
Implementation of context-aware network architecture
for smart objects based on functional composition12

Jose Luis Ferrer, Xavier Sanchez-Loro, Anna Calveras and Josep Paradells

Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona (ETSETB)
JordiGirona 1-3, 08034 Barcelona, Spain

i2CAT Foundation, Gran Capità 2-4 (Nexus Building), 08034 Barcelona, Spain

{jlferrer,xsanchez,acalveras,josep.paradells}@entel.upc.edu

Abstract. Lack of flexibility of current Internet architecture led researchers to
come up with new paradigms for a novel Internet architecture, which would be
able to reduce complexity and increase flexibility compared to current Internet
architecture. Functional composition is a promising approach to flexible and
evolvable architecture design. The idea is composing complex protocol suites
by dynamically bind and arrange different functions to obtain certain behavior.
Herein, we present the implementation of a context-aware network architecture
based on functional composition for smart objects. A sub-set of those basic
functional blocks has been implemented and validated on an experimental
testbed using different network topologies.

Keywords: Future Internet, functional blocks, context-awareness, smart
objects, constrained devices, semantic routing.

1 Introduction

Nowadays, several different proposals of Future Internet (FI) architectures exist in
Europe and worldwide that are taking the “clean-slate” path, redefining the
architectonical principles of Future Networks (FNs) from scratch. Hence, lack of
flexibility of current Internet architecture leaded researchers to come up with new
paradigms for a novel Internet architecture, which would be able to reduce complexity
and increase flexibility compared to current Internet architecture. But, at this moment,
it is not clear which of these architectures neither which architectural paradigm will
succeed or prevail as the new Internet architecture.

Functional composition is a promising approach to flexible and evolvable
architecture design [1][2]. The idea is composing complex protocol suites by
dynamically bind and arrange different functions to obtain certain behavior. The key
aspect here is granularity and scope of functions. On one hand, the idea of

1 This work is supported by the Spanish Government through the MICINN and FEDER

project TEC2009-11453.
2 The authors are grateful to the reviewers’ valuable comments that improved the current

paper.

modularizing the stack is catching the great attention in the research community. The
idea is to extract the functionalities out of the current network stack and place them as
needed, by using this approach it will ease the introduction, reuse, change and
placement of functionalities (e.g. application level, network level, etc.) and flexibility
in terms of inclusion and exclusion of function with respect to application demands.
Another similar idea that is catching up is using a flexible model of layers with
dynamic bindings, opposed to the static binding between stacked modules/layers
being used today. The idea here is to optimize the architecture for flexibility,
designing it to support any protocol stack by using inheritance schemes (class-based),
polymorphism and dynamic binding between modules/layers. This approach also
aims to make a flexible functional composition, but with coarse-grained granularity of
layers instead of small networking functions.

The paper is organized as follows: in section 2 we discuss the possibilities of
functional composition to implement FI architectures suited for smart objects. Section
3 gives a brief overview design of our architecture proposal (see [3] for more details
on the design of the architecture). Section 4 details the implementation of the
architecture for constrained devices.

2 Functional Composition in Smart Objects

Functional composition architectures for FI have the potential to be able to cover the
whole networking spectrum in its wider sense if they are provided with extensible,
adaptable, customizable and personalized roles, vocabularies and control mechanisms.
They have the potential to converge the different “Internet of” visions into a single
architectonical paradigm; thus paving the way for convergence of heterogeneous
networks and integration of smart objects and other constrained devices in the general
framework of the Internet.

Hence, solutions should be designed and standardized with extensibility, flexible
and loose-coupling as main design premises. Therefore, software-derived mechanisms
for data abstraction, modularity, inheritance/delegation, dynamic bindings (opposed to
static ones) and polymorphism should be applied in order to allow the evolution and
change of the different aspects of the solution (roles, vocabularies and control
mechanisms). By providing tools for changing the dynamics and behavior of
networks and protocols FI architectures will have realistic means to evolve without
requiring major breakthroughs, costly transition plans or architectural reformulations.

