
Design of a Hands-on Course

in Networked Control Systems

Josep M. Fuertes, Ricard Villà, Jordi Ayza, Pere Marés, Pau Mart́ı,

Manel Velasco, José Yépez, Gina Torres and Miquel Perelló

Automatic Control Department, Technical University of Catalonia

Barcelona, Spain

Research Report: ESAII-RR-12-01

January 2012



Abstract

This report presents a hands-on course in networked control systems (NCS)
to be integrated in the education of embedded control systems engineers. The
course activities have a strong practical component and most of them are ap-
plied exercises to be implemented in a NCS setup. The report containts four
parts: a) a report that describes the experimental setup, proposing several
activities that can be shaped into a course program according to the needs
and diverse background of the targeted audience, b) a tentative program ex-
ample for master students, c) a user manual to help setting up the hardware
and software from a Live CD, and d) a quick guide to start working with the
programming environment.

Keywords: Networked control systems, education.



Contents

1 Research report 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Background on NCS . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Processing platform . . . . . . . . . . . . . . . . . . . 8

1.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Main software in NCS nodes . . . . . . . . . . . . . . 14
1.4.2 DCSMonitor . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Code availability . . . . . . . . . . . . . . . . . . . . . 23

1.5 Course activities . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Course program 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Simulation of NECS . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Control design . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Analysis of multitasking embedded control systems

(ECS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Design of multitasking embedded control systems (ECS) 41
2.2.4 Analysis of networked control systems (NCS) . . . . . 42
2.2.5 Design of networked control systems (NCS) . . . . . . 44
2.2.6 Analysis and design of event-driven control systems

(EDCS) . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3 Implementation of NECS . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Introduction to the development framework . . . . . . 49
2.3.2 Single control task system . . . . . . . . . . . . . . . . 54
2.3.3 Two tasks system: standard controller and dummy task 56

1



2.3.4 Two tasks system: one-shot controller and dummy task 57
2.3.5 Networked control system . . . . . . . . . . . . . . . . 59
2.3.6 Event-driven control . . . . . . . . . . . . . . . . . . . 66

3 User manual: live CD 67
3.1 Minimum requirements . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Booting the live CD . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Step by step Live CD guide . . . . . . . . . . . . . . . . . . . 69

3.3.1 Live CD structure . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Compiling DSPIC SENSOR with Eclipse . . . . . . . 70
3.3.3 Programming DSPIC SENSOR with MplabX . . . . . 73
3.3.4 Summary to program the other devices . . . . . . . . 76
3.3.5 DCSMonitor . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Quick guide to start working 88
4.1 Development Environment . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Mplab installation . . . . . . . . . . . . . . . . . . . . 89
4.1.2 Eclipse installation . . . . . . . . . . . . . . . . . . . . 93
4.1.3 Installing RTDruid plugin on Eclipse . . . . . . . . . . 93

4.2 Led Blinking . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.1 Eclipse environment . . . . . . . . . . . . . . . . . . . 98
4.2.2 Mplab X environment . . . . . . . . . . . . . . . . . . 103

2



Chapter 1

Research report

1.1 Introduction

Networked control systems [1, 2], i.e. control loops closed over communi-
cation networks where sensors, controllers and actuators are physically dis-
tributed and exchange control data through a shared network, are gaining
increased attention in many control application areas due to their cost-
effectiveness, reduced weight and power requirements, simple installation
and maintenance, and high reliability. At the same time, the underlying re-
quired control theory is starting to offer mature and methodological results,
e.g. [3, 4].

In a parallel track, since the economic importance of embedded systems
has grown exponentially as electronic components are in everyday use de-
vices, embedded systems education is becoming an strategic asset. Hence,
university curricula are being adapted accordingly to cover this domain [5].
In addition, noting that many embedded systems are control systems [6]
and considering the importance of NCS in industrial processes, there is a
growing demand of including NCS courses in the education of embedded
systems engineers.

The traditional teaching approach to the diverse disciplines involved in
NCS such as control systems, real-time computing and communication sys-
tems, can be often quite math-intensive and abstract, thus failing to intro-
duce students to the realities of NCS implementation. Hence, laboratory
activities are crucial to consolidate the diverse theoretical material. Follow-
ing this trend, this paper presents a hands-on course in networked control
systems to be integrated in the education of embedded control systems engi-
neers. The course activities have a strong practical component and most of

3



them are applied exercises to be implemented in a NCS setup. This course
can be taken as a complimentary material to other exiting courses in NCS
and to other initiatives related to NCS education such as the ”Networked
Control Systems Repository” at http://filer.case.edu/org/ncs/index.
htm, the NCS wiki page course at http://www.cds.caltech.edu/~murray/
wiki/index.php/EECI08:_Introduction_to_Networked_Control_Systems,
or other similar efforts. The proposal in this paper extends to a networked
setup a previously presented laboratory experiment targeting microprocessor-
based real-time control systems [7].

After describing the basics on NCS (Section 1.2), the paper describes
the experimental setup from a hardware (Section 1.3) and software point of
view (Section 1.4), and then proposes several activities (Section 1.5) that
can be shaped into a course program according to the needs and diverse
background of the targeted audience. Section 1.6 concludes the paper.

1.2 Background on NCS

NCS take different forms, and two major types of control systems can be
identified: shared-network control systems and remote control systems. The
hands-on course proposal targets the first type, although several concepts
can also be applied to the second type.

Hence, the course context is the NCS illustrated in Figure 1.1. Several
control loops, each one formed by a sensor, a controller and an actuator
implemented in physically separated nodes, share a single broadcast domain
to exchange the control data required for each control loop operation. In
addition, other nodes, represented by the load boxes, also use the network
to exchange other non-control data.

For a given networked closed loop system, a control job will denote the
required operations for each plant update. Hence, each control job would
basically require sending the sensor reading in the sensor message after sam-
pling the plant, and sending the control signal in the control message after
computing its value in the controller node using the information contained in
the incoming sensor message. Thus, in terms of bandwidth utilization, each
control job simplifies to sending two messages, the sensor and the control
message.

The most common design and implementation approach for NCS con-
sists in the periodic execution of the control algorithm, which implies that
messages from sensors to controllers and from controllers to actuators are
periodic [8]. The course will cover these methods, but will also takle other

4



controller

actuator plant sensor

load controller

actuator plant sensor

Network

Figure 1.1: Networked control system scheme

approaches that go beyond the periodicity of the standard approach. Among
them, two new tendencies for the analysis and design of NCS can be iden-
tified. The first one is to apply rate adaptation techniques where the pe-
riod is selected according to the controlled system dynamics and/or to the
bandwidth conditions, e.g. [9–11]. The main goal of these approaches is to
improve the aggregated control performance for the set of control loops by
efficiently using all the communication bandwidth. The second tendency is
to apply event-based sampling techniques which produce non-periodic exe-
cutions of the control algorithm, and therefore, non-periodic messaging in
the network, e.g. [12–14]. The main goal of these approaches is to minimize
the bandwidth utilization while still guaranteeing stability and acceptable
control performance.

1.3 Experimental set-up

1.3.1 Introduction

The desired scheme for each experimental setup is illustrated in Figure 2.3.
Hence, each student (or student group) will have a two-node NCS in which
one node acts as a controller (left node) while the other node acts as a
sensor and actuator (right node) and is attached to the plant. The reason
for putting together the sensor and actuator in the same node is to save
hardware resources.

The controlled plant and processing platform (hardware, real-time oper-
ating system, and network) have been carefully selected to have a friendly,
flexible, and powerful experimental set-up.

1.3.2 Plant

Many standard basic and advanced controller design methods rely on the
accuracy of the plant mathematical model. The more accurate the model,
the more realistic the simulations, and the better the observation of the

5



Figure 1.2: Experimental setup.

Figure 1.3: Plant: electronic double integrator (DI) circuit

effects of the controller on the plant. Hence, the plant was selected among
those for which an accurate mathematical model could easily be derived.

Following the same reasons discussed in [7], a simple electronic circuit
in the form of a double integrator (Figure 1.3) was selected1. The relative
simplicity of its components together with the inherent unstable dynamics
that makes the control more challenging have been the main reasons for
its selection. Note however that experiments using other plants can be
complementary to the approach presented here.

The selection of an electronic circuit as a plant has also an important
advantage: depending on the specific circuit, it can be directly plugged into
a micro-controller without using intermediate electronic component. That

1Note that in the integrator configuration, the operational amplifiers require positive
and negative input voltages. Otherwise, they will quickly saturate. However, since the
circuit is powered by the micro-controller, and thus no negative voltages are available,
the 0V voltage (Vss) in the non-inverting input has been shifted from GND to half of the
value of Vcc (3.3V) by using a voltage divider R3. Therefore, the operational amplifier
differential input voltage can take positives or negatives values.

6



Component Value

R3 1kΩ
R1 100kΩ
R2 100kΩ
C1 470nF
C2 470nF

Table 1.1: Electronic components values

is, the transistor-transistor logic (TTL) level signals provided by the micro-
controller can be enough to carry out the control. Note that this is not the
case, for example, for many mechanical systems. Such a simplification in
terms of hardware reduces the modeling effort to study the plant and no
models for actuators or sensors are required.

The DI nominal electronic components are shown in table 1.1.
The operational amplifier in integration configuration [15] can be model

by

Vout =

∫ t

0

− Vin

RC
dt+ Vinitial (1.1)

where Vinitial is the output voltage of the integrator at time t = 0, and
ideally Vinitial = 0, and Vin and Vout are the input and output voltages of the
integrator, respectively.

Taking into account (1.1), and the scheme shown in Figure 1.3, the
double integrator plant dynamics can be modeled by

dv2
dt

=
−1

R2C2

u

dv1
dt

=
−1

R1C1

v2

In state space form, the model is

[

v̇1
v̇2

]

=

[

0 −1

R1C1

0 0

] [

v1
v2

]

+

[

0
−1

R2C2

]

u

y =
[

1 0
]

[

v1
v2

]

Taking into account the tolerances in the electronics components (5%
for resistors and 25% for capacitors), the model that best adapts to the real
plant is given by the values listed in table 1.2.

7



Component Value

R1 100kΩ
R2 100kΩ
C1 420nF
C2 420nF

Table 1.2: Validated values for the electronics components.

The model validation has been performed applying a standard control
algorithm with a sampling period of h = 50ms, with reference changes, and
comparing the theoretical results obtained from a Simulink c© model with
those obtained from the plant. Hence, with the validated values for the
components, the model is given by

ẋ =

[

0 −23.809524
0 0

]

x+

[

0
−23.809524

]

u (1.2)

y =
[

1 0
]

x

Figure 1.4 shows the results of this validation. In particular, the con-
troller gain designed via pole placement locating the desired closed loop
poles at λ1,2 = −15 ± 20i is K =

[

0.5029 −0.9519
]

. Since the voltage
input of the operational amplifier is 1.6V (which is half Vcc: the measured
Vcc is 3.2V although it is powered by 3.3V), the tracked reference signal has
been established to be from 1.1V to 2.1V (±0.5V around 1.6V). For the
tracking, the feedforward matrix Nx is zero and Nx =

[

1 0
]

.
Note that the plant is unstable because the eigenvalues of the system

matrix are λ1,2 = 0. The goal of the controller is to make the circuit output
voltage (v1 in Figure 1.3) to track a reference signal by giving the appropriate
voltage levels (control signals) u. Both states v1 and v2 can be read via the
Analog-to-Digital-Converter (ADC) port of the micro-controller and u is
applied to the plant through the Pulse-Width-Modulation (PWM) port.

