixing in both doublets is possible. It is known that the
Cabibbo angle is connected with strangeness non-conservation in weak interac-
tions. The formula describing the value of the Cabibbo angle has been obtained by
Oakes [4] in the procedure of symmetry breaking. Namely the SU3 ∗ SU3 symmetry
in the limit of the exact SU2 ∗ SU2 symmetry is broken. The SU2 ∗ SU2 sub-
symmetry is no longer exact. The symmetry is broken by the rotation of the
SU2 ∗ SU2 invariant Hamiltonian density through angle 2Θ about the seventh axis.
Then the pion becomes massive. The symmetry breaking is connected with the
mixing of d and s quarks. The rotation angle Θ, as a measure of symmetry violation,
is a function of the mass and the decay constant of the pion and of the mass and the
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decay constant of the kaon as well (it is connected with the mixing of the strange
quark and the strangeness non-conservation). If the breaking of the chiral SU2 ∗ SU2

symmetry, the mass of the pion, the Cabibbo angle as well as a strangeness and
charm non-conservation have a common origin then it seems that as a result of
SU4 ∗ SU4 symmetry breaking in the limit of the exact SU2 ∗ SU2 sub-symmetry by
the rotation of the SU2 ∗ SU2 invariant Hamiltonian density through an angle 2ϕ
about the tenth axis the angle ϕ connected with the mixing of u and c quarks as a
measure of a symmetry violation should be a function of the mass and decay
constant of the pion (breaking of the SU2 ∗ SU2 symmetry) and a function of the
mass and decay constant of a charmed meson (charm non-conservation). The cases
of the separate and then simultaneously mixing of quarks in the sub-spaces of
electric charge will be considered below.

If the electromagnetic mass splitting of u-d quarks is neglected the Hamiltonian
density breaking the chiral SU4 ∗ SU4 symmetry is given in the form

H ¼ c0u
0 þ c8u

8 þ c15u
15 (42)

where c0, c8, c15 are constants, ua (a = 0, 1, ..., 15) are the scalar components of
the 4, 4

� �

þ 4, 4
� �

representation of the chiral SU4 ∗ SU4 group. On the grounds of
the GMOR model the following relation for masses of the pseudo-scalar mesons can
be obtained [12].

i <0∣ Q
a
,D

b
h i

∣0> ¼ δab f 2am
2
a þ

ð

dq2

q2
ρab ¼ (43)

¼ < u0 > 0
c0
2
δab þ c8

ffiffiffi

2
p da8b þ

c15
ffiffiffi

2
p da15b

	 


þ

þ< u8 > 0
c0
ffiffiffi

2
p da8b þ c8da8cdb8c þ c15da8cdb15c

	 


þ

þ< u15 > 0
c0
ffiffiffi

2
p da15b þ c8 da15c db8c þ c15 da15c db15c

	 


where

ρab ¼ 2πð Þ3
X

n6¼a

δ4 pn � q
� �

<0∣D
a
∣n> < n∣D

b
∣0> (44)

f a - decay constants, < ui > 0 - vacuum expectation value of the operator ui.
Because the vacuum expectation values of operators u8, u15 and the spectral density
δab are proportional to the squared parameters of symmetry breaking, they are
further neglected [12]. Approximately from Eq. (43) we obtain

m2
a f 2a δab ¼ 1

ffiffiffi

2
p c0

ffiffiffi

2
p þ c8 da8b þ c15 da15b

	 


< u0 > 0 (45)

The masses of the mesons are given as follows

m2
π f 2π ¼

1
2
ffiffiffi

3
p

ffiffiffi

3
p

c0 þ
ffiffiffi

2
p

c8 þ c15
� �

< u0 > 0

m2
K f 2K ¼ 1

2
ffiffiffi

3
p

ffiffiffi

3
p

c0 �
1
ffiffiffi

2
p c8 þ c15

	 


< u0 > 0 (46)
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m2
D f 2D ¼ 1

2
ffiffiffi

3
p

ffiffiffi

3
p

c0 þ
1
ffiffiffi

2
p c8 � c15

	 


< u0 > 0

In the limit of the exact chiral SU2 ∗ SU2 sub-symmetry there is the following
constraint

ffiffiffi

3
p

c0 þ
ffiffiffi

2
p

c8 þ c15 ¼ 0 (47)

so the pion is massless.
Let us make some remarks. The task of the Cabibbo angle calculation in SU4

symmetry using the procedure of symmetry breaking has been done in [6]. In
Ebrahim’s earlier paper [5] the parameters of the SU4 ∗ SU4 symmetry breaking
have been found.

c8
c0

¼ � 2
ffiffiffi

2
p
ffiffiffi

3
p m2

K f
2
K �m2

π f
2
π

m2
K f

2
K þm2

D f
2
D

c15
c0

¼ � 1
ffiffiffi

3
p 3m2

D f
2
D �m2

K f
2
K � 2m2

π f
2
π

m2
K f

2
K þm2

D f
2
D

(48)

In [6] the numerical values of parameters (48) have been used to calculate the
rotation angle (interpreted as the Cabibbo angle). The SU2 ∗ SU2 invariant Hamil-
tonian density breaking SU4 ∗ SU4 symmetry has been rotated through an angle 2 Θ
about the seventh axis and the coefficients of the operators ua (a = 0, 8, 15) have
been identified with the parameters of symmetry breaking

HSB ΔS ¼ 0ð Þ ¼ c0u
0 þ

ffiffiffi

3
p

2
c8 sin 2

Θ u3 þ c8 1� 3
2
sin 2

Θ

	 


u8

�
ffiffiffi

3
p

c0 þ
ffiffiffi

2
p

c8
� �

u15 (49)

It seems to us that there are some errors in the numerical calculations of the
author. The use of the numerical values of the parameters (48) has not been
necessary. On the grounds of theoretical formulas only, indeed from the Eq. (7) in
Ref. [5] and the Eq. (10) in A3-Ebrahim, it follows that

sin 2
Θ ¼ 2m2

π f
2
π

2m2
K f

2
K þm2

π f
2
π

(50)

Then the value of Θ is given by

sin 2
Θ ¼ 0:215ð Þ2 (51)

instead of

sin 2
Θ ¼ �0:04 (52)

from Eqs. (10) in [6]. Formula (50) has the same form as in SU3 symmetry. In
agreement with our expectation the angle Θ is described by parameters of the pion
and the strange meson.

In Ebrahim’s method the SU4 ∗ SU4 symmetry breaking the Hamiltonian density
is parametrized by the factors c0, c8, c15. The parameters of symmetry breaking are
expressed by the masses and decay constants of the mesons and they are fixed
(Eq. (7) in [5]). In the limit of the exact SU2 ∗ SU2 sub-symmetry the factors c0, c8,
c15 should satisfy the constraint (47) but it is possible only if mπ ¼ 0 namely the
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parameters of symmetry breaking are not expressed by real (measured in experi-
ment) masses of mesons. In [6] Ebrahim breaks the SU4 ∗ SU4 symmetry in the
limit of the exact SU2 ∗ SU2 sub-symmetry by the rotation of the SU2 ∗ SU2 invari-
ant Hamiltonian density through an angle 2 Θ about the seventh axis. The factors of
the rotated Hamiltonian density are identified with the parameters of symmetry
breaking (Eq. (7) in [5]). Solving a set of equations the author gets the factors c0, c8,
c15 dependent on the rotation angle and on the real mesons masses already. The
masses of mesons standing in the formula which describes the parameters of sym-
metry breaking are determined by the method of symmetry breaking and they have
a real value for the real realization of the symmetry breaking only. In this case the
rotation angle does not matter a parameter of the symmetry violation. It seems to us
that such an interpretation is not satisfactory. The expression of meson masses as a
function of the rotation angle (as a measure of symmetry violation) seems to be
more natural. In the present paper the other interpretation of the symmetry break-
ing and the method of calculating the rotation angle is proposed. We describe our
method as follows.

