
Electronic Communications of the EASST
Volume X (2012)

Proceedings of the
XII Spanish Conference on Programming and Computer

Languages
(PROLE 2012)

Semantics of structured normal logic programs

Edelmira Pasarella, Fernando Orejas, Elvira Pino, Marisa Navarro

2 pages

Guest Editors: Marı́a-del-Mar Gallardo
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Semantics of structured normal logic programs

Edelmira Pasarella1, Fernando Orejas1, Elvira Pino1, Marisa Navarro2 ∗

1 Departament de LSI, Universitat Politècnica de Catalunya, Jordi Girona, 1-3. 08034
Barcelona, Spain

2Departamento de LSI, Universidad del Paı́s Vasco, Paseo Manuel de Lardizabal, 1, Apdo 649,
20080 San Sebastián, Spain

Abstract: In this paper we provide semantics for normal logic programs enriched
with structuring mechanisms and scoping rules. Specifically, we consider construc-
tive negation and expressions of the form Q⊃G in goals, where Q is a program unit,
G is a goal and ⊃ stands for the so-called embedded implication. Allowing the use
of these expressions can be seen as adding block structuring to logic programs. In
this context, we consider static and dynamic rules for visibility in blocks. In particu-
lar, we provide new semantic definitions for the class of normal logic programs with
both visibility rules. For the dynamic case we follow a standard approach. We first
propose an operational semantics. Then, we define a model-theoretic semantics in
terms of ordered structures which are a kind of intuitionistic Beth structures. Finally,
an (effective) fixpoint semantics is provided and we prove the equivalence of these
three definitions. In order to deal with the static case, we first define an operational
semantics and then we present an alternative semantics in terms of a transforma-
tion of the given structured programs into flat ones. We finish by showing that this
transformation preserves the computed answers of the given static program.

Keywords: semantics, normal logic programs, embedded implication, visibility
rules, structuring mechanism, intuitionistic structures

1 Summary

Regarding dynamic normal logic programs, the intuition of the interpretation of embedded im-
plications is that, given a program P, to prove the query Q⊃G it is necessary to prove G with the
program P∪Q. This is formalized in a seminal work by Miller, using the inference rule shown in
Figure 1. In Miller’s approach, both implications, clausal implication and embedded implication,

P∪Q `dyn G
P `dyn Q⊃ G

Figure 1: Dynamic rule

∗ This work has been partially supported by the Spanish CICYT project FORMALISM (ref. TIN2007-66523) and by
the AGAUR Research Grant ALBCOM (ref. SGR 20091137)

1 / 2 Volume X (2012)



Semantics of structured normal logic programs

are interpreted as intuitionistic implications. In particular, a main result of this work is that the
proof-theoretic semantics for this kind of programs can be given in terms of intuitionistic logic.
Moreover, he proposed a model-theoretic semantics in terms of Kripke models. In our paper
we extend this approach to the case of programs that also include negation. First, we introduce
an operational semantics for the class of normal logic programs with embedded implication.
This semantics is an extension of constructive negation with the above rule to handle implication
goals. Extending similarly the model-theoretic semantics, both to define the logical semantics
and the least fixpoint semantics of a program, is quite more involved. In particular, a main dif-
ficulty comes from the non-monotonic nature of negation in logic programming which does not
fit well with modularity. We have the intuition that both connectives could have a natural and
reasonably simple semantics in terms of intuitionistic (Beth) models and this semantics would
make more explicit the intuitionistic nature of negation in logic programming already pointed
out by other authors. Therefore, we define the Beth models that capture our intuition together
with their associated forcing relation. Then, we introduce an immediate consequence operator
showing that it is monotonic and continuous. Moreover, we show that the least fixpoint of this
operator coincides with the least model of the given program. Finally, the operational semantics
is proved to be sound and complete with respect to the least fixpoint semantics.

To deal with static normal logic programs, we consider the same kind of programs as in previous
case, but interpreting embedding with static scoping. The rule for handling implications in this
case is shown in Figure 2. The intuition of the notation P|Q `st G is that we want to solve G in

P|Q `st G
P `st Q⊃ G

Figure 2: Static rule

a scope consisting of two nested blocks of definitions, P and Q, where Q is local to P, i.e. P|Q
represents this kind of block inclusion. To solve the goal G in the scope of P|Q we can use any
definition that is present in either P or Q. This is just as in block-structured procedural languages
where, for solving a reference in a given scope, we may use any visible definition from any of
the blocks which are global to that reference. To define a semantics to this class of programs,
instead of developing a new framework to define a model-theoretic semantics, we show how
these programs can be transformed into standard normal programs. Moreover, we prove that
this translation is sound and complete with respect to the operational semantics of the extended
programs. In addition, it must be pointed out that this transformation is easy to implement, which
means that we can easily build this kind of extension on top of a standard logic programming
language. This approach has been used in previous work to deal with positive propositional static
programs and to translate modal logic programs with embedded implication into Horn programs.
To achieve our goal, we first introduce an operational semantics for the class of static normal
logic programs with embedded implications. Then, we present the transformation semantics
and, finally, we prove the soundness and completeness of the transformation.

Proc. PROLE 2012 2 / 2


	Summary