In accordance with this idea, we should design solutions for worst-case scenarios,
such as constrained environments with capacity and power restrictions and hostile
mediums (e.g. smart objects, actuators, sensors), and then extend them to work in
more favorable environments without capacity restrictions. Therefore, if we can
design flexible architectures that are adaptable to context variations and that work
with minimalistic devices in constrained networks, it should be easier to extrapolate
those architectures to work in more unconstrained environments, without capacity
restrictions, such as wired computer networks. Furthermore, restricted devices like
sensors/actuators and objects are becoming increasingly predominant in the Network

(and will continue to grow in numbers); we cannot therefore ignore their impact on
networking applications and should design a model capable of accommodating them.

3 Architecture Overview

In [3] we propose a clean-slate Role-Based Architecture [4] that advocates breaking
current protocols in its fundamental pieces: those individual functions commonly used
in networking protocols (i.e. acknowledgments, sequence numbers, flow control,
etc.).The idea is creating new protocols using these atomic functions or services as
basic building blocks. This way, the proposal uses ensembles of basic services to
provide advanced communication services. We define those basic building blocks as
Atomic Services (AS).

This shift of paradigm requires extensive research on feasible techniques for
building up optimized protocols from scratch according to different criteria, ranging
from energy efficiency to context-awareness. This reasoning should take into
consideration the characteristics of the surrounding context (device capabilities,
available network and computation resources, location and environment, etc.) solving
the following issues [5]: which behaviour and outcome is desired; which functions are
most suitable to achieve expected outcome; where they should be allocated; which
mechanism (protocol, language/ontology) will be used to allocate and configure
functions along communication path.

Other issues approached by the architecture are: discovery of desired services
according to their semantic description; mechanisms for context interchange; resource
reservation and ontologies for describing context characteristics (node, link, service,
etc.), QoS agreements, service/resource description, locator/identifier schemes, etc.
[6].The service discovery and AS allocation is performed by means of negotiation
protocol based on reactive ad-hoc routing protocols suitable for smart objects which
creates communications on demand.

For ontology and vocabulary support, we define a set of basic vocabularies for
describing node capabilities, service and resource characteristics and QoS
requirements. In order to support different environments and visions, this set of
services/roles should be extended. Likewise, these vocabularies are designed with
restricted devices in mind and, as such, are quite limited in their scope.

4 Implementation Design

The design of the architecture is divided in modules that run on event based operative
system for constrained devices [3]. We have extended the architecture to be platform
independent using an event based scheduler and a Medium Access Control (MAC)
module able to inject and receive datagrams from different physical network
interfaces. Furthermore, the architecture provides a framework to create functional
blocks, i.e. ASs, and provide information about its characteristics to be utilized by
allocation algorithms when establishing a new communication.

This section is divided as follows. First of all, we discuss the main patterns
required to implement the functional blocks. Secondly, we detail the structures
utilized to register and select those blocks in the architecture. Then, we describe the
available interfaces to interchange information between the different functional blocks
in an active communication. Finally, we describe a preliminary validation of the
framework using several nodes with a basic set-up of functional blocks.

4.1Atomic Services Patterns

In addition on creating taxonomy of types of basic network functionalities for services
(e.g., cyphering, error control, etc.), we have identified the following patterns as the
basic operations that are usually executed when implementing any networking
protocol. These patterns should be available when executing an AS in order to
provide flexibility and extensibility:
• Payload data modification. Services like coding, transcoding or ciphering mostly

modify the payload from application data included in the datagrams. Therefore, the
architecture must provide interfaces to the AS in order to access to packet payload
independently on other AS executions.

• Overhead data manipulation. Network protocols require interchange and access to
additional control data included as overhead in packets. Hence, the architecture
must provide standard interfaces to access to packet metadata information.

• Execution of periodic tasks. Timers are required in order to evaluate certain
conditions that could trigger events like retransmissions or QoS computations.
Hence, the AS executions must be able to create timers to trigger those events.

• Generation and processing of control data. In addition to overhead control
information added to data payloads, some services must be able to generate control
data interchange, like the negotiating phase of security protocols.