Before the SU4 ∗ SU4 symmetry in the limit of the exact SU2 ∗ SU2 sub-
symmetry is broken the masses of mesons have been expressed by the factors c0, c8,
c15 which satisfy the constraint (47). After symmetry breaking a new set of factors
c00, c

0
g, c

0
15 dependent on the old factors c0, c8, c15 and on the rotation angle is

introduced. The new factors are identified with the coefficients by the operators ui

of the rotated Hamiltonian density (49).

c00 ¼ c0 c0g ¼ c8 1� 3
2
sin 2

Θ

	 


c015 ¼ �
ffiffiffi

3
p

c0 �
ffiffiffi

2
p

c8 (53)

Meson masses are expressed by new factors and they are the function of the
rotation angle as a measure of symmetry violation.

m2
π f

2
π ¼

1
2
ffiffiffi

3
p

ffiffiffi

3
p

c00 þ
ffiffiffi

2
p

c0g þ c015

� �

< u0 > 0 ¼ �
ffiffiffi

3
p

2
ffiffiffi

2
p c8 sin 2

Θ< u0 > 0 (54)

m2
K f

2
K ¼ 1

2
ffiffiffi

3
p

ffiffiffi

3
p

c00 �
c08
ffiffiffi

2
p þ c015

	 


< u0 > 0 ¼ �
ffiffiffi

3
p

2
ffiffiffi

2
p c8 1� 1

2
sin 2

Θ

	 


< u0 > 0

m2
D f

2
D ¼ 1

2
ffiffiffi

3
p

ffiffiffi

3
p

c00 þ
c08
ffiffiffi

2
p � c015

	 


< u0 > 0 ¼ c0 þ
ffiffiffi

3
p

2
ffiffiffi

2
p c8 1� 1

2
sin 2

Θ

	 
	 


< u0 > 0

It seems to be more natural that the meson masses are functions of the parame-
ters of symmetry breaking (54) than inversely the parameters of symmetry break-
ing are functions of meson masses which are not consistent with the experimental
data and are dependent on the method of symmetry breaking. This interpretation is
consistent with the fact that the mass generation of the mesons is a consequence of
symmetry breaking. From Eq. (54) we obtain the formula for the angle Θ as in
Eq. (50). Let us consider the other variant of symmetry breaking described in [6].
Ebrahim, using his method, broke the SU4 ∗ SU4 symmetry in the limit of the exact
SU3 ∗ SU3 symmetry by the rotation of SU3 ∗ SU3 invariant Hamiltonian density
about the fourteenth axis in the SU4 space. The rotation angle Θ0 is identified with
the Cabibbo angle. The formula describing the angle Θ0 should be given as follows

sin 2
Θ

0 ¼ 3m2
K f

2
K

2 m2
K f

2
K þm2

D f
2
D

� � (55)
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(in Eqs. (4a) in [8] there is the factor 3/2). The rotation of the Hamiltonian
density about the fourteenth axis is considered in [14] too. The D meson is
interpreted as a Goldstone boson. Putting aside the agreement of the numerical
value of the angle Θ0 with the experimental data it seems to us that the angle
connected with the rotation about the fourteenth axis cannot be interpreted as the
Cabibbo angle, because the rotation is performed inside the doublet (s, c). Then the
states with the different electric charges are mixed. The interpretation that the D
meson is a Goldstone boson is also unsatisfactory. If the SU4 ∗ SU4 symmetry is
broken in such a way that the SU2 ∗ SU2 sub-symmetry is still exact, so the K meson
becomes massive but the pion is still massless. Such a symmetry breaking cannot be
accepted, results contradict the experimental data. The next breaking of the exact
SU3 ∗ SU3 symmetry is connected with the mixing of s and c quarks. The rotation
angle cannot be interpreted as the Cabibbo angle for the reasons given above. It
seems that the hierarchy of symmetry breaking is extended and the breaking of the
SU4 ∗ SU4 symmetry taken as a whole cannot be connected with the Cabibbo angle.
This is possible, however, for SU4 ∗ SU4 symmetry breaking in the limit of exact
SU2 ∗ SU2 sub-symmetry. Then results are in agreement with our expectation.

Our method described above is used� to calculate an angle ϕ which is connected
with the rotation about the tenth axis in SU4 space. Then the SU4 ∗ SU4 symmetry is
broken by the rotation of the SU2 ∗ SU2 invariant Hamiltonian density through an
angle 2ϕ about the tenth axis.

HSB ΔC ¼ 0ð Þ ¼ c0u
0 þ

ffiffiffi

2
p

c0 þ
ffiffiffi

3
p

2
c8

	 


sin 2ϕ u3 þ c8
1

2
ffiffiffi

2
p 4

ffiffiffi

3
p c0 þ

ffiffiffi

2
p

c8

	 


sin 2ϕ

	 


u8þ
	

þ �
ffiffiffi

3
p

c0 þ
ffiffiffi

2
p

c8 þ
4
ffiffiffi

3
p c0 þ

ffiffiffi

2
p

c8

	 


sin 2ϕ

	 


u15 (56)

Using the factors from the Hamiltonian density (56) the masses of mesons are
given as follows

m2
π f

2
π ¼ c0 þ

ffiffiffi

6
p

4

 !

sin 2ϕ < u0 > 0 (57)

m2
K f

2
K ¼ �

ffiffiffi

6
p

4
� 1
2

c0 þ
ffiffiffi

6
p

4
c8

 !

sin 2ϕ

 !

< u0 > 0

m2
D f

2
D ¼ 1� 1

2
sin 2ϕ

	 


c00 þ
ffiffiffi

6
p

4
c8

 !

< u0 > 0

so

sin 2ϕ ¼ 2m2
π f

2
π

2m2
D f

2
D þm2

π f
2
π

(58)

In agreement with our expectation the angle ϕ is a function of the mass of the
pion (as a measure of the SU2 ∗ SU2 violation) and is connected with the parameters
of the charmed meson (mixing in (u, c) doublet). For the mass mD = 1862 MeV and
fD= f π = 0.974 [13] one gets

sin 2ϕ ¼ 0:076 (59)
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The small value of the angle ϕ is the effect of the large mass of the charmed
quark. From (59) results that only mixing in the (u, c) system is excluded, the value
of the angle ϕ contradicts the experimental data. The simultaneous mixing in both
doublets are, however, still possible. Fritzsch [15] considers also the mixing in (u, c)
system. The mixing angle is calculated on the grounds of quark masses and does not
contradict the results obtained above. Although the value of the angle ϕ is relatively
small, it is significant: the sum of the angles Θþ ϕ is larger than the value of the
angle measured experimentally, called Cabibbo angle. This fact cannot be explained
by the limits of experimental errors. Let us note that the angles (50) and (58) are
calculated for the case where quarks are mixed separately. The angles from formula
(32) cannot be identified with those from Eqs. (50) and (58). In the case of simul-
taneous mixing in both doublets the relation between the angles is more compli-
cated. To find the relation, the SU2 ∗ SU2 invariant Hamiltonian density is rotated
through an angle 2ϕ about the tenth axis and afterwards by an angle 2Θ about the
seventh axis. The sequence of the rotations is insignificant, because

F7,F10� �

¼ 0 (60)