1.3.3 Processing platform

The processing platform consists of the hardware platform, the real-time op-
erating system and the network. As hardware platform, a micro-controller
based architecture was selected because NCS are typically implemented us-
ing this type of hardware. As discussed in [7], for the processing platform
adopting the Flex board [16] (in its full version, Figure 1.5) equipped with a
Microchip dsPIC R© DSC micro-controller dsPIC33FJ256MC710 represents

8



3 3.5 4 4.5 5 5.5 6
0.5

1

1.5

2

2.5

t(s)

vo
lta

ge
(V

)

 

 
x1
x2
reference
u

(a) Theoretical simulated plant response

2000 2500 3000 3500 4000 4500
0.5

1

1.5

2

2.5

t(ms)

vo
lta

ge
(V

)

 

 
x1
x2
reference
u

(b) Experimental plant response

Figure 1.4: Model validation.

9



Figure 1.5: Full Flex board.

a good compromise between cost, processing power, and programming flex-
ibility.

And regarding the real-time operating system, Erika Enterprise real-time
kernel [16] was selected because it provides full support to the Flex board in
terms of drivers, libraries, programming facilities, and sample applications,
and it gives support for preemptive and non-preemptive multitasking, and
implements several scheduling algorithms [17]. In addition, its API provides
support for tasks, events, alarms, resources, application modes, semaphores,
and error handling, permitting to enforce real-time constraints to application
tasks to show students the effects of sampling periods, delays and jitter on
control performance.

Regarding the network, the CAN (Controller Area Network, [18]) pro-
tocol that was originally designed for the automotive industry, but it has
also become a popular bus in industrial automation as well as other appli-
cations has been selected. CAN provides the basis for many cost-effective
distributed embedded applications, and its properties and functionality such
as reliability, dependability, or clock synchronization, are being constantly
enhanced.

Once the platform is ready, the networked setup for each student looks
like as in Figure 2.3 (top). The bottom board acts as a (remote) controller,
and communicates via CAN with the top board, that acts as a sampler and
actuator. Note that the same hardware, micro-processor based control can
also be tested. In this case, the bottom board is not used, and the top
board performs all the activities: sampling, control algorithm computation

10



Figure 1.6: Controller-sensor/actuator hardware (top). Details of the CAN,
DI and RS232 daughter boards (bottom)

and actuation. The daughter boards plugged into the top and bottom board,
illustrated in Figure 1.6 (bottom), serve different objectives: the daughter
board in the bottom is for CAN communication, the one in the middle is for
RS232 communication (for monitoring) and the top daughter board is the
DI circuit also enabled with CAN communication.

It is interesting to note that the modular architecture design permits
to network all the different students setups in a single CAN network. In

11



Figure 1.7: Scheme of the overall networked control system.

this way, a full networked control system can be built, where several nodes
acting as controllers, sensors and actuators control different double integra-
tor systems. This richer setup will permit to observe the interaction among
different closed-loops in terms of bandwidth utilization and control perfor-
mance.

In addition to all the pair of controller and sensor/actuator nodes that
constitute several loops closed over the network, another node can be added
to the network acting as a monitor/supervisor. The hardware of this node
is again the full Flex board, equipped with the daughter board with CAN
communication and the RS232 board used for debugging purposes. The role
of this node is to gather information of the state of all the control loops, as
well as to monitor and manage the network bandwidth. This node would
be mainly used for the instructor/teacher, although it can be also used by
students.

The complete scheme showing N control loops together with the super-
visor/monitor is illustrated in Figure 1.7. In the figure, each group is a pair
of controller and sensor/actuator nodes that are connected using CAN (that
would correspond to the setup shown in Figure 2.3 top) and it is the hard-
ware setup for each student (or group of students). Then, all the groups can
be networked between them, using also CAN, and the monitor/supervisor

12



Figure 1.8: Example of networked control system.

node can also be attached to the network.
Figure 1.8 shows an example of the full NCS with two groups, to-

gether with the monitor. In this case, one of the groups has the controller-
sensor/actuator hardware and the monitor hardware plugged together in a
single tower (on the right).

1.4 Software

This section briefly describes the main software components that have been
prepared for the experimental setup. Two types can be distinguished. First,
the software that goes to each node (Flex board) and second, the software
that can be run in an external PC for monitoring purposes, and that is
called “DCSMonitor” in Figure 1.7. The node codes, the DCSMonitor, and
other information related to this hands-on course are available at http:

//code.google.com/p/pfc-platform-test/source/browse/. Compared
to the lab proposed in [7], where the plant dynamics where monitored from
Matlab, the DCSMonitor provides a set of reacher and flexible features to
monitor the NCS. It has to be noted that the DCSMonitor and all the
information that it monitors still can be used with the old Matlab monitoring
system.

13



CPU mySystem {

OS myOs {

EE_OPT = "DEBUG"; CPU_DATA = PIC30 {

APP_SRC = "setup.c"; APP_SRC = "e_can1.c";

APP_SRC = "code.c";

MULTI_STACK = FALSE; ICD2 = TRUE;};

MCU_DATA = PIC30 {MODEL = PIC33FJ256MC710;};

BOARD_DATA = EE_FLEX {USELEDS = TRUE;};

KERNEL_TYPE = EDF { NESTED_IRQ = TRUE;

TICK_TIME = "25ns";};};

TASK TaskReferenceChange {

REL_DEADLINE = "0.005s"; PRIORITY = 3;

STACK = SHARED;SCHEDULE = FULL;};

TASK TaskController {

REL_DEADLINE = "0.05s"; PRIORITY = 3;

STACK = SHARED; SCHEDULE = FULL;};

COUNTER myCounter;

ALARM AlarmReferenceChange {

COUNTER = "myCounter";

ACTION = ACTIVATETASK {

TASK = "TaskReferenceChange"; };};

ALARM AlarmController {

COUNTER = "myCounter";

ACTION = ACTIVATETASK {

TASK = "TaskController"; };};

};

Figure 1.9: Configuration file (conf.oil) for the controller node

1.4.1 Main software in NCS nodes

The description of the Erika codes is ordered according to the three type of
nodes: controller, sensor/actuator, monitor/supervisor. For each node, the
kernel configuration file conf.oil specifies the main parameters for the dsPIC
and real-time kernel, and the code.c contains the main functionality.

Controller node

The configuration file is shown in Figure 1.9. It specifies the C files that are
used in this node, the scheduling algorithm (EDF, Earliest Deadline First),
and it defines two tasks, TaskReferenceChange and TaskController, which
are implemented in the code.c and associated to an alarm to control their
periodicity of execution.

14



TASK(TaskReferenceChange){

if (r == -0.5){r=0.5; LATBbits.LATB14 = 1;

}else{ r=-0.5; LATBbits.LATB14 = 0;}

Send_Controller_ref_message(&r);

}

TASK(TaskController){

x0=*(p_x0);//Get state x[0] from CAN msg

//from rx_ecan1_message1[0]..[3] data field

x1=*(p_x1);//Get state x[1] from CAN msg

//from rx_ecan1_message1[4]..[7] data field

x_hat[0]=x0-r*Nx[0]; x_hat[1]=x1-r*Nx[1];

u_ss=r*Nu;

u=-k[0]*x_hat[0]-k[1]*x_hat[1]+u_ss;

/* Check for saturation */

if (u>v_max/2) u=v_max/2;

if (u<-v_max/2) u=-v_max/2;

Send_Controller2Actuator_message(&u);

}

int main(void){

Sys_init();

SetRelAlarm(AlarmReferenceChange,1000,1000);

for (;;); return 0;

}

Figure 1.10: Main parts of the code.c for the controller node

The code.c file in the node has three main parts (Figure 1.10): the
main, and the two task defined in the conf.oil. The main configures the
TaskReferenceChange whose role is to create the reference signal to be
tracked by the controller. The TaskReferenceChange code simply gener-
ates a square wave that switches from −0.5v to −0.5v each second, and this
information is sent over CAN for debugging purposes. The TaskController
is activated by interrupt upon reception of the sensor message delivered over
CAN. It gets the plant state for the message, implements a control law (in
the figure a state-feedback controller with a tracking configuration), and
sends the computed control signal over CAN in the control message. The
code.c also manages the CAN interruption to receive the message sent by
the sensor.

15



TASK(TaskSensor){

LATBbits.LATB14 ^= 1; Read_State();

Send_Sensor2Controller_message(&x[0]);

}

TASK(TaskSensor_supervision){

LATBbits.LATB14 ^= 1; Read_State();

Send_Sensor2Supervisor_message(&x[0]);

}

TASK(TaskActuator){

u=(*p_u); // Gets control signal u from CAN msg

PDC1=((*(p_u))/v_max)*0x7fff+0x3FFF;

}

TASK(TaskSupervision){

/* It sends data via RS-232 to the PC

}

int main(void){

Sys_init();

SetRelAlarm(AlarmSensor,1000,50);

SetRelAlarm(AlarmSupervision, 1000, 10);

SetRelAlarm(AlarmSensor_supervision, 1000, 10);

for (;;); return 0;

}

Figure 1.11: Main parts of the code.c for the sensor/actuator node

Sensor/Actuator node

The sensor/actuator node configuration file is very similar to the one in the
controller node. However, it defines different tasks: TaskSensor, TaskSensor supervision,
TaskActuator, TaskSupervision, that are code in the corresponding code.c
file.

Figure 1.11 shows the main parts of the code.c file. In the main, the
periodicity for the sensor task is defined to 50ms and the periodicity for the
supervision tasks are defined to 10ms. Note that the periodicity of the actu-
ator task is not defined because it is executed upon reception of the control
message send by the controller node. The TaskSensor reads the plant state
and sends this value in the sensor message over CAN using the periodic-
ity stablished in the controller design stage. The TaskSensor supervision

sends the plant state over CAN every 10ms but with very low priority, that
will be used for monitoring purposes, and in particular, for being able to plot
the plant dynamics in the DCSMonitor. Similarly, the TaskSupervision

16



TASK(TaskControllerMonitor){

x0=*(p_x0);//Get state x[0] from CAN msg

//from rx_ecan1_message1[0]..[3] data field

x1=*(p_x1);//Get state x[1] from CAN msg, [4]..[7] data field

}

TASK(TaskSensor_supervision){

x0=*(p2_x0);//Get state x[0] from CAN msg

//from rx_ecan1_message1[0]..[3] data field

x1=*(p2_x1);//Get state x[1] from CAN msg, [4]..[7] data field

}

TASK(TaskActuatorMonitor){

u=(*p_u);

x0=*(p_x0);//Get state (control signal) x[0] from CAN msg

x1=*(p_x1);//Get state (control signal) x[1] from CAN msg

}

TASK(TaskSupervision){

/* It sends data via RS-232 to the PC

}

TASK(TaskToggleLed){

LATBbits.LATB14 ^= 1;//Toggle orange led

}

TASK(TaskCANUseless){

Send_CAN_useless();

}

int main(void){

Sys_init(); init_devices_list(); for (;;); return 0;

}

Figure 1.12: Main parts of the code.c for the monitor/supervisor node

sends a similar information through the RS232 port, also for monitoring
purposes (for the DCSMonitor when is used by the same student group, or
for using the old Matlab monitoring system). Finally, the TaskActuator,
upon reception of the control message, takes the control signal form the
message, and applies it to the plant using the PWM.

