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Abstract. Lack of flexibility of current Internet architecture led researchers to 
come up with new paradigms for a novel Internet architecture, which would be 
able to reduce complexity and increase flexibility compared to current Internet 
architecture. Functional composition is a promising approach to flexible and 
evolvable architecture design. The idea is composing complex protocol suites 
by dynamically bind and arrange different functions to obtain certain behavior. 
Herein, we present the implementation of a context-aware network architecture 
based on functional composition for smart objects. A sub-set of those basic 
functional blocks has been implemented and validated on an experimental 
testbed using different network topologies. 

Keywords: Future Internet, functional blocks, context-awareness, smart 
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1 Introduction 

Nowadays, several different proposals of Future Internet (FI) architectures exist in 
Europe and worldwide that are taking the “clean-slate” path, redefining the 
architectonical principles of Future Networks (FNs) from scratch.  Hence, lack of 
flexibility of current Internet architecture leaded researchers to come up with new 
paradigms for a novel Internet architecture, which would be able to reduce complexity 
and increase flexibility compared to current Internet architecture. But, at this moment, 
it is not clear which of these architectures neither which architectural paradigm will 
succeed or prevail as the new Internet architecture.   

Functional composition is a promising approach to flexible and evolvable 
architecture design [1][2]. The idea is composing complex protocol suites by 
dynamically bind and arrange different functions to obtain certain behavior. The key 
aspect here is granularity and scope of functions. On one hand, the idea of 
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modularizing the stack is catching the great attention in the research community. The 
idea is to extract the functionalities out of the current network stack and place them as 
needed, by using this approach it will ease the introduction, reuse, change and 
placement of functionalities (e.g. application level, network level, etc.) and flexibility 
in terms of inclusion and exclusion of function with respect to application demands. 
Another similar idea that is catching up is using a flexible model of layers with 
dynamic bindings, opposed to the static binding between stacked modules/layers 
being used today. The idea here is to optimize the architecture for flexibility, 
designing it to support any protocol stack by using inheritance schemes (class-based), 
polymorphism and dynamic binding between modules/layers. This approach also 
aims to make a flexible functional composition, but with coarse-grained granularity of 
layers instead of small networking functions. 

The paper is organized as follows: in section 2 we discuss the possibilities of 
functional composition to implement FI architectures suited for smart objects. Section 
3 gives a brief overview design of our architecture proposal (see [3] for more details 
on the design of the architecture). Section 4 details the implementation of the 
architecture for constrained devices. 

2 Functional Composition in Smart Objects 

Functional composition architectures for FI have the potential to be able to cover the 
whole networking spectrum in its wider sense if they are provided with extensible, 
adaptable, customizable and personalized roles, vocabularies and control mechanisms.  
They have the potential to converge the different “Internet of” visions into a single 
architectonical paradigm; thus paving the way for convergence of heterogeneous 
networks and integration of smart objects and other constrained devices in the general 
framework of the Internet.  

Hence, solutions should be designed and standardized with extensibility, flexible 
and loose-coupling as main design premises. Therefore, software-derived mechanisms 
for data abstraction, modularity, inheritance/delegation, dynamic bindings (opposed to 
static ones) and polymorphism should be applied in order to allow the evolution and 
change of the different aspects of the solution (roles, vocabularies and control 
mechanisms). By providing tools for changing the dynamics and behavior of 
networks and protocols FI architectures will have realistic means to evolve without 
requiring major breakthroughs, costly transition plans or architectural reformulations. 

In accordance with this idea, we should design solutions for worst-case scenarios, 
such as constrained environments with capacity and power restrictions and hostile 
mediums (e.g. smart objects, actuators, sensors), and then extend them to work in 
more favorable environments without capacity restrictions. Therefore, if we can 
design flexible architectures that are adaptable to context variations and that work 
with minimalistic devices in constrained networks, it should be easier to extrapolate 
those architectures to work in more unconstrained environments, without capacity 
restrictions, such as wired computer networks. Furthermore, restricted devices like 
sensors/actuators and objects are becoming increasingly predominant in the Network 



(and will continue to grow in numbers); we cannot therefore ignore their impact on 
networking applications and should design a model capable of accommodating them. 