The rotated Hamiltonian density is given by

HSB ΔS ¼ ΔC ¼ 0ð Þ ¼ c0u
0 þ

ffiffiffi

3
p

2
c8 sin 2

Θþ
ffiffiffi

2
p

c0 þ
ffiffiffi

3
p

2
c8

	 


sin 2ϕ

	 


u3þ

(61)

þ 1
ffiffiffi

3
p

ffiffiffi

2
p

c0 þ
ffiffiffi

3
p

2
c8

	 


sin 2ϕþ c8 1� 3
2
sin 2

Θ

	 
	 


u8þ

þ �
ffiffiffi

3
p

c0 �
ffiffiffi

2
p

c8 þ
2
ffiffiffi

2
p
ffiffiffi

3
p

ffiffiffi

2
p

c0 þ
ffiffiffi

3
p

2
c8

	 


sin 2ϕ

	 


u15

The meson masses are given as follows

m2
π f

2
π ¼

1
2
ffiffiffi

3
p

ffiffiffi

6
p ffiffiffi

2
p

c0 þ
ffiffiffi

3
p

2
c8

	 


sin 2ϕ� 3
ffiffiffi

2
p c8 sin 2

Θ

	 


< u0 > 0 (62)

m2
K f

2
K ¼ 1

2
ffiffiffi

3
p 3

ffiffiffi

6
p

ffiffiffi

2
p

c0 þ
ffiffiffi

3
p

2
c8

	 


sin 2ϕ� 3
ffiffiffi

2
p c8 1� 1

2
sin 2

Θ

	 


< u0 > 0

	

m2
D f

2
D ¼ 1

2
ffiffiffi

3
p 2

ffiffiffi

3
p

c0 �
3
ffiffiffi

6
p

ffiffiffi

2
p

c0 þ
ffiffiffi

3
p

2
c8

	 


sin 2ϕþ 3
ffiffiffi

2
p c8 1� 1

2
sin 2

Θ

	 
	 


< u0 > 0

Now the angles Θ and ϕ cannot be described independently. The following
relation is obeyed.

2 m2
π f

2
π þ 2 m2

K f
2
K þm2

D f
2
D

� �

sin 2
Θ sin 2ϕ ¼ (63)

¼ 2 m2
K f

2
K þm2

π f
2
π

� �

sin 2
Θþ 2 m2

D f
2
D þm2

π f
2
π

� �

sin 2ϕ

or equivalently

1þ 1
sin 2

Θ
þ 1

sin 2ϕ
� 1

	 


sin 2
Θ sin 2ϕ ¼ sin 2

Θ

sin 2
Θ0

þ sin 2ϕ

sin 2ϕ0
(64)
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where

sin 2
Θ0 ¼ 2m2

π f
2
π

2m2
K f

2
K þm2

π f
2
π

sin 2ϕ0 ¼ 2m2
π f

2
π

2m2
D f

2
D þm2

π f
2
π

(65)

The angles Θ and ϕ from Eq. (64) concern a simultaneous mixing in doublets
(d, s) and (u, c) respectively and they can be identified with those from Eq. (32).
The condition (64) limits the values of the angles Θ and ϕ. The maximal values of
the angles Θ0 and ϕ0 are given by Eq. (65). The value of the function

f Θ,ϕð Þ ¼ sin Θþ ϕð Þ (66)

is also limited. A numerical calculation shows that there is an extremum (a
maximum) of function (66) on the condition (64) for

Θm ¼ 0:20452 ϕm ¼ 0:02575 sin Θm þ ϕmð Þ ¼ 0:2282 (67)

It is worth noticing that the extremum of function (66) on condition (64) can be
identified with the measured Cabibbo angle. It is not excluded that symmetry
breaking is realized in the maximal allowed case, so the effective angle of mixing
would correspond to the maximum of the function (66).

3. Bonds for the Kobayashi-Maskawa mixing parameters in a model
with hierarchical symmetry breaking

A simultaneous mixing in (d, s) and (u, c) sectors has also been taken into
account [15–16], but due to the large mass of the c quark, the influence of the
mixing in the (u, c) sector can be treated as a perturbation. At the six-quark level
the quark mixing is described by three Cabibbo-like flavor mixing angles and the
phase parameter responsible for CP-non-conservation [17]. The charged weak cur-
rent in the SU6 ∗ SU6 chiral symmetry

Jμ ¼ u, c, tð Þ γμ 1� γ5ð Þ U

d

s

b

0

B

@

1

C

A
(68)

is described by a unitary matrix U, which can be put in 21 different forms [18],
however only the standard Kobayashi-Maskawa matrix [19] will be used further.

U ¼
c1 s1c3 s1s3

�s1c2 c1c2c3 � s2s3e
iδ c1c2s3 þ s2c3e

iδ

s1s2 �c1s2c3 � c2s3e
iδ �c1s2s3 þ c2s3e

iδ

0

B

@

1

C

A
(69)

where si ¼ sinΘi, ci ¼ cosΘi.
The matrix (69) can be expressed as follows

U ¼
1 0 0

0 c2 s2

0 �s2 c2

0

B

@

1

C

A

1 0 0

0 1 0

0 0 eiδ

0

B

@

1

C

A

c1 s1 0

�s1 c1 0

0 0 1

0

B

@

1

C

A

1 0 0

0 c3 s3

0 �s3 c3

0

B

@

1

C

A
(70)

U ¼ U2 Uδ U1 U3 (71)
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and it can mix quarks either in the negative or in the positive electric charge
subspace.

A simultaneous mixing in both spaces was also considered [10]. From the form
of the matrix (70) the following variants of the quark mixing are allowed:

A : U ¼ U2 s� bð Þ Uδ U1 d� sð Þ U3 s� bð Þ (72)

B : U ¼ U2 c� tð Þ Uδ U1 d� sð Þ U3 s� bð Þ (73)

C : U ¼ U2 c� tð Þ Uδ U1 u� cð Þ U3 s� bð Þ (74)

D : U ¼ U2 c� tð Þ Uδ U1 u� cð Þ U3 c� tð Þ (75)

where Uk x� yð Þ denotes the mixing of x and y quarks by the matrix Uk. It is
known that the Cabibbo angle cannot be explained by the mixing in the (u-c) sector
only [15–16], so the variants C and D must be rejected. Let us examine the variant B.

The charged weak current (68) with the matrix (69) for the variant B can be
expressed as follows

Jμ ¼ R Jμ 0ð Þ R�1 (76)

where

Jμ 0ð Þ ¼ u, c, tð Þ γμ 1� γ5ð Þ I

d

s

b

0

B

@

1

C

A
(77)

R ¼ e�2iΘ3Q
21
e�2iΘ1Q

7
e�i δXe2iΘ2 Q

32
(78)

X ¼ 4
ffiffiffiffiffiffi

10
p Q24 � 1

ffiffiffiffiffi

15
p Q35 (79)

where Qk is the 6 ∗ 6 matrix representation of the k-th generator of SU6 group.
To get the values of the angles Θi the Gell-Mann-Oakes-Renner model will be used
[9]. If the electromagnetic mass splitting of u-d quarks is neglected the Hamiltonian
density breaking the chiral SU6 ∗ SU6 symmetry is given as follows

H0 ¼ c0u
0 þ c8u

8 þ c15u
15 þ c24u

24 þ c35u
35 (80)

where c0, … , c35 are the symmetry breaking parameters, ui (i = 0,1, ..., 35) are
the scalar components Of the 6, 6