4.2. Atomic Services

Atomic Services (AS) constitute the functional modules of the architecture utilized to
set up communication paths. Once a communication has been established, the
allocated AS are executed sequentially. We define the procedure of creating this list is
as AS linkage (see Fig. 1). For each path created, each node maintains a linked list of
the AS to be executed locally. Each network function is created using two AS blocks
that represent the two endpoints of the network functionality. Each AS block can be
configured as input, if processes receiving packets; output, if processes outgoing
packets; or both in case that the AS is executed only in an intermediate node (e.g., a
transcoding functionality).

We have classified AS in different groups or types, according to its main
functionality. Examples of AS groups are error detection, transcoding, retransmission
or acknowledgement [6]. For each of the AS groups, there exist different
implementations for the same functionality, defined in the architecture as AS
configurations. For instance, Stop-and-wait Automatic Repeat Request (ARQ) and
Go-back-N ARQ are two different configurations of the retransmission functionality.

Therefore, each AS block is uniquely identified by its type and configuration.
Currently, each AS type and configurations in the architecture are identified using 1
byte, enough to run a basic set on constrained devices but can be extended to allow a
greater set of implementations. As a result, organizations and developers can provide
a wide range of AS, where basic and simpler AS implementations can be applied in
constrained devices and complex ones in carrier-grade networking equipment.

o

o

o

o

i

i

i

o

o

i

i

i

1 2 3

Data-path

Physical link

Node

Atomic Service (AS)

Inter AS
Communication

i: input o: output

Fig.1. Example of 2-hop AS linkage.

4.2.1 AS Selection Rules
The selection of appropriate AS configurations become crucial to obtain the desired
communication behavior based on applications requirements. Different approaches
exist in the literature, authors in [7] propose and out-band signaling infrastructure to
apply data-path services based on defined QoS policies and services conditions to be
executed through nodes in the path. While in [8] is defined a framework to create
offline functional composition of building blocks based on the weighted combination
of multiple QoS attributes provided by each building block implementation.

We have defined the selection of the suitable AS configurations based on
processing the context information available to nodes. In the case of smart object or
infrastructure-less networks, context information is obtained via the negotiating
protocol. That information is expressed by means of the context attributes, including
node characteristics (available memory, battery level,...), link characteristics
(bandwidth, delay, jitter, quality metrics, load,…) and network characteristics (e.g,
domain). The selection rules consist on a combination of comparison operations using
the values of context attributes as inputs.

The computation of the rules is performed as follows: first, each AS configuration
that offers the QoS required for the application is evaluated using a cost function in
order to determine its suitability to be allocated in a new communication path.
Defining 𝐴𝑆𝑖,𝑗as the configuration j for AS of type i, the equation (1) defines the cost
function, 𝐶𝐴𝑆𝑖,𝑗, computed for all the applicable 𝐴𝑆𝑖,𝑗 in a communications. This cost
function is the sum of a set of N weighted comparison operations for a set of context
attributes (𝑎𝑖,𝑗,𝑘) which represent the logical function, denoted
as 𝑙𝑜𝑔𝑖𝑐𝑓�𝑎𝑖,𝑗,𝑘 ,𝐴𝑖,𝑗,𝑘,𝐶𝑅� with weight 𝜔𝑖,𝑗,𝑘, 𝐴𝑖,𝑗,𝑘 as the constant value to

compareand CR as the comparison relation to compute (=,≠,≥,≤, > or <) (see
equation (2)).

𝐶𝐴𝑆𝑖,𝑗 = �𝜔𝑖,𝑗,𝑘 ∗ 𝑙𝑜𝑔𝑖𝑐𝑓�𝑎𝑖,𝑗,𝑘 ,𝐴𝑖,𝑗,𝑘,𝐶𝑅�
𝑁−1

𝑘=0

 (1)

𝑙𝑜𝑔𝑖𝑐𝑓�𝑎𝑖,𝑗,𝑘,𝐴𝑖,𝑗,𝑘,𝐶𝑅� = �
0 ; 𝑖𝑓 𝑎𝑖,𝑗,𝑘(𝐶𝑅)𝐴𝑖,𝑗,𝑘 = 𝐹𝐴𝐿𝑆𝐸
1 ; 𝑖𝑓 𝑎𝑖,𝑗,𝑘(𝐶𝑅)𝐴𝑖,𝑗,𝑘 = 𝑇𝑅𝑈𝐸 (2)