Monitor/supervision

This node is the special purpose node that gathers information from all the
control loops and network. It communicates with the DCSMonitor software
that runs in an external PC, that will be described in next section.

The conf.oil for this node defines the TaskSupervision, TaskActuatorMonitor,

17



Figure 1.13: DCSMonitor.

TaskControllerMonitor, TaskSensor supervision, TaskToggleLed and
the TaskCANUseless, which are coded in the code.c file.

The TaskSupervision sends data over the RS232 port with the same
purpose that had in the sensor/actuator node. The TaskActuatorMonitor

mainly obtains the control signal for a given control loop, while the tasks
TaskControllerMonitor, TaskSensor supervision obtain the state of a
given plant (one reading the state sent by the sensor for controlling pur-
poposes and the other reading teh state sent by the sensor for monitoring
purposes). The TaskToggleLed blinks a led, and the TaskCANUseless is
used to regulate the bandwidth of the network by sending dummy messages.

Although not detailed here, the full code.c also implements the code
that manages the interaction between the monitor/supervision node and
the DCSMontior software, which communicate over RS232.

Nodes tasks summary

Table 1.3 summarizes the main tasks coded in each node, indicating to which
node it belongs, how the task is activated, and its function.

18



Task Node Activation Description

TaskReferenceChange Contrl. Periodic generates the reference sig-
nal to be tracked by the
controller

TaskController Contrl. on msg rx computes the control signal
and sends u over CAN for
closing the loop

TaskSensor S/A Sampling period samples the plant and sends
x over CAN for closing the
loop

TaskSensor supervision S/A Monitoring period samples the plant and sends
x over CAN for DCSMoni-
tor monitoring

TaskActuator S/A on msg rx aplies the control signal u to
the plant

TaskSupervision S/A Monitoring period sends loop state in a 23-byte
frame via RS232 for “stu-
dent” DCSMonitor moni-
toring

TaskSupervision Monitor Monitoring period sends loop state in a 71-
byte frame via RS232 for
“teacher” DCSMonitor
monitoring

TaskActuatorMonitor Monitor on msg rx obtains the control signal
from the incomming CAN
msg sent by the controller

TaskControllerMonitor Monitor on msg rx obtains the state from in-
coming CAN msg sent by
the S/A

TaskSensor supervision Monitor on msg rx obtains the state from in-
coming monitoring CAN
msg sent by the S/A

TaskToggleLed Monitor nop not used

TaskCANUseless Monitor progressive sends dummy CAN mes-
sages to load CAN with a
progressive periodicity

Table 1.3: Tasks summary

19



Node Value Meaning

SIGNAL STOP 0x01 It cancels current actions

SIGNAL MONITOR 0x00 To monitor a particular control loop

SIGNAL PERCENT 0x02 To generate artificial load in the bus

SIGNAL DEVICES 0x04 To list all active control loops

Table 1.4: Commands from DCSMonitor to the monitor/supervisor node

Figure 1.14: RS232 communication frame for sendinig commands from the
DCSMonitor to the monitor/supervisor node.

Figure 1.15: RS232 communication frame for sending commands from the
monitor/supervisor node to the DCSMonitor.

1.4.2 DCSMonitor

The DCSMonitor is a monitoring program that can be used by each stu-
dent group to monitor its control loop dynamics, but it has been mainly
designed for the instructor/teacher to allow monitoring any of the group
control loops, as well as to regulate the network bandwidth. It has been
coded with Phyton.

Figure 1.13 provides a general view of the DCSMonitor. It can perform
three main activities. First, it permits to monitor the number of control
loops that are exchanging data over the network (Control links in the figure).
It also displays the dynamics (reference signal, control signal and states) of
a given control loop, either numerically or graphically. And finally, it has a
slider bar that permits to regulate the number of dummy messages that are

20



Figure 1.16: RS232 communication between the monitor/supervisor node
and the DCSMonitor. Top: teacher setup. Bottom: student group setup.

sent over the network to create different bandwidth loads.
To allow this functionality, the communication between the monitor/su-

pervisor node and the DCSMonitor software over RS232 was configured two
be bidirectional. On one hand, the DCSMonitor sends control commands to
the monitor/supervisor node using a simple 8-byte frame coded according
to an identifier (Figure 1.14), whose values and meaning are summarized in
table 1.4. For example, to monitor a particular loop, a frame with 0x00 in
the id field will be sent, where in the last byte the particular control loop
number will be identified. If later on a frame with 0x01 with empty data is
sent, the monitoring of that particular loop will terminate.

On the other hand, the monitor/supervisor node sends to the DCSMon-

21



Msg TX node RX node Description

Sensor-to-controller S/A Controller sends the state for control loop opera-
tion. Also received by the Monitor

Controller-to-sensor Controller S/A sends the control input for control loop
operation. Also received by the Monitor

Reference Controller S/A sends the reference signal for monitoring
to both the S/A and Monitor nodes

Sensor-to-monitor S/A Monitor sends the loop state for monitoring

Useless Monitor CAN dummy message to regulate the CAN
load

Table 1.5: CAN messages

itor a more complete 71-byte frame ((Figure 1.14)) in which the monitor/-
supervisor node communicates information (state of the plant and control
signals) about the control loop under supervision, as well as the list of ac-
tive control loops if required (up to 48). In the case that the DCSMonitor
is used for a student group to monitor its own control loop dynamics, the
information is sent by the sensor/actuator node of that particular control
loop using a medium 23-byte frame that correspond to the first 23 bytes of
the long frame. A scheme of this data exchange is shown in Figure 1.16,
where the top sub-figure shows the communication when the DCSMonitor is
used by the teacher while the bottom sub-figure shows the communication
when the DCSMonitor is used by a group of students.

In order to allow the monitor/supervisor node to send accurate moni-
toring information to the DCSMonitor software, the CAN messages used in
each control loop were coded following different guidelines. Table 1.5 sum-
marizes the set of CAN messages used for control and monitoring purposes.
Regarding the codification of the CAN messages, first, different levels of
priority were required. In addition, it was required to be able to identify
different control loops, and in each control loop, different message classes,
and even subclasses. This has been achieved by coding each message iden-
tifier as shown in Figure 1.17.

The message type field permits to distinguish a) control messages (000)
that are sent from any controller node to its sensor/actuator node and must
be of higher priority (they carry a 4-byte control signal value in the data
field), b) sensor messages (001) that are sent from any sensor/actuator node
to its controller node (they carry a 8-byte two states values in the data field),
and c) general purpose messages (010) that depending on the subclass spec-

22



3
bi
ts

16
bi
ts

8
bi
ts

2
bi
ts

0 2 3 18 19 26 27 28

Type Priority ID loop XY

Figure 1.17: CAN message codification.

ifies reference/change messages (00) that are sent by the controller (they
carry a 4-byte reference value in the data field), and supervisory messages
(01) that are sent by the sensor (they carry a 4-byte control signal value in
the data field). The latter class is non-critical communication, and therefore,
they have the lowest priority although their periodicity is high in order to
allow the DCSMonitor to plot an accurate graph of the systems dynamcis.
Using this coding, and filling up each data frame with the appropriate infor-
mation, the monitor/supervisor node can gather all the plants information
to be send to the DCSMonitor via RS232 whenever required.

1.4.3 Code availability

The code for the DCSMonitor as well as for all nodes is available at http:
//code.google.com/p/pfc-platform-test/source/browse/. The source
three looks like in Figure 1.18. The repository also contains diverse docu-
mentation (some in English but mainly in Catalan) related to the project.

1.5 Course activities

This section presents some of the activities to carry out in the hands on
course using the presented setup. To start with, basic control theory may
be needed to establish a common knowledge among all the students. It could
include

• State-space system representation, in the continuous-time but more
important in the discrete-time domain, and including delays

• Discrete-time systems analysis, including topics such as controllability
and observability, as well as sampling period selection

• Control design by state feedback, stating with pole placement tech-
niques and considering delays, together with observer and tracking
structures

23



Figure 1.18: Source code.

From this basic theory, simulation and implementation exercises including
not-NCS and NCS could be for example

1. Open loop analysis (not-NCS):Using for example Matlab/Simulink,
to obtain the open loop system response of the double integrator circuit
in front of a reference signal in the form of a square wave of amplitude
from 1.5V to 2V and frequency 1Hz. And to perform a simple stabil-
ity analysis by pole inspection. This can also be implemented in the
hardware set-up, using only the sensor/actuator node acting also as a
controller.

2. Closed-loop design in the continuous-time domain (not-NCS):
To perform state feedback controller design via pole location in the
continuous-time domain with tracking structure and assuming that
both states can be measured, such that a stable circuit response is
achieved and the control signal values range withing 3.38V and 0V.
The first constraint is a control specification while the second one is a

24



hardware limitation.

3. Closed-loop design in the discrete-time domain (not-NCS):
To carry out the state feedback controller design via pole location in
the discrete-time domain with tracking structure and assuming that
both states x1 and x2 are measured, such that the stable circuit re-
sponse is achieved while the previous hardware constraint is still met.
In this case, the sampling period and closed-loop pole locations for
controller are can be obtained by standard rules-of-thumb. Alterna-
tively, it can be specified a period of h = 0.05 s, and to design a
discrete state feedback controller placing the continuous closed loop
poles at p1,2 = −5 ± 20i, which meet the specifications. Again, this
can also be implemented in the hardware set-up, using only the sen-
sor/actuator node acting also as a controller. At this stage, different
type of observers can be also designed, simulated and implemented.

4. Delay effects in a single NCS (NCS): To simulate for example
with TrueTime (http://www3.control.lth.se/truetime/) the NCS
for the double integrator system using the settings for period and de-
sired poles as before, with sampling occurring in the sampler node,
control algorithm executing in a controller node, and actuation tak-
ing place in the actuator node. As a network, use for example CAN,
with different baud-rates and then to analyze, by observing different
responses, how the communication delay affects the performance con-
sidering that the controller that applies is the one obtained previously.
Note that in this case, the delay is constant. The simulation study
can also be implemented by each group, locally, using the NCS setup,
and monitoring the response in the DCSMonitor.

5. Delay effects in a single NCS with different traffic loads (NCS):
To extend the previous simulation, adding more nodes sending addi-
tional traffic to the network and observe the effect of this new traffic
on the performance of the double integrator control. Note that in this
case, the delay varies. This simulation can be also implemented by
each group, and in this case, the slider bar fixing the network load in
the DCSMonitor can be used to create different network conditions.

6. NCS simple controller design (NCS): The degrading effects of
delays can be treated using different approaches. A simple approach
is to design the controller assuming an input delay in the system, which
will result in extending the original state space system with a new state

25



variable that represents the previous control signal [19]. This imposes
to place a third discrete-time pole for obtaining the state-feedback
gain. It can be placed at 0. Then it can be noted that the application
of this new controller is effective for a constant delay but not for the
scenario of varying delay. The simulation can also be implemented
in the setup. In addition, all the loops from all the students can be
networked together, to see with a more realistic setting the effects of
different traffic on control performance. The CAN bus baud-rate can
also be used for experimental purposes.

7. NCS advanced controller design (NCS): In order to design a con-
troller capable of dealing with varying time delays, several strategies
are available, including control-centered approaches, see e.g. [1], or
implementation-based approaches, such as [20]. One or more of them
can be simulated and implemented.

