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Abstract. In kernel-based machines, the integration of several kernels
to build more flexible learning methods is a promising avenue for research.
In particular, in Multiple Kernel Learning a compound kernel is build
by learning a kernel that is the weighted mean of several sources. We
show in this paper that the only feasible average for kernel learning is
precisely the arithmetic average. We also show that three familiar means
(the geometric, inverse root mean square and harmonic means) for positive
real values actually generate valid kernels.

1 Introduction

Kernel methods have won great popularity as a tool for the identification of
nonlinear systems. Support Vector Machines (SVMs) are basic kernel-based
methods that are used for tasks such as classification and regression, among
others [1]. Perhaps the biggest limitation of kernel-based methods lies in the
choice of a proper kernel for a given problem.

The kernel function is a very flexible container under which to express know-
ledge about the problem. One way of tayloring kernels is developing partial
kernels (e.g., one for every descriptive variable) and building a final kernel as
the composition or aggregation of these partial kernels, an idea that can be traced
back to Vapnik [2]. Once these are built, the final obtained kernel is the one
used in the SVM. How can this aggregation process be defined? A natural idea
is to use a (possibly weighted) average of the partial kernels. We show that, for
a wide family of averages (including the familiar means), the only average gua-
ranteeing that the aggregated function is always a valid kernel is the arithmetic
average, and give an easy-to-ckeck necessary condition for even more general
averages. In addition, we show that three of the familiar means (the geometric,
inverse root mean square and harmonic means) are generators of valid kernels.

2 Preliminaries

Probably the simplest characterization for a symmetric function K : H×H → R

being a kernel is via the matrix it generates on finite subsets [1].

Definition 1 In the real case, the symmetric matrix An×n is positive semi-
definite (PSD) if, for all vectors z ∈ R

n, z′Az ≥ 0.

Theorem 1 The function K : H×H → R is a kernel in H if and only if for any
positive p ∈ N and choice of finite subsets {x1, x2, ..., xp} ⊂ H, the associated
matrix Kp×p = (kij), where kij = K(xi, xj) is a symmetric PSD matrix.
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Definition 2 Let [a, b] be a non-empty real interval. Call A(x1, . . . , xn) the
A-average of x1, ..., xn ∈ [a, b] to every n-place real function A fulfilling:

Axiom A1. A is continuous, symmetric and strictly increasing in each xi.

Axiom A2. A(x, . . . , x) = x.

Axiom A3. For any k ≤ n: A(x1, . . . , xn) = A(yk, . . . , yk︸ ︷︷ ︸
k times

, xik+1
, . . . , xin)

where yk = A(xi1 , , . . . , xik) and (i1, ..., in) is a permutation of (1, . . . , n).

The means defined by these axioms fulfill Cauchy’s property of means, namely,
that minxi ≤ A(x1, . . . , xn) ≤ maxxi (the proof is straightforward using axioms
A1 and A2). A further interesting property of these means is that we can add
averaged elements to an A-average without changing the overall result. Formally,
A(x1, ..., xn) = A(z1, ..., zm, x1, ..., xn) if and only if A(z1, ..., zm) = A(x1, ..., xn).
As a consequence, if y = A(x1, ..., xn), then A(x1, ..., xn, A(x1, ..., xn)) = y.

Theorem 2 ([3]) Let f : [a, b] −→ R be a continuous, strictly monotone map-
ping. Let g be the inverse function of f . Then,

A(x1, ..., xn) ≡ g

(
1

n

n∑
i=1

f(xi)

)

is a well-defined A-average for all n ∈ N and xi ∈ [a, b].

An important class of A-averages is formed by choosing f(z) = zq, q ∈ R:

Mq(x1, ..., xn) =

(
1

n

n∑
i=1

(xi)
q

) 1
q

Several well-known means (usually called generalized means) are derived by
choosing particular values of q. Specifically, the arithmetic mean for q = 1,
the geometric mean for q = 0, the root mean square or RMS mean for q = 2
and the harmonic mean for q = −1. A property of the means Mq is that, for
q �= q′, Mq(x1, ..., xn) ≥ Mq′(x1, ..., xn) if and only if q > q′, with equality only
if x1 = x2 = . . . = xn. A substantial part of the classic book by Hardy et al [4]
is devoted to the study of these functions and their applications.