� �

þ 6, 6
� �

representation of the chiral SU6 ∗ SU6

group. From the GMOR model, neglecting the vacuum expectation values of oper-
ators uk (k = 8, 15, 24, 35) and the spectral density ρab as proportional to the squared
parameters of the symmetry breaking [12, 16], we get the approximate relation for
masses of the pseudo-scalar mesons

m2
a f 2a δab ¼ 1

ffiffiffi

3
p c0

ffiffiffi

3
p þ c8 da8b þ c15 da15b þ c24 da24b þ c35 da35b

	 


< u0 > 0

(81)

where f a are the decay constants, daib - symmetric constants of the SU6 group,
< u0 > 0 - the vacuum expectation value of the operator u0. From (81) we obtain
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π ¼ m2
π f 2π ¼ 1

ffiffiffi

3
p c0

ffiffiffi

3
p þ c8

ffiffiffi

3
p þ c15

ffiffiffi

6
p þ c24

ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


< u0 > 0 (82)

K ¼ m2
K f 2K ¼ 1

ffiffiffi

3
p c0

ffiffiffi

3
p � c8

2
ffiffiffi

3
p þ c15

ffiffiffi

6
p þ c24

ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


< u0 > 0 (83)

D ¼ m2
D f 2D ¼ 1

ffiffiffi

3
p c0

ffiffiffi

3
p þ c8

2
ffiffiffi

3
p � c15

ffiffiffi

6
p þ c24

ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


< u0 > 0 (84)

B ¼ m2
B f 2B ¼ 1

ffiffiffi

3
p c0

ffiffiffi

3
p þ c8

2
ffiffiffi

3
p þ c15

2
ffiffiffi

6
p � 3c24

2
ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


< u0 > 0 (85)

T ¼ m2
T f 2T ¼ 1

ffiffiffi

3
p c0

ffiffiffi

3
p þ c8

2
ffiffiffi

3
p þ c15

2
ffiffiffi

6
p þ c24

2
ffiffiffiffiffiffi

10
p � 2c35

ffiffiffiffiffi

15
p

	 


< u0 > 0 (86)

By the symmetry breaking, the massless quark x can become massive if it is
mixed with the other massive y. The rotation angle is then described by the masses
of pseudo-scalar mesons. If the SUn ∗ SUn symmetry with the exact SUk ∗ SUk sub-
symmetry is broken to the exact SUk�1 ∗ SUk�1 symmetry, the rotation angle is a
function of masses of a pseudo-scalar meson belonging to n-multiplet of the
SUn ∗ SUn group and the meson which has become massive [19]. We demand the
quarks to become massive due to the hierarchical symmetry breaking, so the highest
exact symmetry of the Hamiltonian density, which Can be assumed, is SU4 ∗ SU4

(at least one quark in the each sector must be massive). Oakes and the others [4, 20,
21] in order to get the Cabibbo angle value in the SU3 ∗ SU3 or SU4 ∗ SU4 symmetry,
have rotated the Hamiltonian density breaking the chiral symmetry in the same way
as the weak charged current. In a model with hierarchical symmetry breaking such a
procedure cannot be used. Let us notice that from the form (5) of the rotation
operator R it follows that the quarks are mixed in the following sequence: (c-t), a
phase rotation, (d-s), (s-b), so for the exact SU4 ∗ SU4 symmetry the massless
quarks d and s would be mixed as the first (in the negative electric charge subspace)
and then the generation of their masses would not be possible. The quark s would
become massive in the next stage of the symmetry breaking after the mixing with
the massive quark b. So, in order to get the massive both d and s quarks, they should
be mixed in the inverse sequence. In the first stage of the symmetry breaking the
exact SU4 ∗ SU4 symmetry is broken to the exact SU2 ∗ SU2 symmetry, in the 2nd

stage even the SU2 ∗ SU2 symmetry is no longer exact. The next mixing stages are
connected either with the mass generation of the c quark (variant B) or with the
repeated mixing of massive s and b quarks (variant A). In our procedure the
Hamiltonian density breaking the chiral SU6 ∗ SU6 symmetry will be rotated in the
inverse sequence in comparison with the rotation of the weak charged current.

HSB ¼ R1 H0 R�1
1 (87)

where

R1 ¼ e2i Θ2 Q32
e�iX δe�2i Θ1 Q7

e�2i Θ3 Q21
(88)

The exact SU4 ∗ SU4 symmetry implies the following relations

c8 ¼ c15 ¼ 0
ffiffiffi

5
p

c0 þ c35 ¼ 0 (89)

So, the SU4 ∗ SU4 invariant Hamiltonian density is given as
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HE ¼ c0 u0 �
ffiffiffi

5
p

u35
� �

þ c24 u24 �
ffiffiffi

3
2

r

u35

 !

(90)

or equivalently

HE ¼ P q6 q6 � V q5 q5 (91)

where

P ¼ ffiffiffiffiffi

c0
p þ V V ¼ 5

ffiffiffiffiffiffi

10
p c24 (92)

The symmetry-breaking Hamiltonian density

HSB ¼ R1 HE R�1
1 (93)

retaining the flavor-conservation part only is given as follows

HSB ¼ q6q6Pc
2
2 � q5q5Vc

2
3 þ q4q4Ps

2
2 � q3q3Vc

2
1s
2
3 � q2q2Vs

2
1s
2
3 (94)

Let us notice that the phase transformation does not produce terms qiqi since the
operator (79) commutes with the scalar components uk. The flavor-conservation on
each stage of the symmetry breaking has been assumed. The Hamiltonian density
(94) can be written as a function of the operators if, so the coefficients of uk0s are
given as

c00 ¼ c0 (95)

c034 ¼ V

2
s21 s23 (96)

c08 ¼
V

2
ffiffiffi

3
p 2 c21 s23 � s21 s23

� �

(97)

c015 ¼ � 1

2
ffiffiffi

6
p 3 P s22 þ V s23

� �

(98)

c024 ¼ 1

2
ffiffiffiffiffiffi

10
p 4 V � 5 V s23 þ P s22

� �

(99)

c035 ¼ � 1
2
ffiffiffiffiffi

15
p 5 Pþ V � 6 P s22

� �

(100)

Now, after the symmetry breaking, the pseudo-scalar masses (82–86) will be
described as functions of the coefficients ci0 (i = 0, 3, 8, 15, 24, 35) [7, 16].

π ¼ Z V s21 s23 (101)

K ¼ Z V s23 1� 1
2

s21

	 


(102)

D ¼ �Z P s22 �
1
2

V s21 s23

	 


(103)

B ¼ Z V 1� s23 1� 1
2

s21

	 
	 


(104)
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T ¼ �Z P c22 �
1
2

V s21 s23

	 


(105)

where

Z ¼ � 1
2
ffiffiffi

3
p < u0 > 0 (106)

The Cabibbo angle Θ1 is expressed in the same form as at four-quark level in the
SU4 ∗ SU4 symmetry [7, 16],

s21 ¼
π

2 K þ π
(107)

Because

s21 s23 ¼
π

K þ B
) s23 ¼

K þ π
2

K þ B
(108)

In an agreement with our prediction the angle Θ3 connected with the mixing of s
and b quarks is expressed by the parameters of the strange and beautiful mesons.
The angle Θ1 however, connected with mixing d and s quarks and breaking of the
SU2 ∗ SU2 symmetry is expressed by the masses of the pion and the kaon. The angle
Θ2 connected with the mixing in the (c-t) sector is given as

s22 ¼
D� π

2

Dþ T � π
(109)

Let us notice that if we do not demand the flavor-conservation on each stage of
the symmetry breaking, after the rotation around the 21st axis the terms q5q3, q3q5 in
the broken Hamiltonian density arise. In the second stage (the rotation around the
7th axis) there will be in HSB the following terms: q5q3, q3q5, q2q3, q3q2, q5q2, q2q5.
Because

X, q3 q5
� �

¼ i δ q3 q5 X, q5 q3
� �

¼ �i δ q5 q3 (110)

after the phase rotation there will arise in the HSB the following terms: q3 q5 eiδ,
q5 q3 e�iδ, .... In the variant B the matrix U2 has mixed c and t quarks so that in the
flavor-conservation part of the broken Hamiltonian density the phase factor eiδ

cannot appear. But if the matrix U2 mixes s and b quarks again, due to the following
relations

e�2iΘ2Q
21
q3 q5e

2iΘ2 Q
21 ¼ q3q5 c

2
2 � q5 q3 s

2
2 þ

1
2

q5 q5 � q3 q3
� �

sin 2Θ2 (111)

e�2iΘ2, Q21
q5 q3e

2iΘ2Q
21 ¼ q5 q3 c

2
2 � q3 q5 s

2
2 þ

1
2

q5q5 � q3q3
� �

sin 2Θ2 (112)

the following terms: q5 q5 eiδ, q5 q5 e�iδ, q3 q3 eiδ, q3 q3 e�iδ appear in the
broken Hamiltonian density.