8. Rate adaptation techniques and event-driven NCS (NCS):
using the latest results on these areas (see section 1.2), existing results
can also be simulated and implemented.

Note that the last exercises can have different levels of difficulty and may
require non-basic control and real-time systems theory for its correct simu-
lation and implementation.

Performing the previous activities students can implement a rich set of
exercises. They will observe several DI dynamics according to the activity.
Just for illustrative purposes, Figure 1.19 shows the DI response in the case
of having different loads in the CAN network.

1.6 Conclusions

This paper has presented a hands-on course to be integrated in the education
curriculum of embedded control systems engineers. The main focus of the
course is NCS. The selection of the plant and processing platform has been
discussed. Details of the code to be executed in each networked node have
been presented. And a new software to be executed in an external PC for
monitoring purposes has been explained. Finally, a set of course activities
have been listed.

In summary, the proposed course poses several real challenges to the
students that can be met by putting together interdisciplinary skills (elec-
tronics, real-time systems, control theory, programming) towards a single
goal: building a networked control system.

26



(a) when bandwidth utilization is low

(b) when bandwidth utilization is high

Figure 1.19: DI dynamics.

27



Bibliography

[1] J.P. Hespanha, P. Naghshtabrizi and Yonggang Xu, “A Survey of Re-
cent Results in Networked Control Systems,” Proceedings of the IEEE
, vol.95, no.1, pp.138-162, Jan. 2007

[2] R.A. Gupta and M.-Y. Chow , “Networked Control System: Overview
and Research Trends,” IEEE Transactions on Industrial Electronics ,
vol.57, no.7, pp.2527-2535, July 2010

[3] D. Nes̆ić and D. Liberzon, “A unified framework for design and analysis
of networked and quantized control systems,” IEEE Transactions on
Automatic Control, Vol. 54, No. 4, pp. 732–747, April 2009.

[4] W.P.M.H. Heemels, A.R. Teel, N. van de Wouw, D. Nes̆ić , “Networked
Control Systems With Communication Constraints: Tradeoffs Between
Transmission Intervals, Delays and Performance,” IEEE Transactions
on Automatic Control, vol.55, no.8, pp.1781-1796, Aug. 2010

[5] D. J. Jackson and P. Caspi, “Embedded systems education: future
directions, initiatives, and cooperation”, SIGBED Rev., vol. 2, no. 4,
pp. 1-4, Oct. 2005.

[6] K.-E. Årzén, A. Blomdell, and B. Wittenmark, “Laboratories and real-
time computing: integrating experiments into control courses,” IEEE
Control Systems Magazine, vol. 25, no. 1, pp. 30-34, Feb. 2005.

[7] P. Mart́ı, M. Velasco,J.M. Fuertes, A. Camacho, G. Buttazzo, “De-
sign of an Embedded Control System Laboratory Experiment,” IEEE
Transactions on Industrial Electronics, vol.57, no.10, pp.3297-3307,
Oct. 2010

[8] D. Hristu-Varsakelis and W. S. Levine, Handbook of Networked and
Embedded Control Systems, Birkhäuser Boston, June, 2008.

28



[9] Rehbinder, H. and Sanfridson, M., “Scheduling of a limited commu-
nication channel for optimal control,” Automatica, vol. 40, n. 3, pp.
491-500, March 2004.

[10] Ben Gaid, M.E.M.; Cela, A.; Hamam, Y., “Optimal integrated control
and scheduling of networked control systems with communication con-
straints: application to a car suspension system,” IEEE Transactions
on Control Systems Technology, vol.14, no.4, pp. 776-787, July 2006.

[11] P. Mart́ı, A. Camacho, M. Velasco, M. El Mongi Ben Gaid, “Runtime
Allocation of Optional Control Jobs to a Set of CAN-Based Networked
Control Systems,” IEEE Transactions on Industrial Informatics, vol.6,
no.4, pp.503-520, Nov. 2010

[12] Hristu-Varsakelis, D., and Kumar, P.R., “Interrupt-based feedback con-
trol over a shared communication medium,” 41st IEEE Conference on
Decision and Control, Dec. 2002.

[13] X. Wang and M. Lemmon, “Decentralized Event-triggering Broadcast
over Networked Systems,” Hybrid Systems: Computation and Control,
2008.

[14] A. Anta and P. Tabuada, “On the benefits of relaxing the periodic-
ity assumption for networked control systems over CAN,”, Real Time
Systems Symposium, December 2009.

[15] Wikipedia. Operational amplifier applications, 2012, http://en.

wikipedia.org/wiki/Operational_amplifier_applications, [On-
line; accessed 16-January-2012].

[16] Evidence srl., http://www.evidence.eu.com/

[17] G. Buttanzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications, Norwell, MA, USA: Kluwer Academic
Publishers, 1997.

[18] CAN Specification version 2.0. Robert Bosch GmbH, Postfach 30 02 40,
D-70442 Stuttgart, 1991.

[19] K.J. Åström and B. Wittenmark, Computer controlled systems, Pren-
tice Hall, 1997.

29



[20] C. Lozoya, P. Mart́ı, M. Velasco, J.M. Fuertes, “Analysis and design
of networked control loops with synchronization at the actuation in-
stants,” in 34th Annual Conference of IEEE Industrial Electronics,
pp.2899-2904, 10-13 Nov. 2008

30



Chapter 2

Course program

2.1 Introduction

The objective of these labs is the analysis, design and implementation of
networked and embedded control systems (NECS). Different steps must be
covered:

• Control design: analysis and design of feedback controllers, it the con-
tinuous and discrete time domains, which can be mainly performed
using a simulation tool such as Matlab/Simulink c©.

• Analysis of multitasking NECS (1): analysis of the interactions that
appear whenever several controllers have to be executed with limited
computing resources, which can be mainly performed using a simula-
tion tool such as TrueTime (http://www.control.lth.se/truetime/).

• Design of multitasking NECS (2): design of strategies that permit a
better operation for the set of controllers concurrently executed with
limited computing resources, which can be also be performed for ex-
ample with TrueTime

• Implementation of NECS: implementation of the strategies/designs
obtained before.

The implementation platform will permit to control an electronic Double
Integrator (DI) circuit from a micro-controller based architecture, as shown
in Figures 2.5 and 2.8

In the first set-up, illustrated in Figure 2.5, several tasks will execute
concurrently on top of the Erika real-time kernel. Therefore, the control

31



Figure 2.1: Microprocessor-based control.

Figure 2.2: Network-based control.

tasks in charge of the double integrator circuit will compete with the rest of
tasks for the CPU time.

The second set-up, illustrated in Figure 2.8, permits to close the loop
over a network, which in this case is CAN (Controller Area Network). In
this scenario, the limitation of resources is given by the communication
bandwidth. Networking several loops in a single CAN network will allow
the analysis of realistic networked control systems.

In both setups, the boards are equipped with a micro-controller dsPIC33FJ256MC710
(http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en024663)
from Microchip. The boards are the Full Flex training board (http://www.
evidence.eu.com) from Evidence. Three daughter boards with the DI cir-
cuit, CAN communications and a RS232 port has been plugged to the Flex
boards. The dsPICs run the Erika, a multitasking real time kernel also
from Evidence. The micro-controller and circuit interface is the sensor and
actuator. The sensor is the analog/digital converter (ADC) to read the cir-
cuit output voltage V1, and actuation is achieved through the pulse width
modulator (PWM) by applying different voltage levels to the circuit input,
u.

The control objective would be to have the circuit output voltage V1

(controlled variable) to track a reference signal while meeting for exam-
ple given transient response specifications, which mandates to use tracking
structures. The control will be achieved by sampling V1, executing the con-

32



trol algorithm and applying the calculated control signal to the circuit via
varying the circuit input voltage u (manipulated variable).

Once the platform is ready, the setup looks like as in Figure 2.3 (right).
The bottom board acts as a remote controller, and communicates via CAN
with the top board, that, in the networked scenario, acts as a sampler and
actuator. In the mono-processor scenario, the bottom board is not used,
and the top board performs all the activities: sampling, control algorithm
computation and actuation. The daughter boards plugged into the top and
bottom board, illustrated in Figure 2.3 (left), serve different objectives. The
daughter board in the bottom board is for CAN communication. In the
top board, one daughter board is the DI circuit and is enabled with CAN
communication, and the other one is the RS232 board used for debugging
purposes.

Figure 2.3: Full hardware scheme.

33



2.2 Simulation of NECS

2.2.1 Control design

Basics on control

Let
{

ẋ = Ax(t) +Bu(t)
y(t) = Cx(t)

be the continuous time state-space representation of a system. With period
h, the discrete-time state-space form is

{

xk+1 = Φ(h)xk + Γ(h)uk
yk = Cxk

where Φ(t) and Γ(t) can be obtained, with t = h, from

Φ(t) = eAt

Γ(t) =

∫ t

0

eAsBds

The sampling period determines the system dynamics. It should be
chosen according to the desired continuous-time poles locations.

• if the fast closed-loop poles have to be complex (oscillatory response),
the sampling period must be chosen such that between 10 and 20 sam-
ples (N) must be taken for oscillation period of the desired response,
that is

h =
2π

Nωn

√

1− ξ2

where ωn is the system natural frequency and ξ is the damping coef-
ficient of the poles, which are given by

s = −ωnξ ± jωn

√

1− ξ2 = −ωnξ ± ωn

√

ξ2 − 1

which are the roots of the denominator of

ω2
n

s2 + 2ξωns+ ω2
n

Recall that the oscillatory frequency is ωd = ωn

√

1− ξ2, the percent-

age overshoot is SP = 100e
−ξπ√
1−ξ2 , the exponential involvements are

1 ± e−ξωnt√
1−ξ2

and the settling time is ts = − 1

ξωn
ln(%

√

1− ξ2) where %

usually is 0.02 or 0.05

34



• if the fast poles are real, the sampling period must be chosen such that
the number of samples taken during the rising time of the fast pole

1

τs+ 1

should be between 4 and 10 (N), that is

h <
τ

N

Care must be taken with systems of order bigger than two: slow poles
determine the dynamics, but fast poles determine the selection of the
sampling period.

Recall that controllability must be ensured by checking if the controlla-
bility matrix

Wc =
(

Γ,ΦΓ,Φ2Γ, · · · ,Φn−1Γ
)

has rank n, and observability by checking if the observability matrix

Wo =















C
CΦ
CΦ2

...
CΦn−1















has also rank n.
Finally, for discrete-time controller design, the Ackerman formula is an

standard procedure. Given

{

xk+1 = Φxk+Γuk
yk = Cxk +Duk

and the desired poles λ1, λ2, . . . , λn,

pd(z) = (z − λ1)(z − λ2) · · · (z − λn) = zn + b1z
n−1 + · · ·+ bn−1z + bn

the controller gains K are given by the Ackerman formula

K =
(

0 0 0 · · · 1
) (

Γ ΦΓ Φ2Γ · · · Φn−1Γ
)−1

pd (Φ)

where
pd (Φ) = Φn + b1Φ

n−1 + · · ·+ bn−1Φ+ bn

35



producing a control input of the form

u = −Kx

Matlab hint:

• ackerman is applied as K=acker(Φ,Γ,dp), where dp is the list of de-
sired discrete-time closed loop poles λi, which usually are obtained
from the continuous ones through λi = es1h.

• For continuous-time design, Ackerman is applied as K=acker(A,B,cp),
where cp is the list of desired continuous-time closed-loop poles si.