3 Architecture Overview 

In [3] we propose a clean-slate Role-Based Architecture [4] that advocates breaking 
current protocols in its fundamental pieces: those individual functions commonly used 
in networking protocols (i.e. acknowledgments, sequence numbers, flow control, 
etc.).The idea is creating new protocols using these atomic functions or services as 
basic building blocks. This way, the proposal uses ensembles of basic services to 
provide advanced communication services. We define those basic building blocks as 
Atomic Services (AS). 

This shift of paradigm requires extensive research on feasible techniques for 
building up optimized protocols from scratch according to different criteria, ranging 
from energy efficiency to context-awareness. This reasoning should take into 
consideration the characteristics of the surrounding context (device capabilities, 
available network and computation resources, location and environment, etc.) solving 
the following issues [5]: which behaviour and outcome is desired; which functions are 
most suitable to achieve expected outcome; where they should be allocated; which 
mechanism (protocol, language/ontology) will be used to allocate and configure 
functions along communication path.  

Other issues approached by the architecture are: discovery of desired services 
according to their semantic description; mechanisms for context interchange; resource 
reservation and ontologies for describing context characteristics (node, link, service, 
etc.), QoS agreements, service/resource description, locator/identifier schemes, etc. 
[6].The service discovery and AS allocation is performed by means of negotiation 
protocol based on reactive ad-hoc routing protocols suitable for smart objects which 
creates communications on demand. 

For ontology and vocabulary support, we define a set of basic vocabularies for 
describing node capabilities, service and resource characteristics and QoS 
requirements. In order to support different environments and visions, this set of 
services/roles should be extended. Likewise, these vocabularies are designed with 
restricted devices in mind and, as such, are quite limited in their scope. 

4 Implementation Design 

The design of the architecture is divided in modules that run on event based operative 
system for constrained devices [3]. We have extended the architecture to be platform 
independent using an event based scheduler and a Medium Access Control (MAC) 
module able to inject and receive datagrams from different physical network 
interfaces. Furthermore, the architecture provides a framework to create functional 
blocks, i.e. ASs, and provide information about its characteristics to be utilized by 
allocation algorithms when establishing a new communication. 



This section is divided as follows. First of all, we discuss the main patterns 
required to implement the functional blocks. Secondly, we detail the structures 
utilized to register and select those blocks in the architecture. Then, we describe the 
available interfaces to interchange information between the different functional blocks 
in an active communication. Finally, we describe a preliminary validation of the 
framework using several nodes with a basic set-up of functional blocks. 

4.1Atomic Services Patterns 

In addition on creating taxonomy of types of basic network functionalities for services 
(e.g., cyphering, error control, etc.), we have identified the following patterns as the 
basic operations that are usually executed when implementing any networking 
protocol. These patterns should be available when executing an AS in order to 
provide flexibility and extensibility: 
• Payload data modification. Services like coding, transcoding or ciphering mostly 

modify the payload from application data included in the datagrams. Therefore, the 
architecture must provide interfaces to the AS in order to access to packet payload 
independently on other AS executions. 

• Overhead data manipulation. Network protocols require interchange and access to 
additional control data included as overhead in packets. Hence, the architecture 
must provide standard interfaces to access to packet metadata information. 

• Execution of periodic tasks. Timers are required in order to evaluate certain 
conditions that could trigger events like retransmissions or QoS computations. 
Hence, the AS executions must be able to create timers to trigger those events. 

• Generation and processing of control data. In addition to overhead control 
information added to data payloads, some services must be able to generate control 
data interchange, like the negotiating phase of security protocols. 

4.2. Atomic Services 

Atomic Services (AS) constitute the functional modules of the architecture utilized to 
set up communication paths. Once a communication has been established, the 
allocated AS are executed sequentially. We define the procedure of creating this list is 
as AS linkage (see Fig. 1). For each path created, each node maintains a linked list of 
the AS to be executed locally. Each network function is created using two AS blocks 
that represent the two endpoints of the network functionality. Each AS block can be 
configured as input, if processes receiving packets; output, if processes outgoing 
packets; or both in case that the AS is executed only in an intermediate node (e.g., a 
transcoding functionality). 

We have classified AS in different groups or types, according to its main 
functionality. Examples of AS groups are error detection, transcoding, retransmission 
or acknowledgement [6]. For each of the AS groups, there exist different 
implementations for the same functionality, defined in the architecture as AS 
configurations. For instance, Stop-and-wait Automatic Repeat Request (ARQ) and 
Go-back-N ARQ are two different configurations of the retransmission functionality. 