We assume that the symmetry is broken by the quarks mixing in the following
sequence: (s-b), (d-s), a phase rotation, (s-b) and the flavor will not be conserved in
the intermediate stages of the symmetry breaking, but it will be conserved in the
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broken symmetry taken as a whole. The assumptions given above are consistent
with the variant A. Let us take it into account.

We assume the exact SU4 ∗ SU4 symmetry. The Hamiltonian density is given by
Eq. (91). After symmetry breaking, the flavor conserving part of the broken Ham-
iltonian density HSB is given as

H ΔF¼0ð Þ ¼ q6 q6P� q5 q5V α� Að Þ � q3q3V β þ Að Þ � q2q2V γ (113)

where

α ¼ c21 s
2
2 s

2
3 þ c22 c

2
3 (114)

β ¼ c21 c
2
2 s

2
3 þ s22 c

2
3 (115)

γ ¼ s21 s
2
3 (116)

A ¼ 1
2
cosΘ1 sin 2Θ2 sin 2Θ3 cos δ (117)

Since

αþ β þ γ ¼ 1 (118)

α can be eliminated from (113).
The coefficients by the operators uk are as follows

c00 ¼ c0 (119)

c03 ¼
V

2
γ (120)

c08 ¼
V

2
ffiffiffi

3
p 2β þ 2A� γð Þ (121)

c015 ¼ � V

2
ffiffiffi

6
p β þ Aþ γð Þ (122)

c024 ¼ V

2
ffiffiffiffiffiffi

10
p 4� 5 β þ Aþ γð Þð Þ (123)

c035 ¼ �
ffiffiffi

5
p

c0 �
ffiffiffi

3
2

r

c24 (124)

Let us notice that the functions β and A occur in Eqs. (121–123) as a sum β þ A
only. So, only two functions can be expressed independently. Because there is no
mixing in the positive electric charge subspace we shall not use relations describing
mesons D and T. The following relations are obeyed

π ¼ ZV γ (125)

K ¼ ZV β þ Aþ γ

2

� �

(126)

B ¼ ZV 1� β � A� γ

2

� �

(127)
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so we immediately obtain

s21 s
2
3 ¼

π

K þ B
(128)

as in the variant B, but at the moment the angles Θ1 and Θ3 cannot be calculated
separately. Putting the experimental value

cosΘ1 ¼ 0:9737 sinΘ1 ¼ 0:2278ð Þ (129)

as an input [22], we get

sinΘ3 ¼ 0:136 Θ3 ¼ 7:8∘ð Þ (130)

for

mπ ¼ 0:139 GeV (131)

mK ¼ 0:495 GeV fK ¼ 1:28 21½ � (132)

mB ¼ 5:2 GeV f B ¼ 0:86 22½ � (133)

The angle Θ3 was calculated by Fritzsch [15] also for the following quark masses
ratios:

mu : md : ms : mc ¼ 1 : 1:78 : 35:7 : 285 (134)

and the limit for the angle Θ2

Θ2 <

ffiffiffiffiffiffi

mc

mt

r

¼ 0:33 (135)

For the assumptions given above Fritzsch obtained the following boundary

sinΘ3 <0:09 Θ3 < 5∘ð Þ (136)

However there is no agreement between descriptions of the quark masses ratios.
The other authors [23] give smaller difference between quark masses

mu : md : ms : mc ¼ 1 : 1:1 : 6:4 : 23:6 (137)

Thus for the ratio (137) we get the following limit for the angle Θ3

sinΘ3 <0:163 (138)

The value of the angle Θ3 (130) is consistent with the boundary (138). The value
(130) is close to the value given by Białas [24] and consistent with results in [25, 26]
as well as the experimental boundary:

sinΘ3 <0:42 24½ � (139)

∣ sinΘ3∣ ¼ 0:28
þ0:21

�0:28

�

19½ � (140)

Let us consider the relation between the angle Θ2 and the phase parameter δ.
From (125)–(127) we obtain
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β þ A ¼ K � π
2

K þ B
(141)

or equivalently

K þ π
2

K þ B
� γ

s21
¼ s22 1þ γ 1� 2

s21

	 
	 


þ A (142)

denoting

ξ ¼
K þ π

2

� �

� π
s21

K þ B
(143)

η ¼ 1þ π

K þ B
(144)

ρ ¼ 1
2

cosΘ1 sin 2Θ3 (145)

we get

cos δ ¼ ξ� s22 η

ρ sin 2Θ2
(146)

It is worth noting that if we take the constraint on the Cabibbo angle Θ1 from the
four- quark level [7, 16], which is the same as given by Eq. (107), the parameter ξ
(143) will be exactly equal to zero, hence we get

cos δ ¼ � η

2ρ
tan Θ2 (147)

Because ∣ cos δ∣ ≤ 1, so from (147)

∣Θ2∣< arctan
2ρ
η

�

�

�

�

�

�

�

�

(148)

and we get also a boundary on the angle Θ2

sinΘ2 <0:265 Θ2 < 15:4∘ð Þ (149)

The value (149) is in a good agreement with the results given by Fritzsch [15],
Białas [24], Shrock, Treiman, Wang [22], Barger, Long, Pakvasa [25] and experi-
mental limits [27], respectively:

9∘ <Θ2 < 19∘ (150)

sinΘ2 ¼ 0:23 (151)

∣ sinΘ2∣<0:25 mt ¼ 15 GeVð Þ (152)

sinΘ2 <0:5 mt ¼ 30 GeVð Þ (153)

The Eq. (146) can be written as follows

x2 η2 þ 4 ρ2 cos 2 δ
� �

� 2x ξη þ 2ρ2 cos 2 δ
� �

þ ξ2 ¼ 0 (154)
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where

x ¼ sin 2
Θ2 (155)

To get a real value of the angle Θ2 the determinant of the square Eq. (154) cannot
be negative, so

16ρ2 cos 2 δ ξηþ ρ2 cos 2 δ� ξ2
� �

≥0 (156)

hence

1≥ cos 2 δ≥
ξ ξ� ηð Þ

ρ2
(157)

For (129, 130) we get

η ¼ 0:9647 ρ ¼ 0:1309 (158)

If the parameter ξ. which can be identified with a change of the Cabibbo angle
description by a transition to the higher symmetries, is slightly less than zero, the
phase parameter δ will be bounded (∣δ∣ should be nearly zero, as the Cabibbo angle
description should not change strongly by a transition to higher symmetries, on the
other hand the Eq. (157) gives a boundary on the parameter

ξ> � 0:0175 (159)