Plant model

Before any controller design, the circuit model must be obtained. To do so,
the circuit can be analyzed by nodes, as shown in figure 2.4

Figure 2.4: Circuit analysis.

By knowing that the control input is u and the circuit output is y = V1,
the circuit dynamics is given by

u− V ′ = R2iR2 (2.1)

V2 − V ′ = R1iR1 (2.2)

iC2 = C2

d(V ′ − V2)

dt
(2.3)

iC1 = C1

d(V ′ − V1)

dt
(2.4)

iR2 = iC2 (2.5)

iR1 = iC1 (2.6)

36



From (2.1), (2.2), (2.3) and (2.4), and considering that without voltage
dividers V ′ = 0, equations (2.5) and (2.6) become

V̇2 = − u

R2C2

(2.7)

V̇1 = − V 2

R1C1
(2.8)

Taking as state variables x1 = V1 and x2 = V2, the model is state-space
form is

[

ẋ1
ẋ2

]

=

[

0 − 1

R1C1

0 0

] [

x1
x2

] [

0
− 1

R2C2

]

u (2.9)

y =
[

1 0
]

[

x1
x2

]

(2.10)

And considering the component values R1 = R2 = 100KΩ and C1 =
C2 = 420nF , the model is

[

ẋ1
ẋ2

]

=

[

0 −23.8095
0 0

] [

x1
x2

]

+

[

0
−23.8095

]

u (2.11)

y =
[

1 0
]

[

x1
x2

]

(2.12)

Considering the voltage divider, that is, a constant voltage of 1.65v in
the positive input of the operational amplifiers, the model remains the same
but the “zero” has changed to 1.65v. Then, with the same model, it must
be considered that V2 = x2 + 1.65v, and that the real control input at the
board is u+ 1.65v.

Work to be done

1. Open loop analysis: Using Matlab/Simulink, obtain the open loop
system response in front of a reference signal in the form of a square
wave of amplitude from 1.5V to 2V and frequency 1Hz. And perform
a simple stability analysis by pole inspection.

2. Closed-loop design (continuous-time domain): Perform state
feedback controller design via pole location in the continuous-time
domain with tracking structure and assuming that both states can be
measured, such that

• a stable circuit response is achieved

37



• the control signal values range withing 3.38V and 0V

The first constraint is a control specification while the second one is a
hardware limitation. Obtain also the closed-loop response. As a note,
the tracking structure is given by

K plantNx C
r xr u x yr

uss

+ − +

+

Nu

where Nu is the matrix for the feedforward signal to eliminate steady-
state errors, Nx is the matrix that transforms the reference r into a
reference state, K is the state feedback gain and C is the plant output
matrix. Recall that Nx and Nu can be computed in the continuous-
time domain as

(

Nx

Nu

)

=

(

A B
C 0

)−1(

0
1

)

while in the discrete-time domain are computed as

(

Nx

Nu

)

=

(

Φ− I Γ
C 0

)−1(

0
1

)

3. Closed-loop design (discrete-time domain): Carry out the state
feedback controller design via pole location in the discrete-time domain
with tracking structure and assuming that both states x1 and x2 are
measured, such that the stable circuit response is achieved while the
previous hardware constraint is still met.

In this case, the sampling period and closed-loop pole locations for
controller are: period of h = 0.05 s, and the discrete state feedback
controller is designed to place the continuous closed loop poles at p1,2 =
−5± 20i.

Observer: As a note, if only the first state is measured, an observer
must be designed. For example, a full predictor observer can be used,

38



whose equation is

x̄k+1 = Φx̄k + Γuk +Kp (yk −Cx̄k)

where x̄k is the predicted state, and Kp is the observer gain of the
form

Kp =











k1
k2
...
kn











which can be computed directly in Matlab by typing Kp=acker(Phi’,C’,p)’.
The observer block diagram is

Planta

Φ,Γ
C

uk xk yk

x0

Γ
+

+
+ z−1 C

Φ

x̄kx̄k+1 ȳk

x̄0
+

−

Kp

x̄k

39



2.2.2 Analysis of multitasking embedded control systems (ECS)

In many high-tech systems, the micro-controller and/or network is used not
only for the control computations, but also for interrupt handling, error man-
agement, monitoring, etc. And it is known that in a multitasking real-time
control systems, jitters, i.e. timing interferences on control tasks due to the
concurrent execution of other tasks, deteriorate control loops performance.
The objective of this stage is to observe these degrading effects.

Work to be done

Using Truetime, simulate the multitasking micro-processor based system.
In particular, simulate a two tasks systems. One task is controller with a
period (and relative deadline) of 0.05 s (as indicated in the previous section)
and execution time of 0.01 s, plus a dummy task with a period (and relative
deadline) and execution time whose function is to create jitters. Play with
different timing constraints for the dummy task in order to generate different
jitter pattern on the control task. Observe and discuss the DI closed-loop
responses for the different settings of the dummy task.

40



2.2.3 Design of multitasking embedded control systems (ECS)

The jitter problem can be treated using different approaches. One of them
is to adopt the one shot task model.

The basic idea is to synchronize the operations within each control loop
at the actuation instants. In this way, the time elapsed between consecutive
actuation instants, named tk−1 and tk, is exactly equal to the sampling
period, h. Within this time interval, the system state is sampled, named xs,k,
and the sampling time recorded, ts,k ∈ (tk−1, tk). The difference between
this time and the next actuation time

τk = tk − ts,k (2.13)

is used to estimate the state at the actuation instant as

x̂k = Φ(τk)xs,k + Γ(τk)uk−1 (2.14)

where Φ(t) = eAt and Γ(t) =
∫ t

0
eAsdsB, being A and B the system and

input matrices, and uk−1 the previous control signal. Then, making use of
x̂k, the control command is computed using the original control gain K as

uk = Kx̂k. (2.15)

The control command uk is held until the next actuation instant. A con-
trol strategy using (2.13)-(2.15) relies on the time reference given by the
actuation instants, if uk is applied to the plant by hardware interrupts, for
example. In addition, samples are not required to be periodic because τk
in (2.13) can vary at each closed-loop operation.

Work to be done

Using Truetime, simulate the multitasking real-time system developed in the
previous section with the controller implementing the one-shot task model.
Hence, the multitasking system will run the control task and the dummy
task. And it should be observed that when the control task implements the
one-shot task model, the degradation introduced by the jitters caused by
the dummy task disappear.

41



2.2.4 Analysis of networked control systems (NCS)

When control loops are closed over a communication network, time delays
appear within each loop operation.

Basics on control with time delays

Let
{

ẋ(t) = Ax(t) +Bu(t− τ)
y(t) = Cx(t)

be the continuous time state-space representation of a system with a time
delay τ . With period h, with τ ≤ h, the discrete-time state-space form is

{

xk+1 = Φ(h)xk +Φ(h− τ)Γ(τ)uk−1 + Γ(h− τ)uk
yk = Cxk

(2.16)

where Φ(t) and Γ(t) can be obtained, with t = h or t = h − τ or t = τ , as
before from

Φ(t) = eAt

Γ(t) =

∫ t

0

eAsBds

The state-space representation of (2.16) is

(

xk+1

zk+1

)

=

(

Φ(h) Φ(h− τ)Γ(τ)
0 0

)(

xk

zk

)

+

(

Γ(h− τ)
1

)

uk (2.17)

where zk = uk−1 represents the previous control signal.
From (2.17), controllability and observability can be analyzed as ex-

plained. And control design via pole location can also be done using the
ackermans formula, but taking into account that an extra desired discrete
time closed-loop pole has to be specified. Usually, this extra pole, in the
discrete time domain, is chosen to be 0.

Work to be done

Using Truetime, simulate several networked control systems. In particular,

• simulate the NCS for the double integrator system using the settings
for period and desired poles as before, with sampling occurring in the
sampler node, control algorithm executing in a controller node, and

42



actuation taking place in the actuator node. As a network, use for ex-
ample CAN, with different baudrates. Analyze, by observing different
responses, how the communication delay affects the performance con-
sidering that the controller that applies is the one obtained previously
in the multitasking system (dimension 2). Note that in this case, the
delay is constant.

• Extend the previous simulation, adding more nodes sending additional
traffic to the network and observe the effect of this new traffic on the
performance of the double integrator control. Note that in this case,
the delay varies.

43



2.2.5 Design of networked control systems (NCS)

The effect of delays can be treated using different approaches.

Work to be done

Do the same two simulated experiments performed in the previous section
but using a controller that accounts for delays, that is, with an extra gain
(dimension 3). Remember to place the third discrete-time pole at 0. The
application of this new controller is effective for both constant and varying
delay scenarios?

44



2.2.6 Analysis and design of event-driven control systems
(EDCS)

In networked and embedded control systems, the most classic method used
to read the input data of a controller is the periodic sampling. However
the enforcement of a fixed separation between two consecutive activations
can be inappropriate depending on the controller status. In some critical
condition the controller may wish to sample more frequently. On the other
hand, sometimes the samples could be less dense, allowing to save more
computational resources.

The utility in breaking the constraint of periodic sampling is more rele-
vant in severely limited computational resources such as in networked and
embedded control systems. In event-driven control, the controller is acti-
vated upon some condition on the system status and not periodically. The
condition, called event condition or execution rule, mandates to take a new
control action when the measurement signal has deviated sufficiently from
the desired set-point.

The plant to be controlled is modeled by the following continuous-time
linear control system

ẋ = Ax+B u

y = C x
(2.18)

where x ∈ R
n×1 represents the system state, u ∈ R

m×1 is the input, y ∈ R

denotes the system output, and A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
1×n

describe the evolution of the system. Given the feedback matrix K ∈ R
m×n,

let
ui = K x(ai) = K xi (2.19)

be the control updates computed from a sample at time ai by a linear feed-
back controller designed in the continuous-time domain. Notice that we set
xi = x(ai) to denote in short the system state at the sampling time ai.

In periodic sampling we have ai+1 = ai + h, where h is the period of the
controller. However in event-driven sampling the activations of the controller
occurs at a sequence

{ai}i∈N (2.20)

that is not necessarily periodic. Between two consecutive control updates,
the control signal is held constant, meaning that

∀i ∈ N ∀t ∈ [ai, ai+1[ u(t) = ui. (2.21)

The event conditions specify the rule that triggers the execution of con-
troller jobs. Generally speaking, the execution rule ensures that the system

45



state does not deviate significantly from the desired/expected value, i.e. a
given error is tolerated from the sampled state.

Let
ei(t) = x(t)− xi (2.22)

be the error evolution between consecutive samples with t ∈ [ai, ai+1[.
For several types of event-driven control approaches, event conditions

can be generalized by introducing a generic function f : Rn × R
n → R that

measures the magnitude of the error. Once such a function is provided, the
condition that must be ensured during the controller life time is

f(ei(t), xi) ≤ η (2.23)

where η ∈]0, 1] is the error tolerance.
Since we require that the condition of (2.23) holds during the complete

lifetime of the controller, it is quite natural to set the next sampling instant
ai+1 equal to the first instant when the state xi+1 = x(ai+1) reaches the
boundary of (2.23). Hence,

ai+1 = min{t ∈ R : t ≥ ai, f(x(t)− xi, xi) = η} (2.24)

The application of event-driven sampling requires dedicated hardware
logics to check the system trajectory, and check whether the control job
must be activated according to the specific event-condition. However, if
the next activation time can be computed at each job execution, the dedi-
cated hardware is no longer required. Jobs will follow a self-triggered model
because each job will determine the release of its next job.