Therefore, each AS block is uniquely identified by its type and configuration. 
Currently, each AS type and configurations in the architecture are identified using 1 
byte, enough to run a basic set on constrained devices but can be extended to allow a 
greater set of implementations. As a result, organizations and developers can provide 
a wide range of AS, where basic and simpler AS implementations can be applied in 
constrained devices and complex ones in carrier-grade networking equipment. 
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Fig.1. Example of 2-hop AS linkage. 

4.2.1 AS Selection Rules 
The selection of appropriate AS configurations become crucial to obtain the desired 
communication behavior based on applications requirements. Different approaches 
exist in the literature, authors in [7] propose and out-band signaling infrastructure to 
apply data-path services based on defined QoS policies and services conditions to be 
executed through nodes in the path. While in [8] is defined a framework to create 
offline functional composition of building blocks based on the weighted combination 
of multiple QoS attributes provided by each building block implementation. 

We have defined the selection of the suitable AS configurations based on 
processing the context information available to nodes. In the case of smart object or 
infrastructure-less networks, context information is obtained via the negotiating 
protocol. That information is expressed by means of the context attributes, including 
node characteristics (available memory, battery level,...), link characteristics 
(bandwidth, delay, jitter, quality metrics, load,…) and network characteristics (e.g, 
domain). The selection rules consist on a combination of comparison operations using 
the values of context attributes as inputs. 

The computation of the rules is performed as follows: first, each AS configuration 
that offers the QoS required for the application is evaluated using a cost function in 
order to determine its suitability to be allocated in a new communication path. 
Defining 𝐴𝑆𝑖,𝑗as the configuration j for AS of type i, the equation (1) defines the cost 
function, 𝐶𝐴𝑆𝑖,𝑗, computed for all the applicable  𝐴𝑆𝑖,𝑗 in a communications. This cost 
function is the sum of a set of N weighted comparison operations for a set of context 
attributes (𝑎𝑖,𝑗,𝑘) which represent the logical function, denoted 
as 𝑙𝑜𝑔𝑖𝑐𝑓�𝑎𝑖,𝑗,𝑘 ,𝐴𝑖,𝑗,𝑘,𝐶𝑅� with weight 𝜔𝑖,𝑗,𝑘, 𝐴𝑖,𝑗,𝑘 as the constant value to 



compareand CR as the comparison relation to compute (=,≠,≥,≤, > or <) (see 
equation (2)). 

𝐶𝐴𝑆𝑖,𝑗 = �𝜔𝑖,𝑗,𝑘 ∗ 𝑙𝑜𝑔𝑖𝑐𝑓�𝑎𝑖,𝑗,𝑘 ,𝐴𝑖,𝑗,𝑘,𝐶𝑅�
𝑁−1

𝑘=0

 (1) 

𝑙𝑜𝑔𝑖𝑐𝑓�𝑎𝑖,𝑗,𝑘,𝐴𝑖,𝑗,𝑘,𝐶𝑅� = �
0  ;  𝑖𝑓 𝑎𝑖,𝑗,𝑘(𝐶𝑅)𝐴𝑖,𝑗,𝑘 = 𝐹𝐴𝐿𝑆𝐸
1 ;  𝑖𝑓 𝑎𝑖,𝑗,𝑘(𝐶𝑅)𝐴𝑖,𝑗,𝑘 = 𝑇𝑅𝑈𝐸  (2) 

Finally, an AS configuration 𝐴𝑆𝑖,𝑗 is applicable for a communication path if the 
𝐶𝐴𝑆𝑖,𝑗 is greater than a defined threshold ( 𝑇ℎ𝐴𝑆𝑖,𝑗). Note that the selection of weight 
and threshold values requires a previous learning or experimental phase in order to 
tune the allocation rules. For instance, the configuration CRC-16 for the Error 
Detection (ED) functionality𝐴𝑆𝐸𝐷,𝐶𝑅𝐶−16 can be utilized in a wireless link if the 
context attribute SNR (𝑎𝐸𝐷,𝐶𝑅𝐶−16,𝑆𝑁𝑅) is lower than a specified value. 