From (147)

sign cos δð Þ ¼ �sign tanΘ2ð Þ (160)

so, for the angleΘ2 lying in the first quadrant, it follows π
2 < δ< π and from (159)

there is a lower limit for the phase δ. For an input given by the Eqs. (129, 130, 132)we get

ξ ¼ 0:002 (161)

so there is no boundary on δ, since sign ξ = + 1. Let us notice, that a small change
of the fK can change the sign of the parameter ξ. Following Fuchs [28], in a chiral
perturbation theory at the SU3 ∗ SU3 level

fK
f π

¼ 1þ 3 m2
K �m2

π

� �

64π2 f 2π
ln

Λ

4μ2
þ O εð Þ (162)

where μ2 is the average meson squared mass and Λ is a cut-off parameter, which
is estimated to be near 4m2

N, it implies

fK
f π

¼ 1:15 (163)

ξ ¼ �0:00179 (164)

cos 2 δ>0:1 (165)

Taking into account (160) we obtain

109∘ < δ< 180∘ (166)
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Since fK is treated as a variable and can depend on the energy scale via Λ
parameter and the symmetry breaking parameters ε, the boundary of the phase due
to the Eqs. (143, 157) can be expected. For sign (cos δ) = �1 there is a lower limit of
the angle Θ2 also. A variant cos δ>0 is allowed but the angle Θ2 corresponding to
this variant is too severely limited and it is not consistent with the experimental
data [27].

We have shown that the weak mixing angles at the six-quark level can be
estimated in terms of the masses of pseudo-scalar mesons. The calculation of mixing
angles is possible by using the hierarchical symmetry breaking leading to a quark
masses generation. A number of independent mixing angles that can be calculated
on the ground of the given above model is equal to a number of degrees of freedom
connected with the symmetry breaking and the quarks mixing in the fixed electric
charge subspace (let us notice that in the variant B after the rotation around the 21st

axis and next around the 7th one, even the exact SU2 ∗ SU2 symmetry did not
remain; however the angle Θ2 connected with the mixing in the positive electric
charge subspace could be calculated). An assumption that in the hierarchical sym-
metry breaking the flavor does not have to be conserved on each stage of the
symmetry breaking, while it is conserved in the broken symmetry taken as a whole,
has allowed the author to introduce to the broken Hamiltonian density a phase angle
responsible for CP-non-conservation. The experimental value of the Cabibbo angle
treated as an input has allowed the author to calculate the angle Θ3 and to find the
relation connecting the angle Θ2 and the phase parameter δ. Limits of trigonometric
functions values imply boundaries on the angle Θ2 and the phase δ. The kaon decay
constant is a sensitive parameter, which can introduce CP-non-conservation to the
chiral perturbation theory. Boundaries for the angle Θ2 and the phase δ vs. fK can be
also found.

4. The standard six-quark model with a hierarchical symmetry breaking

The simultaneous mixing of quarks in both negative and positive electric charge
sub-spaces is considered. Quark mixing in each space is described by the Kobayashi-
Maskawa matrix. In order to get a right number of independent mixing parameters
only one angle θ7 common for both sub-spaces has been adjusted. Since the electro-
magnetic mass splitting of u and d quarks has been taken into account the real K-M
mixing angles can be calculated explicitly. As an input only meson masses and f x
factors (treated as factors in matrix elements between one meson state and vacuum
according to PCAC) are needed. Physical quark mixing is realized for maximal
allowed symmetry breaking and it corresponds to vanishing of θ7, which implies
that only quark mixings with mass generation are permitted. Bounds of the phase δ
have been also found.

The Kobayashi-Maskawa mixing matrix (69) is usually considered to mix quarks
in the negative electric charge subspace. It can be written also as (70) and it can mix
quarks either in the negative or in the positive electric charge subspace. A simulta-
neous mixing in both spaces [13] was also taken onto account.

Let us assume that quarks are mixed in both sub-spaces simultaneously, then the
charged weak current is expressed as follows

Jμ ¼ u, c, tð Þ γμ 1� γ5ð Þ Uþ U�

d

s

b

0

B

B

@

1

C

C

A

(167)
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where

Uþ ¼
1 0 0

0 c2 s2

0 �s2 c2

0

B

@

1

C

A

c5 s5 0

�s5 c5 0

0 0 1

0

B

@

1

C

A

1 0 0

0 1 0

0 0 eiδ2

0

B

@

1

C

A

1 0 0

0 c6 s6

0 �s6 c6

0

B

@

1

C

A
(168)

U� ¼
1 0 0

0 c7 s7

0 �s7 c7

0

B

@

1

C

A

1 0 0

0 1 0

0 0 eiδ1

0

B

@

1

C

A

c1 s1 0

�s1 c1 0

0 0 1

0

B

@

1

C

A

1 0 0

0 c3 s3

0 �s3 c3

0

B

@

1

C

A
(169)

The matrices Uþ and U� mix quarks in spaces with charges +2/3 and � 1/3
respectively. The Kobayashi-Maskawa mixing matrix is parametrized by four inde-
pendent parameters only, while in the product of the matrices (168) and (169) in
the current (167) there are eight mixing angles. In order to get the effective mixing
matrix in the K-M form with the right number of independent mixing parameters,
we must adjust the angles in such a way as to get the effective matrix with only four
independent angles. We shall demand the following elements U11, U12, U13, U21,
U31 of the effective matrix to be real and the complex phase to exist in the elements
U22, U23, U32, U33 only, as in the original K-M matrix. The only solution is

θ6 ¼ �θ7 (170)

Hence in the matrix UþU� there will be effectively only four parameters: θ2,
θC ¼ θ1 þ θ5, θ3 and δ ¼ δ1 þ δ2. The current (167) can be expressed as follows

Jμ ¼ R2 R1 Jμ 0ð Þ R�1
1 R�1

2 (171)

where

Jμ 0ð Þ ¼ u, c, tð Þ γμ 1� γ5ð Þ I

d

s

b

0

B

@

1

C

A
(172)

R1 ¼ e�2i θ3Q21
e�2iθ1Q7

e�iXδ1 e�2i θ7 Q21
(173)

R2 ¼ e�2iθ2Q32
e�iYδ2 e�2i θ5 Q10

e�2i θ7 Q32
(174)

where X = (79) and Y ¼
ffiffiffiffi

15
p

3 Q35. Qk is the 6 ∗ 6 matrix representation of the k-th
generator of SU6 group. In variants A (72) and B (73), because of quark mixing in
(d, s, b) sector only, the electromagnetic mass splitting of u and d quarks was
neglected. For the simultaneous mixing in both (d, s, b) and (u, c, t) sectors the
calculation of the angles θi explicitly is not possible (see below formulas (187) and
(188). The Hamiltonian density breaking the chiral SU6 ∗ SU6 symmetry is given as
follows

H0 ¼
X

6

j¼1

c j2�1 u j2�1 (175)

where ci are the symmetry breaking parameters, ui- the scalar components of the
6, 6
� �

þ 6, 6
� �

of the chiral SU6 ∗ SU6 group. From the GMOR model we obtain the
following relations for masses of pseudo-scalar mesons for SU6 ∗ SU6 symmetry:
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π ¼ m2
π f 2π ¼ Z

c0
ffiffiffi

3
p þ c8

ffiffiffi

3
p þ c15

ffiffiffi

6
p þ c24

ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


(176)