Determining the next activation ai+1 from (2.24) requires to find the
zeros of a generic function f . That is, given the sampled state xi at the
instant ai, then ai+1 is given by the smallest value that solves

f(x(t)− xi, xi) = η (2.25)

Finding the minimum t that solves (2.25) is a challenging task because hav-
ing x(t) implies that matrix exponential will appear as input arguments of f ,
making the equation transcendent, and preventing so to have an analytical
solution.

Fortunately, finding a generic approximate solution is possible. For any
linear system (2.18)–(2.19) with execution rule given by (2.23), and for any
given state xi = x(ai), the next sampling instant ai+1 is the smallest positive
zero of the function on t

f(Ψ(t− ai)(A−BK)xi, xi)− η = 0, (2.26)

46



where Ψ : R → R
n×n is defined as

Ψ(t) =

∫ t

0

eAsds. (2.27)

Notice that finding the zeros of (2.26) is still challenging. However, since
Ψ(t) can be efficiently approximated by the following power series

Ψ(t) =
∞
∑

k=1

Ak−1tk

k!
(2.28)

then we can simplify the problem by finding the smallest zero t of (2.26),
replacing Ψ(t) by the nth order Taylor series approximation.

The previous result gives the first steps toward an explicit approximate
solution for finding the next activation time given a generic f . Now we
examine a special cases of f .

A typical choice for f is a quadratic function that is defined as follows

f(e, x) =
eTQ1e

xTQ2x
, (2.29)

where Q1, Q2 ∈ R
n×n are weighting matrices. In this case it is possible

to determine an explicit solution of the next sampling instant ai+1 that
solves (2.24).

Given the sampled state xi at the instant ai, when the error is quadratic
for the problem of (2.24), then ai+1 is given by the smallest value that solves
the following equation

(x(t)− xi)
TQ1(x(t)− xi)

xTi Q2xi
= η (2.30)

Fortunately the following results allows to find efficiently this value. For
any linear system (2.18)–(2.19) with execution rule of the form (2.29), and
for any given state xi, the next sampling instant is the smallest positive zero
of the function on t

[Ψ(t− ai)(A−BK)xi]
T Q1 [Ψ(t− ai)(A−BK)xi]− η(xTi Q2xi) = 0,

(2.31)
where Ψ : R → R

n×n is defined in (2.27).
Note that finding the zeros of (2.31) is still a challenging task. However,

by using an nth-order approximation of Ψ in (2.31), equation (2.31) becomes
a polynomial on t of degree 2n, and the ai+1 will be the smallest positive
root of the polynomial.

47



For example, using this procedure, and considering that the event con-
dition is given by

[xk+1 − xk]
TM1[xk+1 − xk] = ηxTkM2xk (2.32)

with user-defined matrices M1 and M2, the next activation time is the pos-
itive t of

t =

√

−4[(A−BK)xk]T [(A−BK)xk](−η)xTk xk

2[(A−BK)xk]T [(A−BK)xk]
. (2.33)

Work to be done

• Simulate in matlab the event-driven control of the double integrator
plant using the event-condition (2.32) with matrices M1 and M2 being
the identity, η = 0.1, and K = [0.5 −1.35]. Carry out the simulation
emulating dedicated hardware for detecting the event condition. Use
different values for the weighting matrices Mi, for η, and different
control gains K to observe the system response and the pattern of
activation times.

• Perform the same study as before but using the self-triggered approach,
that is, using (2.33).

48



2.3 Implementation of NECS

The implementation will cover several phases and will consist in implement-
ing the controller in different scenarios:

• single task system: only the standard controller, using the data ob-
tained in the discrete-time control design in stage 2.2.1.

• two tasks multitasking system: standard controller and dummy task,
as in stage 2.2.2.

• two tasks multitasking system: controller and dummy task, with the
one-shot task model implemented in the controller, as in stage 2.2.3.

• networked control system with the standard controller subject to de-
lays as in stage 2.2.4

• networked control system with the controller designed from the ex-
tended model, as in stage 2.2.5.

• event-driven control, as in stage 2.2.6.

2.3.1 Introduction to the development framework

The goal of this work is to know the development framework.

Work to be done

1. Execute the program that intermittently activates the orange led. To
do so, go through the following instructions

• Execute RT-Druid (Eclipse)

– in File − > New − > RT-Druid Oil and C/C++ Project,
enable “Create a Project” using on of these templates, and
open “pic30”, open “FLEX”, and select ”EDF: Periodic task
with period 0.5s”. In the first little window, click “Next”,
give it a name such as ”example”, click “Next” and finally
“Finish”.

– Then it appears in the ”project explorer” window the “ex-
ample” project with the .oil (kernel configuration file) and
the .c (code file, where we have the actual program code)

49



– To compile, it must be remembered that it is always required
to modify and save either the .oil or the .c. Then, to compile,
go to Project − > Build Project. If everything is correct, it
will appear in the terminal “Compilation terminated success-
fully!”. And in the ”project explorer” a new ”Debug” folder
must appear, where the pic30.cof file is located, which is the
binary file to be downloaded to the board using MPLAB.

• Execute MPLAB

– in File − > Import: go to the workspace, and inside of
the RT-Druid project just created, and inside of the Debug
folder, select the .cof.

– To download the file to the dsPIC, click on the second yellow
icon with a down arrow.

– To execute the file, click on the icon with an ascending step.

– To stop it, click on the icon with a descending step.

The led should start blinking.

2. To start working with the DI circuit, the first thing to do is the open
loop control. This means that it will be necessary to apply a reference
signal in the form of a square wave of amplitude from 1V to 2.5V and
frequency 1Hz to the plant input. This will be done using the PWM.
The plant output can be read using the ADC, and the data is sent to
Matlab using RS232 for better displaying the response. To do so, the
following steps must be performed:

• 11sdcDI.zip: this file must be unzipped in ”...\Evidence\examples\pic30”.
In the new created folder, ”...\examples\pic30\11sdcDI”, 5 files
can be found:

– template.xml: it’s a meta-data file, that is not really used.

– RS232 mfile.m: it’s the Matlab file that will get the data
sent from the board through the RS232 port. It works as an
”oscilloscope”.

– conf.oil: kernel configuration file. It includes details of the
kernel configuration as well as the definition of the tasks that
the kernel will execute. In particular it defines:

∗ TASK TaskReferenceChange: it generates the reference
signal previously described

∗ TASK TaskController: it will code the control algorithm

50



∗ TASK Send: it sends data through RS232.

In addition, it defines which alarms are associated to each
task. Alarms will then be used in the code.c to activate the
associated tasks (in the main). Their definition is as follows:

...

ALARM AlarmReferenceChange {

COUNTER = "myCounter";

ACTION = ACTIVATETASK { TASK = "TaskReferenceChange"; };

};

ALARM AlarmController {

COUNTER = "myCounter";

ACTION = ACTIVATETASK { TASK = "TaskController"; };

};

ALARM AlarmSupervision {

COUNTER = "myCounter";

ACTION = ACTIVATETASK { TASK = "TaskSupervision"; };

};

If more tasks were to be defined, they should be specified in
this configuration file using the same structure.

– setup.h: it includes those libraries required for the circuit
control, as well as other definitions.

– code.c: actual program code that includes:

∗ int main(void): main program where tasks periodicity
is configured in milliseconds (with the last parameter of
function SetRelAlarm) as follows

SetRelAlarm(AlarmReferenceChange, 1000, 1000);

// reference changes every 1000ms=1s

SetRelAlarm(AlarmController, 1000, 1000);

//Controller activates every 1000ms

SetRelAlarm(AlarmSupervision, 1000, 10);

//Data is sent to the PC every 10ms

Note that the two timing constraints refer to the ini-
tial offset and the period. For example, for the SetRe-
lAlarm(AlarmSupervision, 1000, 10), the TaskSupervi-
sion will start executing after 1s (first parameter, 1000),
with a periodicity of 10ms (second parameter, 10).

51



∗ TASK(TaskReferenceChange): it generates the reference
signal as follows

TASK(TaskReferenceChange)

{

if (r == -0.5)

{

r=0.5;

LATBbits.LATB14 = 1;//Orange led switch off

}else{

r=-0.5;

LATBbits.LATB14 = 0;//Orange led switch on

}

}

∗ void Read State(void): function that is used every time
the plant output/s must be read (it reads the ADCs).

∗ TASK(TaskController): tasks that codes the control al-
gorithm. In open loop, it has the following code

TASK(TaskController)

{

/* sampling */

Read_State(); // returns x[0] and x[1]

/* control law */

u=r;

/* Check for saturation */

if (u>v_max/2) u=v_max/2;

if (u<-v_max/2) u=-v_max/2;

/* PDC1 sets the PWM duty cycle */

PDC1=(u/v_max)*0x7fff+0x3FFF;

}

These main and the task controller will be the parts requiring
more work in future sections, as well as coding new tasks such
as a TaskDummy to create jitter or thinking on a possible
new task, TaskApplyControl, to implement the one-shot task
model.

To open this project, in RT-Druid, go to File→New→RT-Druid
.., and enabling “Create a project...”, inside of “pic30”, a new
folder named “11sdcDI” can be found. Inside of this folder the
project named Standard Control is found. It performs the open
loop control.

52



• Meanwhile, open Matlab (7), and specify ”...\Evidence\examples\pic30\11sdcDI”
as a working directory. Open the RS232 mfile.m file, which will
be use to acquire the data from the board. In this file care must
be taken with the serial port “s=serial(’COM1’);”. It has to be
specified correctly.

To execute the open loop controller found in “code.c” together with the
Matlab file, the following must be done. In RT-Druid, the project must
be compiled, the binary transferred to MPLAB, in order to download
it to the dsPIC.

After executing both the binary file in the Flex and the matlab file,
the following response should be obtained

45.5 46 46.5 47 47.5 48

−1.5

−1

−0.5

0

0.5

1

1.5

t(s)

vo
lta

ge
 (

V
)

Adquisition

 

 
r
x

1

u

Figure 2.5: Open-loop response.

In this figure, the reference signal (r, green) and the control signal (u,
red) are the same because of the TaskController code that specifies
u = r. The DI response, in blue, is unstable as expected. Note that it
saturates.

53



2.3.2 Single control task system

The work to be done is to implement the closed-loop control as designed
in in stage 2.2.1. It can be done using the two circuit output variables, or
the observer. Recall using the tracking structure. Both the fast and slow
controller can be implemented (one after the other, starting with the slow
one).

Work to be done

To implement the closed-loop control, the following items must be consid-
ered:

• The starting code is the “code.c” used in the previous section, to be
used also with the previous m-file.

• For implementing the close-loop control, the “code.c” must be mod-
ified. Depending on whether the control is performed using the two
measured state variables or an observer, the work to be carried out
will slightly vary. In any case, it will be necessary

– To define matrices Nx, Nu and the controller gain K at the be-
ginning of the program, near the other variables. If observer is
used, its gain must be also defined.

– In the “Read State” function, only the required variables must be
read. If the control is performed using the two state variables, x[0]
and x[1] must be read. If observer is used, x[1] can be ignored.

– In the “TaskController” task, after reading the reference, the con-
trol signal u must be properly calculated. In particular, in the
task code shown next, the question marks mark the place where
the control algorithm must be coded.