Finally, an AS configuration 𝐴𝑆𝑖,𝑗 is applicable for a communication path if the
𝐶𝐴𝑆𝑖,𝑗 is greater than a defined threshold (𝑇ℎ𝐴𝑆𝑖,𝑗). Note that the selection of weight
and threshold values requires a previous learning or experimental phase in order to
tune the allocation rules. For instance, the configuration CRC-16 for the Error
Detection (ED) functionality𝐴𝑆𝐸𝐷,𝐶𝑅𝐶−16 can be utilized in a wireless link if the
context attribute SNR (𝑎𝐸𝐷,𝐶𝑅𝐶−16,𝑆𝑁𝑅) is lower than a specified value.

4.2.2AS Register (ASR)
The architecture provides a memory space where all the implementations of

𝐴𝑆𝑖,𝑗are registered using a linked list of structures that include the function callbacks
executed by the. 𝐴𝑆𝑖,𝑗 during run-time. That list is loaded with all available AS
configurations when the architecture is initiated. Each 𝐴𝑆𝑖,𝑗 implementation must
include in the register the following callbacks functions:
• as_init(). Called when the AS is allocated in a node during the negotiation phase. It

is utilized to initiate AS memory structures or communication attributes.
• exec_in(). Executed for an AS configured as input after receiving a new data

packet.
• exec_out(). Called by AS which are configured as output, i.e. data is transmitted to

the network.
• exec_inout(). This function callback is utilized by AS that act as input and output at

the same time (i.e., executed in the same node).
• exec_timer(). When a timer has expired for a specific AS block, this callback is

utilized to run periodic tasks.
• exec_control(). Control packets receptions are processed via this callback.
• as_destroy(). Executed when closing the communication to free any memory

allocated at AS initiation.
After selecting the AS configurations to be allocated in the data path, the node

originator of the communication requests distributes the configuration information of
the AS to the rest of the nodes of the data-path. Then, each node creates the sequential
list of callbacks for the selected AS blocks in the new allocated communication.
Afterwards, the data is transmitted from source to destination nodes.

4.2.3 Data-Path Processing
Once established the data path for the communication, the AS linkage provides a list
of AS callbacks to be executed in each of the nodes among the data path. The
execution of the AS processes the communication data and control information

included in two types of packets: control and data packets, respectively(see Fig.
2).Each time a packet traverses a node, the AS Execution Manager in the responsible
to execute sequentially the callbacks for each AS in the data path accordingly to its
configuration and direction (input, output or both).Control packets include control
data transmitted to an AS addressed using the 1 byte address, which is generated after
AS allocation; while data packets include a header overhead with the following fields:
• num (1 byte). Indicates the number of parameters.
• len (1 byte). Total length of the overhead.
• Type Value (TV) Parameters. Parameters with fixed length (1, 2, 4 and 8 bytes)

defined by its type, adding 1 extra byte of overhead indicating the parameter type.
• Type Length Value (TLV) Parameters. Parameters with variable length, adding 2

overhead bytes (TL).

AS addr AS Control DataCTRL HDRMAC HDR AS PCK
PARAMS Data payloadDATA

HDRMAC HDR

#num TV TV TLVlen

Control Packet Data Packet

Fig. 2. Description of packets defined in the architecture with AS metadata.

The main interface utilized by the AS callbacks implementations is a common
memory structure which is passed as argument to the callbacks implementations. This
structure is allocated for each AS at AS linkage, requiring a total of46 bytes (using 32
bits architecture. The structure includes flags (4 bytes) and memory address pointers
to structures that allow the AS to perform its patterns (10 pointers in total). The main
structures required by the AS are the packet payloads, packet metadata (i.e., packet
attributes), control data and global connection control data (i.e., connection
attributes). The data path processing in a node takes the following stages (see Fig. 3):
• Data packet reception at the MAC Layer Bundle. A new packet is received from

the MAC layer, encapsulating the data packet. The MAC bundle extracts the MAC
Header and sends the packet to the Network Module of the architecture.