Kþ ¼ m2
Kþ f 2Kþ ¼ Z

c0
ffiffiffi

3
p þ c3

2
� c8

2
ffiffiffi

3
p þ c15

ffiffiffi

6
p þ c24

ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


K0 ¼ m2
K0 f 2K0 ¼ Z

c0
ffiffiffi

3
p � c3

2
� c8

2
ffiffiffi

3
p þ c15

ffiffiffi

6
p þ c24

ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


Dþ ¼ m2
Dþ f 2Dþ ¼ Z

c0
ffiffiffi

3
p � c3

2
þ c8

2
ffiffiffi

3
p � c15

ffiffiffi

6
p þ c24

ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


D0 ¼ m2
D0 f 2D0 ¼ Z

c0
ffiffiffi

3
p � c3

2
þ c8

2
ffiffiffi

3
p � c15

ffiffiffi

6
p þ c24

ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


Bþ ¼ m2
Bþ f 2Bþ ¼ Z

c0
ffiffiffi

3
p þ c3

2
þ c8

2
ffiffiffi

3
p þ c15

2
ffiffiffi

6
p � 3c24

2
ffiffiffiffiffiffi

10
p þ c35

ffiffiffiffiffi

15
p

	 


Tþ ¼ m2
Tþ f 2Tþ ¼ Z

c0
ffiffiffi

3
p � c3

2
þ c8

2
ffiffiffi

3
p þ c15

2
ffiffiffi

6
p þ c24

2
ffiffiffiffiffiffi

10
p � 2c35

ffiffiffiffiffi

15
p

	 


In a model with hierarchical symmetry breaking the highest exact symmetry,
which can be assumed, is the SU4 ∗ SU4 one. At least one quark in each sector must
be massive. Following the procedure described in [29] the Hamiltonian density
breaking the chiral SU6 ∗ SU6 symmetry will be rotated in the opposite direction by
comparison with the rotation of the weak charged current.

HSB ¼ R21 R11 HE R�1
11 R�1

21 (177)

where

R11 ¼ e�2iθ7 Q21
e�iXδ1 e�2iθ1Q7

e�2i θ3 Q21
(178)

R21 ¼ e�2iθ7 Q32
e�iYδ2 e2i θ5 Q

10
e2iθ2Q

32

The exact SU4 ∗ SU4 symmetry implies that

c3 ¼ c8 ¼ c15 ¼
ffiffiffi

5
p

c0 þ c35 ¼ 0 (179)

The SU4 ∗ SU4 invariant Hamiltonian density is given as

HE ¼ Pq6q6 � Vq5 q5 (180)

where

P ¼
ffiffiffiffiffi

12
p

c0 þ V V ¼ 5
ffiffiffiffiffiffi

10
p c24 (181)

We shall assume that in the model with hierarchical symmetry breaking the flavor
will not be conserved in the intermediate stages of the symmetry breaking, but it will
be conserved in the broken symmetry taken as a whole. The symmetry breaking
Hamiltonian density retaining onlyÂ� the flavor-conserving part is given as follows

H ΔF¼0ð Þ ¼ q6q6P λ�Mð Þ � q5q5V α� Að Þ þ q4q4P ρþMð Þ � q3q3V β þ Að Þ � q2q2Vγ

þ q1q1Pτ

(182)
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where

α ¼ c21 s
2
3 s

2
7 þ c23 c

2
7 (183)

β ¼ c21 s
2
3 c

2
7 þ c23 s

2
7

γ ¼ s21 s
2
3

A ¼ 1
2
sin 2θ7 sin 2θ3 c1 cos δ1

λ ¼ s22 c
2
5 s

2
7 þ c22 c

2
7 (184)

ρ ¼ s22 c
2
5 c

2
7 þ c22 s

2
7

τ ¼ s22 s
2
5

M ¼ � 1
2
sin 2θ7 sin 2θ2 c5 cos δ2

The broken Hamiltonian density (182) can be expressed as a function of
operators uk (k = 0, 3, 8, 15, 24, 35). The coefficients of the operators uk are as
follows

c00 ¼ c0 (185)

c03 ¼
1
2

Pτ þ V γð Þ

c08 ¼
1

2
ffiffiffi

3
p Pτ þ V 2β0 � γð Þð Þ

c015 ¼
1

2
ffiffiffi

6
p P τ � 3ρ0ð Þ � V β0 þ γð Þð Þ

c024 ¼ 1

2
ffiffiffiffiffiffi

10
p P τ þ ρ0ð Þ � V 5β0 þ 5γ � 4ð Þð Þ

c035 ¼
1

2
ffiffiffiffiffi

15
p 6P τ þ ρ0ð Þ � 5P� Vð Þ

where

β0 ¼ β þ A ρ0 ¼ ρþM (186)

After symmetry breaking the pseudo-scalar masses (176) will be described as
functions of the coefficients ci’ [16].

π ¼ Z

2
Pτ � V γð Þ

Kþ ¼ Z

2
Pτ � V β0ð Þ K0 ¼ �Z

2
V β0 þ γð Þ

D0 ¼ Z

2
P ρ0 þ τð Þ Dþ ¼ Z

2
Pρ0 � V γð Þ

Bþ ¼ Z

2
Pτ þ V β0 þ γ � 1ð Þð Þ Tþ ¼ Z

2
P 1� τ � ρ0ð Þ � V γð Þ

(187)

From (183), (184), (186) and (187) we get
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β0 ¼ K0 þ Kþ � π

2Bþ þ 3K0 � Kþ � π
γ ¼ K0 � Kþ þ π

2Bþ þ 3K0 � Kþ � π

ρ0 ¼ D0 þDþ � π

2Tþ þ 3D0 �Dþ � π
τ ¼ D0 �Dþ þ π

2Tþ þ 3D0 �Dþ � π

(188)

(contrary to the case of mixing in (d, s, b) sector only (variant A in [29] the
electromagnetic mass splitting of u and d quarks cannot be neglected; if we put
arbitrarily c3 = 0 in Eq. (175) as in variants A and B in [29], the parameters γ, β0τ, ρ0

could not be calculated separately. We would obtain only three nonlinear relations
connecting these parameters with meson masses). Since

αþ β þ γ ¼ λþ ρþ τ ¼ 1 (189)

putting (183, 184, 186) to (188) and eliminating θ2 and θ3 from the obtained set
of four equations we get

f 1 θ1, δ1ð Þ ¼ tan θ7 ¼ � f 5 θ5, δ2ð Þ (190)

where

f 1 θ1, δ1ð Þ ¼
B1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
1 � A1C1

q

A1
(191)

A1 ¼ s21 1� β0ð Þ � γ B1 ¼
ffiffiffi

γ
p ffiffiffiffiffiffiffiffiffiffiffiffi

s21 � γ

q

c1 cos δ1 C1 ¼ γ � s21 β0 þ γð Þ (192)

f 5 θ5, δ2ð Þ ¼
B5∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
5 � A5C5

q

A5
(193)

A5 ¼ s25 1� ρ0ð Þ � τ B5 ¼
ffiffiffi

τ
p ffiffiffiffiffiffiffiffiffiffiffiffi

s25 � τ

q

c5 cos δ2 C5 ¼ τ � s25 ρ0 þ τð Þ (194)

We considered in [16] the simultaneous mixing in (d, s) and (u, c) sectors in the
SU4 ∗ SU4 symmetry. The mixing angles Θ and ϕ could not be calculated separately,
however the nonlinear formula connecting both angles and pseudo-scalar masses
was found

2π þ 2 K þDð Þ sin 2
Θ sin 2ϕ ¼ 2K þ πð Þ sin 2

Θþ 2Dþ πð Þ sin 2ϕ (195)

A numerical calculation showed that there is an extremum (a maximum) of the
function (66) with condition (195) for the angles Θm þ ϕm very close to the exper-
imentally measured Cabibbo angle. This fact suggests that the symmetry breaking is
realized in the maximal allowed case, so the effective angle of mixing would corre-
spond to the maximum of function (66). As in [16] we shall look for the extremum
of the function

f θ1, θ5ð Þ ¼ sin θ1 þ θ5ð Þ (196)

with condition (190). The following set of equations must be obeyed

f 1 θ1, δ1ð Þ þ f 5 θ5, δ2ð Þ ¼ 0
∂ f 1 θ1, δ1ð Þ

∂δ1
¼ 0 (197)
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∂ f 1 θ1, δ1ð Þ
∂θ1

� ∂ f 5 θ5, δ2ð Þ
∂θ5

¼ 0
∂ f 5 θ5, δ2ð Þ

∂δ2
¼ 0

From (197) we get

C1 ¼ 0 C5 ¼ 0 (198)

respectively, which implies that the separation constant

tan θ7 ¼ 0 (199)

This means that the maximal allowed symmetry breaking occurs only for inde-
pendent mixing of quarks in both sectors.