* Controller Task */

TASK(TaskController)

{

/* sampling */

Read_State(); // returns x[0] and x[1]

/* Implemetation of the contoller */

????????????? // Observer design

54



u=????; //Control law including state feedback and tracking

/* Check for saturation */

if (u>v_max/2) u=v_max/2;

if (u<-v_max/2) u=-v_max/2;

/* PDC1 sets the PWM duty cycle */

PDC1=(u/v_max)*0x7fff+0x3FFF; //PDC1 is the register witch sets

//the PWM duty cycle

}

– In the “main”, note that the controller period is specified in “Se-
tRelAlarm(AlarmController, 1000, 1000)” (which in the actual
code 1000 stands for 1000ms). The first 1000 stands for 1000 ms,
and it specifies the time when the first execution of the controller
will take place. From there, every 1000 ms will execute (second
parameter).

After the code is compiled, the m-file in Matlab must be executed to-
gether with the binary file in the board. The execution should produce
something like

7 7.5 8 8.5 9 9.5

−1.5

−1

−0.5

0

0.5

1

1.5

t(s)

vo
lta

ge
 (

V
)

Adquisition

 

 
r
x

1

u

Figure 2.6: Closed-loop response.

55



2.3.3 Two tasks system: standard controller and dummy
task

The objective of this stage is to implement a multitasking system (as in
stage 2.2.2) consisting of the standard controller (with a period and relative
deadline as specified earlier) and the dummy task (with period and relative
deadline as obtained in stage 2.2.2). The goal is to observe the degrading
effects of jitters in control performance

Work to be done

The new implementation requires specifying a dummy task by modifying the
kernel oil file in terms of defining the new task and the associated alarm.
Also, the new task has to be coded. Forcing an artificial execution time
can be achieved by a “silly” for. The main code has to be also modified to
configure the new alarm associated to the new task.

56



2.3.4 Two tasks system: one-shot controller and dummy
task

The objective of this stage is apply the one-shot task technique for removing
the degrading effects of jitters, as in stage 2.2.3.

Work to be done

Implementation of the one-shot task model in the controller controller.
There are several strategies for implementing this technique. A suggested
strategy is to perform the actuation (application of the control signal to the
plant) using a task, namely TaskApplyControl, different than the controller
task (TaskController) that computes the actual value for the control signal.

The TaskApplyControl can have the same period as the control tasks,
for example, 50ms, but an offset of say 45 ms and a deadline of 1ms. The
TaskApplyControl deadline must be set in the definition of the task in the
conf.oil while the offset and period are defined in the main of code.c, when
activating the task. For example, if the TaskController starts its first exe-
cution at 500 ms with a period of 50 ms (see SetRelAlarm(AlarmController,
500, 50);), then, the new task should start its first execution at 545 ms, with
also a period of 50 ms. This can be done by specifying

SetRelAlarm(AlarmApplyControl, 545, 50);

if AlarmApplyControl is the alarm associated to the task TaskApplyControl.
Note that in the TaskController, the instruction

PDC1=(u/v_max)*0x7fff+0x3FFF; //PDC1 is the register witch sets

//the PWM duty cycle

applies the computed control signal u to the plant. Hence, this instruction
would be the one that should be placed in the new TaskApplyControl.

The implementation of the one-shot model requires in the TaskController
obtaining the sampling time (ts,k) and the time when the actuation should be
applied (tk) in order to compute (2.13). The sampling time can be recorded
by checking, each time ReadState() is activated, the value of the variable
mytime (defined as static unsigned int), i.e.

t_ks=mytime;

that is defined and updated every millisecond in the setup.h and that keeps
the system time in milliseconds. The time of the actuation, if using the
TaskApplyControl, can be obtained by the following instruction

57



GetAlarm(AlarmApplyControl,&next_act);

t_k=(int)next_act;

where next act should be defined as static TickType next act=0, and t k
should be defined as static unsigned int t k=0. The instruction GetAlarm
returns in milliseconds the absolute time at which the next job of the task
associated to the alarm will be released (and in our case executed).

Finally, the one-shot implementation in the TaskController, knowing the
time interval from sampling to actuation (2.13), must predict the state at
the actuation time (2.14), and compute the control signal with the predicted
state (2.15). The latter can be easily done, however, predicting the state at
the actuation time requires some thinking.

58



2.3.5 Networked control system

Similar to the work done in in stages 2.2.4 and 2.2.5, the goal of this stage
is to successfully implement the networked control of the double integrator
system over the CAN network. To start the networked control, the full tower
as illustrated in figure 2.7 must be ready.

Figure 2.7: Hardware for networked control.

Work to be done

1. For the networked control, two projects must be created in RT-Druid.
One project will produce the binary file to be downloaded to the bot-
tom board acting as a controller node while the other project will
produce the binary file for the top board acting as a sensor/actuator
node.

• 11sdcNDIc.zip and 11sdcNDIsa.zip: these files must be unzipped
in ”...\Evidence\examples\pic30”. Each file creates a new folder,
named 11sdcNDIc and 11sdcNDIsa. The first one contains the
software for the controller node and the second one for the sen-
sor/actuator node. In the sensor/actuator folder ”...\examples\pic30\11sdcNDIsa”,
10 files can be found:

– template.xml: it’s a meta-data file, that is not really used.

– uart dma.c and uart dma.h: code and definition files for dma
operation. These file have to be kept as they are without
modifications.

– e can1.c and e can1.h: code and definition files for CAN op-
eration. These files must be kept as they are without modi-
fications.

59



– RS232 mfile.m: it’s the Matlab file that will get the data
sent from the board through the RS232 port. It works as an
”oscilloscope”.

– conf.oil: kernel configuration file. It includes details of the
kernel configuration as well as the definition of the tasks that
the kernel will execute. In particular it defines:

∗ TASK TaskSensor: it samples the plant and sends this
value via CAN

∗ TASK TaskActuator: it applies the control signal re-
ceived through CAN

∗ TASK Send: it sends data through RS232.

In addition, it defines which alarms are associated to each
task. Alarms will then be used in the code.c to activate the
associated tasks (in the main). Their definition is as follows:

...

ALARM AlarmSensor {

COUNTER = "myCounter";

ACTION = ACTIVATETASK { TASK = "TaskSensor"; };

};

ALARM AlarmActuator {

COUNTER = "myCounter";

ACTION = ACTIVATETASK { TASK = "TaskActuator"; };

};

ALARM AlarmSupervision {

COUNTER = "myCounter";

ACTION = ACTIVATETASK { TASK = "TaskSupervision"; };

};

If more tasks were to be defined, they should be specified in
this configuration file using the same structure.

– setup.h and setup.c: they include code and definitions of
those libraries required for the circuit control, as well as other
definitions.

– code.c: actual program code that includes:

∗ int main(void): main program where tasks periodicity
is configured in milliseconds (with the last parameter of
function SetRelAlarm) as follows

SetRelAlarm(AlarmSensor,1000,50);

//Sensor activates every 50ms

60



SetRelAlarm(AlarmSupervision, 1000, 10);

//Data is sent to the PC every 10ms

Note that the TaskActuator is activated upon reception
of a CAN incoming message.

∗ void Read State(void): function that is used every time
the plant output/s must be read (it reads the ADCs).

∗ TASK(TaskSensor): it samples the state and sends this
message (see void Send Sensor2Controller message(float
*data) over CAN within a message with identifier PLANT
(plus the two states in the data field), where PLANT=1.

TASK(TaskSensor)

{

LATBbits.LATB14 ^= 1;//Toggle orange led

Read_State();

Send_Sensor2Controller_message(&x[0]);//identifier=ID_PLANT

}

∗ TASK(TaskActuator): it is executed upon interruption
of a CAN incoming message (see ISR2( C1Interrupt))
and it applies the control signal to the plant

TASK(TaskActuator)

{

u=(*p_u);

PDC1=((*(p_u))/v_max)*0x7fff+0x3FFF;

}

In the sensor/actuator folder ”...\examples\pic30\11sdcNDIc”, 7
files can be found:

– template.xml: it’s a meta-data file, that is not really used.

– e can1.c and e can1.h: code and definition files for CAN op-
eration. These files must be kept as they are without modi-
fications.

– conf.oil: kernel configuration file. It includes details of the
kernel configuration as well as the definition of the tasks that
the kernel will execute. In particular it defines:

∗ TASK TaskReferenceChange: it provides the reference
signal to be tracked

∗ TASK TaskController: it applies the control signal re-
ceived through CAN

61



In addition, it defines which alarms are associated to each
task. Alarms will then be used in the code.c to activate the
associated tasks (in the main). Their definition is as follows:

...

ALARM AlarmReferenceChange {

COUNTER = "myCounter";

ACTION = ACTIVATETASK { TASK = "TaskReferenceChange"; };

};

ALARM AlarmController {

COUNTER = "myCounter";

ACTION = ACTIVATETASK { TASK = "TaskController"; };

};

– setup.h and setup.c: they include code and definitions of
those libraries required for the circuit control, as well as other
definitions.

– code.c: actual program code that includes:

∗ int main(void): main program where tasks periodicity
is configured in milliseconds (with the last parameter of
function SetRelAlarm) as follows

SetRelAlarm(AlarmReferenceChange,1000,1000);

Note that the TaskController is activated upon reception
of a CAN incoming message.

∗ TASK(TaskReferenceChange): it acts as before, but then,
the reference is sent over CAN with a message with iden-
tifier PLANT+2 and data field containing the reference.

TASK(TaskReferenceChange)

{

if (r == -0.5)

{

r=0.5;

LATBbits.LATB14 = 1;//Orange led switch on

}else{

r=-0.5;

LATBbits.LATB14 = 0;//Orange led switch off

}

Send_Controller_ref_message(&r);//identifier=ID_PLANT+2

}

This information is only sent for debugging purposes,
and it is used in the sensor/actuator node by the TASK

62



(TaskSupervision) to output at the right time the refer-
ence change over RS232.

∗ TASK(TaskController): it is executed upon interruption
of a CAN incoming message (see ISR2( C1Interrupt))
and it computes the control signal to be sent again over
CAN to the S/A node (see void Send Controller2Actuator message(float
*data))

TASK(TaskController)

{

x0=*(p_x0);//Get state x[0] from rx_ecan1_message1[0]..[3] data field

x1=*(p_x1);//Get state x[1] from rx_ecan1_message1[4]..[7] data field

u=r;

/* Check for saturation */

if (u>v_max/2) u=v_max/2;

if (u<-v_max/2) u=-v_max/2;

Send_Controller2Actuator_message(&u);//identifier=ID_PLANT+1

}

The outgoing message as as identifier PLANT+1 and the
data field contains the control signal.

To open these projects, in RT-Druid, go to File→New→RT-Druid
.., and enabling “Create a project...”, inside of “pic30”, a new
folder named “11sdcNDIsa” or “11sdcNDIc” can be found. Inside
of these folders the projects named Networked Control (S/A) or
Networked Control (A) are found.

• Meanwhile, open Matlab (7), and specify ”...\Evidence\examples\pic30\11sdcNDIsa”
as a working directory. Open the RS232 mfile.m file, which will
be use to acquire the data from the board. In this file care must
be taken with the serial port “s=serial(’COM1’);”. It has to be
specified correctly.