3 A-averages as kernel aggregators

It is a well-known fact that the sum of m > 0 kernels is again a kernel. Therefore
the arithmetic average (function M1 in the notation of this paper) is a valid
kernel aggregator. The product of m > 0 kernels is also a kernel. However,
the product is not an average; it requires the application of the m-root to the
result to form the geometric mean (function M0). Is there any other generalized
mean guaranteeing this kernel property? As we shall see in the remaining of this
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section, the answer is ‘no’. Given that this is a rather broad class of averaging
functions, the result can be considered as a negative one.

It is convenient to express the aggregation in terms of a collection of a number
m of PSD matrices: for k = 1, . . . ,m, let Ak = (akij) represent n × n PSD real

matrices. Given f : Rm → R, define the n× n real matrix Ā = (f(a1ij , . . . a
m
ij )).

Definition 3 A function h : Cm → C in the form

h(x1+iy1, . . . , xm+iym) = P (x1, . . . , xm, y1, . . . , ym)+iQ(x1, . . . , xm, y1, . . . , ym)

with xi, yi ∈ R is said to be entire if it is holomorphic on all Cm, i.e., it is
continuous and differentiable in each complex variable on all Cm, and satisfies
the Cauchy-Riemann equations in each complex variable:

∂P

∂xi
(x0

1, . . . , x
0
m, y01 , . . . , y

0
m) = +

∂Q

∂yi
(x0

1, . . . , x
0
m, y01 , . . . , y

0
m)

∂P

∂yi
(x0

1, . . . , x
0
m, y01 , . . . , y

0
m) = − ∂Q

∂xi
(x0

1, . . . , x
0
m, y01 , . . . , y

0
m)

for each (x0
1, . . . , x

0
m, y01 , . . . , y

0
m) ∈ C

m, i = 1, . . . ,m.

Definition 4 A function f : Rm → R is said to be real entire if it is real on
R

m and it is the restriction on R
m of an entire function h defined on C

m:

f(x1, . . . , xm) ≡ Re (h(x1, . . . , xm, 0, . . . , 0))

Proposition 1 Let f : Rm −→ R, the condition of differentiability on all Rm

is necessary for the function f to be real entire.

Proof. Let f be non-differentiable at least in a point (x̄1, . . . , x̄m) ∈ R
m and

suppose that f is real entire, i.e. there exists an entire function h : Cm → C,

h(z1, . . . , zm) = h(x1 + iy1, . . . , xm + iym) =

= P (x1, . . . , xm, y1, . . . , ym) + iQ(x1, . . . , xm, y1, . . . , ym)

such that f(x1, . . . , xm) ≡ Re (h(x1, . . . , xm, 0, . . . , 0)). Since h is entire, all
the partial derivatives ∂

∂xi
P (x0

1, . . . , x
0
m, y01 , . . . , y

0
m) exist and are continuous in

each (x0
1, . . . , x

0
m, y01 , . . . , y

0
m) ∈ C

m, and in particular in (x̄1, . . . , x̄m, 0, . . . , 0).
However, ∂

∂xi
P (x̄1, . . . , x̄m, 0, . . . , 0) = ∂

∂xi
(Re (h(x̄1, . . . , x̄m, 0, . . . , 0))), which,

being equal to ∂
∂xi

f(x̄1, . . . , x̄m), leads to an absurd. �
Define now Z

m
+ to mean all vectors in Z

m with nonnegative coordinates. For
x ∈ R

m and α ∈ Z
m
+ , we use the standard notation xα = xα1

1 · · ·xαm
m . We

now use the notion of a real entire function to characterize a general A-average
function as a kernel aggregator thanks to the following theorem [5]:

Theorem 3 Let f : Rm −→ R. Then a matrix Ā generated by f as above is PSD
if and only if f is a real entire function of the form f(x) =

∑
α∈Z

m
+

cαx
α, x ∈ R

m,

where cα ≥ 0 for all α ∈ Z
m
+ .
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Application 1 (Generalized means) We apply the previous results to the A-
average functions of the type Mq, as defined above. With q = 1, it is plain
to see that M1 defines a matrix Ā that is a kernel, so we start with M2 and
m = 2. Let A1 = (a1ij), A2 = (a2ij) and consider the matrix Ā = (M2(a

1
ij , a

2
ij)) =

(
[
1
2

(
(a111)

2 + (a211)
2
)]1/2

). Using Theorem 3, f should be real entire; according
to Proposition 1 we verify the differentiability of M2 on R

2:

∂M2(x1, x2)

∂x1
=

x1

(x2
1 + x2

2)
;

∂M2(x1, x2)

∂x2
=

x2

(x2
1 + x2

2)

The partial derivatives of M2 are not defined in 0 ∈ R
2, so M2 is not real entire.

For general values of q �= 1 and m > 0 the matrix Ān×n is in general not
PSD because Mq is not a real entire function. Indeed, the partial derivatives

∂Mq(x1, . . . , xm)

∂xi
= (xi)

q−1

⎛
⎝ 1

m

m∑
j=1

(xj)
q

⎞
⎠

1
q−1

, i = 1, . . . ,m

are never defined in 0 ∈ R
n: for q < 1 the first factor is a null denominator,

whereas for q > 1 the second factor is a null denominator. For q = 1, the
derivatives evaluate to 1 everywhere, showing that only M1 is a valid choice.

Application 2 (Hyperbolic sine mean) Consider the real entire function sinh(x),
continuous and monotonic on R, and not expressable as a member of the Mq

family of means. Its inverse arcsinh(x) is again a real entire function, because
it is the restriction of the entire function arcsinh(z) = ln

(
z
√
1 + z2

)
, z ∈ C. A

valid average can be defined as:

fsinh(x1, x2) := arcsinh

(
sinh(x1) + sinh(x2)

2

)
This is a real entire function since it is the composition of real entire functions.
However, its Taylor expansion has negative coefficients (the cα in Theorem 3):

fsinh(x1, x2) =
1

2
x1 +

1

2
x2 +

1

16
x3
1 −

1

16
x2
1x2 − 1

16
x1x

2
2 +

1

16
x3
2 +O(x1, x2)

4

Since an holomorphic function has a unique expansion as a power series [6],
we conclude that this average is not a valid kernel aggregator.

4 Generalized means as kernel generators

A quite different perspective is obtained if we look at the generalized means as
a way to generate new kernels from scratch. Under this light, it turns out that
the harmonic (M−1), geometric (M0) and inverse RMS (M−2) means generate
valid kernels within their domains1 (this is not true for the arithmetic mean).

1These domains are either R+ or R− for M0 and M−1 and R+ for M−2.
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Theorem 4 The functions (i) kgeom := M0(x, y) =
√
xy, (ii) kharm := M−1(x, y) =

2xy
x+y and (iii) kIRMS := M−2(x, y) =

(
x−2
i +x−2

j

2

)− 1
2

=
√
2xixj√
x2
i+x2

j

are PSD kernels.

Proof. Consider any c ∈ Rn. We have:

(i)

n∑
i=1

n∑
j=1

cicjkgeom(xi, xj) =
n∑

i=1

n∑
j=1

cicj
√
xixj =

(
n∑

i=1

ci
√
xi

)2

≥ 0

(ii)
n∑

i=1

n∑
j=1

cicj
2xixj

xi + xj
= 2

n∑
i=1

n∑
j=1

cicjxixj

∫ 1

0
zxi+xj−1 dz =

2
n∑

i=1

n∑
j=1

∫ 1

0
(cixiz

xi−1/2)(cjxjz
xj−1/2) dz = 2

∫ 1

0

(
n∑

i=1

cixiz
xi−1/2

)2

dz ≥ 0

(iii)

n∑
i=1

n∑
j=1

cicj

√
2xixj√
x2
i + x2

j

=

√
2√
π

n∑
i=1

n∑
j=1

cicjxixj

∫ ∞

0
t−1/2e−t(x2

i+x2
j ) dt =

√
2

π

∫ ∞

0

n∑
i=1

n∑
j=1

cicjxixjt
−1/2e−t(x2

i+x2
j ) dt =

√
2

π

∫ ∞

0

(
n∑

i=1

cixit
−1/4e−tx2

i

)2

dt ≥ 0 �

The interest in these measures lies in the particular semantics that they offer.
For example, in the geometric mean, the three numbers a,M0(a, b), b form a ge-
ometric sequence, whereas the harmonic mean penalizes big differences between
its arguments: consider M1(0.5, 11.5) = M1(6, 6) = 6 but M−1(0.5, 11.5) ≈
0.96 < M−1(6, 6) = 6; in all cases, the kernels are calculating “compromise” (i.e.
average) values between their arguments.

A final point can be made about these three kernels, by forming their nor-
malized counterparts. Given k(x, y) a kernel, it is known that the function:

k̂(x, y) =
k(x, y)√

k(x, x)
√
k(y, y)

∈ [−1, 1]

is again a valid kernel function [1]. Given that all these kernels are also
averages, k(x, x) = x always holds true, and therefore the normalization is always

equal to
√
xy. We then find that (i) k̂harm(x, y) =

2
√
xy

x+y , (ii) k̂geom(x, y) = 1 (not

very useful) and (iii) k̂IRMS(x, y) =
(√

x
y + y

x

)−1

are valid kernels.

5 Application to Multiple kernel learning

The aggregation of kernels with the weighted arithmetic mean has at least two
interpretations. First, we may define (partial) kernels Ki on a finite collection
of n spaces Hi; then an overall kernel in H = H1 × . . .×Hn is built as:

K(x, y) =
n∑

i=1

αiKi(xi, yi), xi, yi ∈ Hi, αi ≥ 0

where the αi sum to 1 (a convex combination). In the simplest instance
of this scheme every Hi represents the domain of a single feature, and the αi

367

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



coefficients perform an explicit feature selection process; a more interesting case
is found in selecting and combining appropriate sets of features.

Second, we can define kernels Ki directly on H and then a new kernel as:

K(x, y) =
n∑

i=1

αiKi(x, y), x, y ∈ H, αi ≥ 0

In this case, the interest is in departing from a set of kernels (may be a big
one) and perform a selection on this set. This set of kernels can be homogeneous
(different realizations of the same kernel using a different value for a parameter)
or heterogeneous (different kernels) or both. Multiple Kernel Learning (MKL)
seeks to address these situations by learning the kernel (i.e., fitting the best
αi from training data), achieving very good results on bioinformatics and com-
puter vision applications [7]. MKL learns linear combinations of base kernels,
corresponding to the concatenation of the base kernel feature spaces.

Richer representations can be achieved by combining kernels in other ways.
Taking products of kernels corresponds to taking a tensor product of their feature
spaces, leading to a much higher dimensional feature representation as compared
to concatenation. This big product is a kernel, and one would be then tempted
to take the n-root in good fairness, which would not lead to a valid kernel.

6 Conclusions

We have proven that the only feasible average for kernel learning is the arith-
metic average. Are there other “reasonable” averages that guarantee this kernel
property? If by reasonable we understand any function expressible as an A-
average then the answer is not easy to characterize. However, the necessary dif-
ferentiability condition is quite simple to check and may serve to rule out many
averaging candidates. Moreover, for the wide family Mq of generalized means,
defining Q = {q ∈ R /Mq is a kernel}, we have proven that {−2,−1, 0} ⊂ Q
(and certainly 1 /∈ Q). What exactly Q is remains an open question.
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