Let us consider the action of the operators R11 and R21 on quarks. The operator
R11 mixes quarks in the negative electric charge subspace in the following sequence:
(s-b)(θ3), (d-s)(θ1), a phase rotation (δ1), (s-b)(θ7), however the operator R21

mixes quarks as follows: (c-t) (θ2), (u-c)(θ5). a phase rotation (δ2), (c-t)(θ7). By the
exact SU4 ∗ SU4 symmetry only b and t quarks are massive. After the symmetry
breaking a massless quark can become massive if it mixes with the other massive
one. By the mixing in the sector with the charge - 1/3 the quark s has become
massive in the first stage of the hierarchical symmetry breaking, after mixing with
the quark b (the rotation on the angle θ3 generated by the operator Q21), the quark d
has become massive in the second stage after mixing with the already massive
quarks (the rotation on the angle θ1). The next rotation by the angle θ7, and mixing
of s and b quarks are not connected with the symmetry breaking, because the
mixing quarks have been already massive. There is analogical situation in the sector
with the charge +2/3. The c and u quarks have become massive due to the hierar-
chical symmetry breaking (rotations on angles θ2 and θ5, respectively), however the
rotation by the angle θ7 and mixing of c and t quarks are also not connected with the
symmetry breaking. Thus, from (199) it results that the physical quark mixing is
realized only in the symmetry breaking with the quark masses generation. Putting
(199) to (183) and (184) and comparing with (188) we get

sin 2 θ1 ¼
K0 � Kþ þ π

2K0 sin 2 θ5 ¼
D0 �Dþ þ π

2D0 (200)

sin 2 θ3 ¼
2K0

2Bþ þ 3K0 � Kþ � π
sin 2 θ2 ¼

2D0

2Tþ þ 3D0 �Dþ � π

so θC ¼ θ1 þ θ5 depends on the parameters of mesons belonging only to the SU4

multiplet. Let us notice that in comparison to the variant A in [29], taking into
account the quark mixing in the (u, c, t) sector allowed the author to calculate the
Cabibbo angle from the model and the angles θ2 and θ3. Let us compare the value of
the calculated angle θC ¼ θ1 þ θ5 realized for the maximal symmetry breaking with
the experimentally measured Cabibbo angle value [22].

cos θ ¼ 0:9737 � 0:0025 (201)

The well known values of meson masses were taken from [30]. f π, fKþ , ... were
assumed as the factors in the matrix elements between one meson state and the
vacuum according to PCAC, so for meson multiplets with the isospin 1/2 the factors
for charged and neutral mesons are the same [31]. There exist many conjectures
concerning the values of f x� They widely differ in magnitude, depending on the
particular approach to the estimation of the matrix element <0∣vx∣x> and so far
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they have no reliable experimental support. Only in the case of fK there is a fair
consensus that the value is around 1.28 [12, 13, 31, 32]. For a calculation we took as
fD for comparison’s sake values significantly different

fD ¼ 0:974 10½ � fD ¼ 0:65 29½ � (202)

which gives

cos θ1 þ θ5ð Þ ¼ 0:9799 cos θ1 þ θ5ð Þ ¼ 0:9709 (203)

respectively, very close to the experimental value (201), as in the case of the
SU4 ∗ SU4 broken symmetry [16]. It seems to us that such a well agreement in both
SU4 ∗ SU4 and SU6 ∗ SU6 symmetries is not accidental and the symmetry breaking is
indeed realized for the maximal allowed case.

Putting (198) to (197) we find the relation connecting both phase parameters

cos δ2 ¼ ξ cos δ1 (204)

where

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ ρ0 1� γ � βð Þ ρ0 þ τð Þ
τβ0 1� τ � ρ0ð Þ β0 þ γð Þ

s

(205)

The effective phase parameter δ ¼ δ1 þ δ2 is bounded for ξ 6¼ 1. Indeed, the
Eq. (204) has solution only for

∣δ∣
> arccos

1
ξ

if ξ> 1ð Þ

> arccos ξð Þ if ξ< 1ð Þ

8

<

:

(206)

It is worth noticing that even for ξ ! ∞ or ξ ! 0 the second and third quadrant
for δ is still allowed.

Appendix

From the Gell-Mann Oakes Renner model for SU6 ∗ SU6 symmetry we obtain the
following relation for masses of pseudo-scalar mesons

m2
a f

2
aδ

ab þ
ð

dq2

q2
ρab ¼ i<0∣ Q

a
,D

b
∣0> ¼

X

6

i¼1

X

6

j¼1

c j2�1di2�1,a,cd j1�1,b,c

 !

< ui
2�1

> 0

"

(207)

where

ρab ¼ 2πð Þ3
X

n6¼a

δ4 pn � q
� �

<0∣D
a
∣n> < n∣D

b
∣0> (208)

dabc symmetric constants of the SU6 group, < ui > 0 - vacuum expectation value

of the operator ui, Q i �Q
i ¼

Ð

d3xVα
0 xð Þ �

Ð

d3xAα
0 xð Þ - the generators of the

SU6 ∗ SU6 group
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Da ¼ ∂
μVa

μ xð Þ D
a ¼ ∂

μAa
μ xð Þ 12½ � (209)

Because the vacuum expectation values of operators ui: i = 3, 8, 15, 24, 35 and the
spectral density ρab are proportion to the squared parameters Of symmetry break-
ing, they were neglected. Approximately we obtain

m2
a f

2
a ¼

1
ffiffiffi

3
p

X

6

j¼1

c j2�1d j2�1,a,a

 !

< u0 > 0 (210)

Because the symmetric constants of SU6 group: d113 ¼ d223 ¼ d333 ¼ 0 the masses
of neutral and charged pions are not differentiated, however there is the electro-
magnetic mass splitting of the other meson multiplets (see Eq. (176)).

The experimental data [30] gives

ΔmK ¼ mK0 �mKþ ¼ 4:003 MeV ΔmD ¼ mD0 �mDþ ¼ �5:3 MeV (211)

so

sign ΔmK ¼ �sign ΔmD (212)

Let us notice that from (17613) we get

sign K0 � Kþ� �

¼ �sign D0 �Dþ� �

(213)

so the direction of the electromagnetic mass splitting by the factor c3 responsible
for this effect is consistent with the experimental data. On the other hand

sign Δmπ ¼ mπ0 �mπþ ¼ �4:603MeV (214)

so the electromagnetic mass splitting of pions is of the same order as kaons or D
mesons. It suggests that the neglected terms in approximate formula (207) are of
the order of the factor c3. This means that such an approximation does not generate
error greater than the electromagnetic ma s splitting of pion in meson masses
description.
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