4.2.2AS Register (ASR) 
The architecture provides a memory space where all the implementations of 

𝐴𝑆𝑖,𝑗are registered using a linked list of structures that include the function callbacks 
executed by the. 𝐴𝑆𝑖,𝑗  during run-time. That list is loaded with all available AS 
configurations when the architecture is initiated. Each 𝐴𝑆𝑖,𝑗 implementation must 
include in the register the following callbacks functions:  
• as_init(). Called when the AS is allocated in a node during the negotiation phase. It 

is utilized to initiate AS memory structures or communication attributes. 
• exec_in(). Executed for an AS configured as input after receiving a new data 

packet. 
• exec_out(). Called by AS which are configured as output, i.e. data is transmitted to 

the network.  
• exec_inout(). This function callback is utilized by AS that act as input and output at 

the same time (i.e., executed in the same node). 
• exec_timer(). When a timer has expired for a specific AS block, this callback is 

utilized to run periodic tasks. 
• exec_control(). Control packets receptions are processed via this callback. 
• as_destroy(). Executed when closing the communication to free any memory 

allocated at AS initiation. 
After selecting the AS configurations to be allocated in the data path, the node 

originator of the communication requests distributes the configuration information of 
the AS to the rest of the nodes of the data-path. Then, each node creates the sequential 
list of callbacks for the selected AS blocks in the new allocated communication. 
Afterwards, the data is transmitted from source to destination nodes. 

4.2.3 Data-Path Processing 
Once established the data path for the communication, the AS linkage provides a list 
of AS callbacks to be executed in each of the nodes among the data path. The 
execution of the AS processes the communication data and control information 



included in two types of packets: control and data packets, respectively(see Fig. 
2).Each time a packet traverses a node, the AS Execution Manager in the responsible 
to execute sequentially the callbacks for each AS in the data path accordingly to its 
configuration and direction (input, output or both).Control packets include control 
data transmitted to an AS addressed using the 1 byte address, which is generated after 
AS allocation; while data packets include a header overhead with the following fields:  
• num (1 byte). Indicates the number of parameters.  
• len (1 byte).  Total length of the overhead. 
• Type Value (TV) Parameters. Parameters with fixed length (1, 2, 4 and 8 bytes) 

defined by its type, adding 1 extra byte of overhead indicating the parameter type. 
• Type Length Value (TLV) Parameters. Parameters with variable length, adding 2 

overhead bytes (TL). 

AS addr AS Control DataCTRL HDRMAC HDR AS PCK 
PARAMS Data payloadDATA 

HDRMAC HDR

#num TV TV TLVlen

Control Packet Data Packet

Fig. 2. Description of packets defined in the architecture with AS metadata. 

The main interface utilized by the AS callbacks implementations is a common 
memory structure which is passed as argument to the callbacks implementations. This 
structure is allocated for each AS at AS linkage, requiring a total of46 bytes (using 32 
bits architecture. The structure includes flags (4 bytes) and memory address pointers 
to structures that allow the AS to perform its patterns (10 pointers in total). The main 
structures required by the AS are the packet payloads, packet metadata (i.e., packet 
attributes), control data and global connection control data (i.e., connection 
attributes). The data path processing in a node takes the following stages (see Fig. 3): 
• Data packet reception at the MAC Layer Bundle. A new packet is received from 

the MAC layer, encapsulating the data packet. The MAC bundle extracts the MAC 
Header and sends the packet to the Network Module of the architecture. 

• Processing of data packet at Network Module (NM). The NM looks for the 
registered communication in the node that matches the data header. On positive 
matching, it sends the data payload to the AS Execution Manager. 

• Execution of AS linkage in the node. First of all, the de-serializer extracts the AS 
metadata included as overhead in the data packets. Secondly, the AS list is 
executed sequentially. After each execution, the AS Execution Manager checks 
whether it is new control data generated to be transmitted to the network. 
Moreover, during any AS execution, the AS callback can add a timer to execute 
future tasks. Finally, the serializer adds the metadata (i.e. packet attributes after AS 
list execution) in the data packet to be transmitted in the network. 
After data packet processing, the AS block can mark the packets status to be 

deleted or queued (in case that future actions are required). If AS do not set packet 
status to queued, the AS execution Manager removes the packet from queue after it 
has been processed. 



i

Deserializer Serializer

Connection 
attributes

AS Execution Flow Forward Path

o

oi

i

Packet Rx Packet Tx 

MAC Layer Bundle

Network module

Packet 
queue

Packet 
attributes

Timer event

AS Timers CB

 = Check for 
Control data  = AS main CB  

Fig. 3. Example of a communication data-path in a node. 

4.2.4 AS Communications 
There are two possible methods to interchange data between AS blocks in a 
communication: inter AS communication, when AS blocks are allocated in different 
nodes; and intra AS communications, among AS blocks executed in the same node. 