• Processing of data packet at Network Module (NM). The NM looks for the
registered communication in the node that matches the data header. On positive
matching, it sends the data payload to the AS Execution Manager.

• Execution of AS linkage in the node. First of all, the de-serializer extracts the AS
metadata included as overhead in the data packets. Secondly, the AS list is
executed sequentially. After each execution, the AS Execution Manager checks
whether it is new control data generated to be transmitted to the network.
Moreover, during any AS execution, the AS callback can add a timer to execute
future tasks. Finally, the serializer adds the metadata (i.e. packet attributes after AS
list execution) in the data packet to be transmitted in the network.
After data packet processing, the AS block can mark the packets status to be

deleted or queued (in case that future actions are required). If AS do not set packet
status to queued, the AS execution Manager removes the packet from queue after it
has been processed.

i

Deserializer Serializer

Connection
attributes

AS Execution Flow Forward Path

o

oi

i

Packet Rx Packet Tx

MAC Layer Bundle

Network module

Packet
queue

Packet
attributes

Timer event

AS Timers CB

 = Check for
Control data = AS main CB

Fig. 3. Example of a communication data-path in a node.

4.2.4 AS Communications
There are two possible methods to interchange data between AS blocks in a
communication: inter AS communication, when AS blocks are allocated in different
nodes; and intra AS communications, among AS blocks executed in the same node.

4.2.4.1 Inter AS Communications
The AS Execution Manager checks whether new control data has been generated after
each AS block execution. When required, the AS Execution Manager creates the
control packet and sends it to the network. Control packets transmissions are bi-
directional in the AS linkage and can only be processed with two AS that share the
same AS address, i.e., AS blocks that implement the same functionality but
configured with the inverse behavior (input instead of output and vice versa).Fig. 4
shows and example of how control data is traversed through nodes using the reverse
path until it reaches its destination AS block.

AS Execution Flow
(Reverse Path)

Control Packet Rx

i

Deserializer Serializer

AS Execution Flow

o

oi

i

Packet Rx
Packet Tx

MAC Layer Bundle

Network module

Control
Packet Tx

MAC Layer Bundle

Network module

(1)

(2)

(3)

AS Execution Flow
(Reverse Path)

c

MAC Layer Bundle

Network module

Fig. 4. Control packet processing through 2-hop communication.

4.2.4.2 Intra AS Communications
The intra AS communication is generated via a shared memory space of connection
metadata data using two different structures: packet attributes and connection

attributes. Packet attributes include the metadata of current processed packet which is
extracted by the de-serializer. After processing the AS linkage list, the serializer adds
the packet attributes as data payload overhead (see Fig. 2). Connection attributes
include global control attributes for each communication, creating a standard way to
perform cross-layer operations between the different functions. Both packet and
connection attributes schema can be extended to allow the architecture evolution.

4.3 Preliminary Validation of the Architecture

The architecture has been implemented in C language in Linux and OSX based
distributions using an Ethernet MAC Layer Bundle with raw sockets and Berkeley
Packet Filter (BPF), respectively. The interface network driver has been emulated in
the MAC Layer Bundle running two separate threads to receive and send packets by
the network module. The identifier for each node has been set to a fixed value and
included in the MAC header of the MAC Layer bundle. We have implemented a total
of 9 AS configurations grouped in 5 AS main functionalities as a basic sub-set in
order to build reliable communications:
1. Acknowledgement: sequenced ACK, not-sequenced ACK.
2. Data encoding: base64 encoding.
3. Error detection: CRC-CCITT, CRC-16, CRC-32, RS-FEC.
4. Retransmission: Basic per packet retransmission.
5. Sequencing: Basic packet sequencing.