4.2.4.1 Inter AS Communications 
The AS Execution Manager checks whether new control data has been generated after 
each AS block execution. When required, the AS Execution Manager creates the 
control packet and sends it to the network. Control packets transmissions are bi-
directional in the AS linkage and can only be processed with two AS that share the 
same AS address, i.e., AS blocks that implement the same functionality but 
configured with the inverse behavior (input instead of output and vice versa).Fig. 4 
shows and example of how control data is traversed through nodes using the reverse 
path until it reaches its destination AS block. 
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Fig. 4. Control packet processing through 2-hop communication. 

4.2.4.2 Intra AS Communications 
The intra AS communication is generated via a shared memory space of connection 
metadata data using two different structures: packet attributes and connection 



attributes. Packet attributes include the metadata of current processed packet which is 
extracted by the de-serializer. After processing the AS linkage list, the serializer adds 
the packet attributes as data payload overhead (see Fig. 2). Connection attributes 
include global control attributes for each communication, creating a standard way to 
perform cross-layer operations between the different functions. Both packet and 
connection attributes schema can be extended to allow the architecture evolution. 

4.3 Preliminary Validation of the Architecture  

The architecture has been implemented in C language in Linux and OSX based 
distributions using an Ethernet MAC Layer Bundle with raw sockets and Berkeley 
Packet Filter (BPF), respectively. The interface network driver has been emulated in 
the MAC Layer Bundle running two separate threads to receive and send packets by 
the network module. The identifier for each node has been set to a fixed value and 
included in the MAC header of the MAC Layer bundle. We have implemented a total 
of 9 AS configurations grouped in 5 AS main functionalities as a basic sub-set in 
order to build reliable communications: 
1. Acknowledgement: sequenced ACK, not-sequenced ACK. 
2. Data encoding: base64 encoding. 
3. Error detection: CRC-CCITT, CRC-16, CRC-32, RS-FEC. 
4. Retransmission: Basic per packet retransmission. 
5. Sequencing: Basic packet sequencing. 

To validate the negotiation protocol, the AS Execution Manager and AS Selection 
rules, we have emulated different network topologies with up to 30 nodes by means of 
applying network address filters in the Network Module. The context information for 
each link has been emulated setting different link quality metric utilized to select the 
most suitable AS configuration. To be more precise, a link metric value of 1 indicates 
a very good link quality, while 0 indicates poor quality. For instance, we defined rules 
based on the link metric values to allocate the Acknowledgement and Retransmission 
AS configurations, resulting in allocation of AS blocks for these functionalities on the 
links where the link quality was below the 0.7 value. 

A simplified version of the described architecture has been coded and compiled for 
the CC2430 platform [3], based on 8-bit architecture System on Chip (SoC). This 
exercise demonstrates by one side the feasibility of the approach and by the other the 
need of more powerful platforms to benefic of the capabilities of the platform. 

5 Conclusions and Future Work 

Functional composition paradigm stands as one of the most promising paradigm for 
FI architectures. Constrained devices like smart objects will be predominant in the 
future; accordingly, we consider that FI architectures should be supported in smart 
objects. In this paper, we have presented an implementation of context-aware 
functional composition architecture suitable to run on constrained devices. The 



context semantic description (QoS, service, node and network) provides extensibility 
as it supports the easy adoption of future services provided by smart objects. 

The Atomic Services (AS) are the basic building blocks of the architecture, each 
modular functionality is implemented as an AS configuration and registered in the 
architecture. Those AS are able to access dynamically to other AS data via the generic 
packet data headers and the global connection attributes, allowing a flexible 
cooperative and cross-layer access not supported in current architectures. A sub-set of 
those basic atomic services has been implemented and validated on experimental 
testbed with several machines and network topologies. 

Currently, we are working in the implementation of additional AS configurations; 
in the extension of the AS interfaces and improving the previous 8-bit architecture to 
the MC1332x3 platform (based on 32-bit ARM). Further research is required in order 
to analyze AS dependences and evaluate the performance of the AS configurations 
using different context attributes. Based on those attributes, we will design and 
implement different AS Linkage algorithms to be validated emulating different 
context attributes. Furthermore, final performance in testbed with constrained 
hardware platforms should be analyzed in order to validate the emulated network 
conditions. Finally, we plan to extend the architecture to be infrastructure based, using 
multi-interface elements that lead to a global connectivity. 
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