To validate the negotiation protocol, the AS Execution Manager and AS Selection
rules, we have emulated different network topologies with up to 30 nodes by means of
applying network address filters in the Network Module. The context information for
each link has been emulated setting different link quality metric utilized to select the
most suitable AS configuration. To be more precise, a link metric value of 1 indicates
a very good link quality, while 0 indicates poor quality. For instance, we defined rules
based on the link metric values to allocate the Acknowledgement and Retransmission
AS configurations, resulting in allocation of AS blocks for these functionalities on the
links where the link quality was below the 0.7 value.

A simplified version of the described architecture has been coded and compiled for
the CC2430 platform [3], based on 8-bit architecture System on Chip (SoC). This
exercise demonstrates by one side the feasibility of the approach and by the other the
need of more powerful platforms to benefic of the capabilities of the platform.

5 Conclusions and Future Work

Functional composition paradigm stands as one of the most promising paradigm for
FI architectures. Constrained devices like smart objects will be predominant in the
future; accordingly, we consider that FI architectures should be supported in smart
objects. In this paper, we have presented an implementation of context-aware
functional composition architecture suitable to run on constrained devices. The

context semantic description (QoS, service, node and network) provides extensibility
as it supports the easy adoption of future services provided by smart objects.

The Atomic Services (AS) are the basic building blocks of the architecture, each
modular functionality is implemented as an AS configuration and registered in the
architecture. Those AS are able to access dynamically to other AS data via the generic
packet data headers and the global connection attributes, allowing a flexible
cooperative and cross-layer access not supported in current architectures. A sub-set of
those basic atomic services has been implemented and validated on experimental
testbed with several machines and network topologies.

Currently, we are working in the implementation of additional AS configurations;
in the extension of the AS interfaces and improving the previous 8-bit architecture to
the MC1332x3 platform (based on 32-bit ARM). Further research is required in order
to analyze AS dependences and evaluate the performance of the AS configurations
using different context attributes. Based on those attributes, we will design and
implement different AS Linkage algorithms to be validated emulating different
context attributes. Furthermore, final performance in testbed with constrained
hardware platforms should be analyzed in order to validate the emulated network
conditions. Finally, we plan to extend the architecture to be infrastructure based, using
multi-interface elements that lead to a global connectivity.

References

1. Henke, C.,Siddiqui, A.,Khondoker, R.: Network functional composition: State of the art. In:
Telecommunication Networks and Applications Conference (ATNAC). Australasian, pp.43-
-48 (2010)

2. Schinnenburg, M., Debus, F., Pabst, R.:Application of Functional Unit Networks to Next
Generation Radio Networks. In Vehicular Technology Conference (VTC) Spring. IEEE
63rd. 7-10 May 2006, Volume: 1, pp. 147 -151 (2006)

3. Sanchez-Loro, X., Ferrer, J.L., Gomez, C.,Casademont, J., Paradells, J.: Can Future Internet
be based on constrained networks design principles?. In: Computer Networks, 55, 4, pp
893—909. Elsevier North-Holland, Inc. New York, NY, USA(2011)

4. Braden, R., Faber, T., Handley, M.: From protocol stack to protocol heap: role-based
architecture. In: SIGCOMM Compututer Communication. Rev. 33, 17–22 (2003)

5. Sanchez-Loro, X, Gonzalez, A.J., Martin-de-Pozuelo,R.: A Semantic Context-Aware
Network Architecture. In: Future Network and Mobile Summit 2010. Florence, Italy (2010)

6. Sanchez-Loro, X., Ferrer, J.L, Casademont, J., Paradells, J., Vidal, A.: Proposal of a Clean
Slate Network Architecture for Ubiquitous Services Provisioning. In: IEEE ICFIN 09.
Beijing, China (2009)

7. Shanbhag, S., Wolf, T.: Automated composition of data-path functionality in the future
internet. In: IEEE Network, 25, 6, pp.8—14.(2011)

8. Völker, L., Martin, D., Rohrberg, T., Backhaus, H., Baumung, P., Wippel, H., Zitterbart, M.:
Design Process and Development Tools for Concurrent Future Networks. In: 3rd GI/ITG
KuVS Workshop on The Future Internet, GI/ITG Kommunikation und VerteilteSysteme,
Munich, Germany (2009)

3FreescaleMC13224V: MC1322x Platform in a Package (PiP).

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC13224V