Compiling both projects, downloading them to each board, and exe-
cuting them, in the matlab oscilloscope it should appear the open-loop
response, as in Figure 2.5. Recall that all the control data sent over
the network is coded as follows, knowing that PLANT=1:

• sensor-to-controller: id PLANT (two states)

• controller-to-actuator: id PLANT+1 (control signal)

• reference update: id PLANT+2 (reference)

63



2. Implementation of the closed loop control. Choose an strategy to im-
plement the networked control. It can be done using the “standard”
controller (as in 2.2.4) or using the “extended” controller (as in 2.2.5).
In both cases, the closed loop response should be similar to the re-
sponse shown in Figure 2.6, but probably with more oscillations, like
in Figure 2.8. These oscillation are due to the transmission delays of
the control data over the CAN network. One way to reduce them is
to change the CAN baudrate. This can be done by changing in both
files e can1.h the baudrate:

#define BAUDRATE_eCAN1 50000UL

//#define BAUDRATE_eCAN1 100000UL

//#define BAUDRATE_eCAN1 250000UL

//#define BAUDRATE_eCAN1 500000UL

//#define BAUDRATE_eCAN1 1000000UL

In both it is set to 50Kbps. If the baudrate increases, the transmission
delay will decrease, and less oscillation will appear in the networked
closed-loop response.

8.5 9 9.5 10 10.5 11

−1.5

−1

−0.5

0

0.5

1

1.5

t(s)

vo
lta

ge
 (

V
)

Adquisition

 

 
r
x

1

u

Figure 2.8: Networked closed-loop response.

3. In order to study the effect of longer delays introduced by the net-
work traffic, all closed loop systems can be networked in a single CAN
network. To do so,

• change plant identifier (PLANT),

64



• plug terminator,

and observe that the more loops in the network, the worse are the
plant responses of those loops using higher identifiers. Recall that in
CAN, the lower the identifier, the higher is the priority that applies in
the bit-wise arbitration when collisions occur.

65



2.3.6 Event-driven control

In this stage, an event-driven control strategy is to be implemented in the
microprocessor or network based control, as already proposed in 2.2.6.

Work to be done

The implementation of an event-driven controller requires re-setting tasks
timing constraints at run-time. For example, in the microprocessor based
control, this can be done in the TaskController as follows:

TASK(TaskController)

{

CancelAlarm(AlarmController);

// it cancels the current period

r=reference;

....

// computation of the control signal and application

// via PDC1 as usual

....

Event_time=Calculate_Next_Activation_Time();

//This function should estimate when the current state will

//impact on the boundary

SetRelAlarm(AlarmController, Event_time, 0);

// it sets as a new release time the Event_time

}

where EE UINT16 Event time is in milliseconds. Note that computing the
function Calculate Next Activation Time() is not straightforward.

1. Implement the event-driven control.

2. Play with different boundaries, etc, to see the impact on the closed
loop response.

3. Modify the TASK (TaskSupervision) to be able to plot in matlab the
sequence of sampling intervals generated by the event-driven strategy.
This may require modifying the RS232 mfile.m as well as other parts
of the Erika code.

66



Chapter 3

User manual: live CD

The Live CD for this course is designed to be executed without needing to
prepare a compilation and assembly environment.

The environment is ready so you can start the Live CD from the boot
of the computer and you can work on it.

It is true that the speed of the environment executing into CD may be
slower than installed system, but this gives us a portability and speed in
preparing the environment.

However the same Live CD has the option to install in the computer,
sharing it with another operating system if necessary and selecting which
one want to start.

Also there is some guides of using the Live CD and the program DC-
SMonitor in video format in the website of the project ”Design of a plat-
form to test distributed control systems” (http://code.google.com/p/
pfc-platform-test/http://code.google.com/p/pfc-platform-test/) in the video
section (http://code.google.com/p/pfc-platform-test/wiki/VideoExampleshttp://code.google.com/p/pfc-
platform-test/wiki/VideoExamples).

3.1 Minimum requirements

There are the minimum requirements to start our laboratory Live CD.

• Processor: Intel x86 or compatible, with ≥ 200MHz

• RAM memory: ≥ 256 MB.

• DVD reader unit.

• BIOS: it needs to have the option of start in the DVD unit.

67



• Graphical card: standard, compatible with SVGA.

3.2 Booting the live CD

First of all we need to configure the BIOS to boot into the CD. In most
cases it is possible to modify pressing the key F2 or Sup several times when
the system is starting (in some computers can be other keys). Once we are
in the BIOS we need to search the section Boot and then select in the first
place the CD reader unit, and let the hard disc to second position.

Once we have configured this option, we only have to introduce the live
CD to the reader, save the changes and reboot the computer.

When the LiveCD starts it prompts the next text (figure 3.1), we need
to wait a little since the next menu appear.

Figure 3.1: Live CD booting.

In this menu we can start directly the live CD (first option) or install it
into the hard disk (third option)

Figure 3.2: Live CD menu.

If you want to boot from the hard to follow step by step guide section
3.3.

68



User student

Password student

Table 3.1: Live CD user and password

h
MPLAB X IDE beta7.12 link to MplabX program, we will use this to

program FLEX board

Eclipse link to Eclipse program, we will use this to
compile the RTOS Erika codes for the FLEX
board

Programs a folder with all source code of the programs
used in this laboratory.

Guides a series of guides in how to use this laboratory.

Table 3.2: Desktop files

If you want to install the system on your computer select the third option
and follow the steps in the Installing section.

3.3 Step by step Live CD guide

When we choose the boot option we will see the Ubuntu loading logo:

Figure 3.3: Ubuntu loading logo.

At last we will see a user and password login.

3.3.1 Live CD structure

Once we are logged in the system, we will see an Ubuntu desktop (figure
3.5), with the next files:

69



Figure 3.4: Live CD login.

Now we can enter to the directory /home/student/workspace/Programs/
and we will see all necessary codes compressed in zip format (figure ??).

We must decompress the sources that we will need to be compiled and
programmed.

3.3.2 Compiling DSPIC SENSOR with Eclipse

Once we know the structure of all important folders, we may open the Eclipse
program. The first time we open this program, it will ask us which folder
we want to be the working directory. In our case we will let this by default
(check the square if you don’t want to do this every time you open Eclipse)
(figure 3.7).

In the main of Eclipse program we can create a new RTDruid project,
to do that go to File− > New− > NewProject, and select Evidence− >
RT −DruidOilandC/C ++Project (figure 3.8).

Next uncheck the square Use default location, and we must go to search
the Sensor code in this folder : /home/student/workspace/Programs/DSPICSENSOR/trunk
An then lets put a name to the project (figure 3.9).

Once we have the new project we can compile it clicking in Project− >
Clean, with this action we will clean the foulder firstly, and check the option
Start build immediately to compile the code before we clean the folder (figure
3.10).

70



Figure 3.5: Live CD desktop.

Figure 3.6: Laboratory programs compressed code.

Figure 3.7: Eclipse working directory.

71



DCSMonitor This is the program that runs on your com-
puter to see the control. You need to com-
municate via RS232 with a FLEX board with
program dsPIC SENSOR installed.

DSPIC SENSOR This program is for one FLEX board and it
will modify the values of the double integrator
and read his output value. The device pro-
grammed with this code is named Sensor/Ac-
tuator. Because it reads the output value of
the integrator (this is the task of a Sensor)
and writes the input value to the DI (this is a
task of a Actuator).

DSPIC CONTROLLER This program is for one FLEX board and cal-
culates the control value for the DI and send
it to the actuator using the CAN bus.

DSPIC MONITOR This program is for another FLEX board, and
it can monitory all the CAN bus.

Table 3.3: Files in ∼ /workspace/Programs/

Figure 3.8: Creating a new RT-Druid project in Eclipse.

It will starts to compile and before this in the text box at bottom of the

72



Figure 3.9: Selecting project folder in Eclipse.

program we will see the message:
Compilation terminated successfully!

3.3.3 Programming DSPIC SENSOR with MplabX

Once we compiled the program, let’s open MplabX program (figure 3.11)
We will create a new project importing an .elf file generated by Eclipse:
File− > ImportHex(Prebuilt)Project
Then we must search the file generated with Eclipse (figure 3.12):
/home/student/workspace/Programs/DSPIC SENSOR/trunk/Debug/pic30.elf
Next step is to select the device to be programmed (figure 3.13), in our

case is :

• Family: DSPIC33

• Device: dsPIC33FJ256MC710

Now is time to select which programmer we want to use, in our case
we use the mplab ICD3 programmer to program the FLEX boards (figure

73



Figure 3.10: Cleaning and compiling in Eclipse.

Figure 3.11: MplabX loading logo.

3.15). In this moment we must connect the programmer mplab ICD3 to the
FLEX board to be programmed (figure 3.14):

In case of select another programmer we need to know what the colour
means, look into the next table 4.1.

At last we only have to select a name for this project (figure 3.16), and
it is very important to change the directory out of Debug (figure 3.17). If

74



Figure 3.12: Selecting pre-compiled file in MplabX.

Figure 3.13: Selecting device in MplabX.

Figure 3.14: Mplab ICD3 and FLEX board connected.

we leave this by default when we modify the source code with Eclipse and
make a Clean we would have problems with this project in MplabX.

Finally MplabX will show up all details of this new project, so we accept
and would have all the environment prepared to program the microcon-
troller. To program the FLEX board, we must click at button Make and
Program Device up to the right , once MplabX programmed the device will
show this message (figure 3.18).

75



Figure 3.15: Choosing programmer in MplabX.

Green This colour means that the programmer is fully functional in
this version. .

Yellow This colour means that the programmer is partially functional
in this version. In this case it is possible to select, but it may
not work.

Red This colour means that the programmer is not functional in this
version. In this case is not possible to select it.

Table 3.4: Programmers compatibility in MplabX

Figure 3.16: Selecting the name of the project in MplabX.

Figure 3.17: Location of the project in MplabX.

3.3.4 Summary to program the other devices

The steps to compile and program the other devices (whith DSPIC CONTROLLER
and/or DSPIC MONITOR) are the same that we did to program the DSPIC SENSOR.

76



Figure 3.18: Microcontroller programmed correctly in MplabX.

This section is a summary of all steps to program any device:

1. Decompress codes needed from /home/student/workspace/Programs/

2. Open the Eclipse program

(a) Create a new RT-Druid project

(b) Select the folder where the project is, and we must put a name
to the project.

(c) We must to create the project

(d) Clean and compile

3. Open MplabX program

(a) Create a new project with the pre-compiled code generated by
Eclipse

(b) Search the file .elf (in the project folder into Debug)

(c) We must select the microcontroller DSPIC33 and dsPIC33FJ256MC710

(d) Connect the ICD3 to the computer and the FLEX board

(e) Select the ICD3 programmer serial number

(f) Put a name to the project and delete the
Debug part of the location

(g) Accept and program

77



3.3.5 DCSMonitor

DCSMonitor is a program used to see the control being executed in one plant.
To execute this program you must go to desktop and click in DCSMonitor
(figure 3.19).

Figure 3.19: Directory with DCSMonitor code.

Once we opened the program we will see this window 3.20. In this
program we can view our control in a graph at middle left of the window.
To the right there is a button to connect to serial port. Just below if we
are connected to a Monitor device we will see all plants in the CAN bus.
And below of this you can select which plots you want to see. Then there
is a button to start receiving data of a plant, and another to clean the text.
Finally we can see statistical values.

Firstly we need to specify in preferences which device we want to connect,
and we can choose the language (figure 3.21).

Once we have selected the language and which device we want to connect
we would push connect button, if it is fine we would see connected in green
color 3.22.

Then if we are connected to a Monitor device go to section 3.3.5.
Otherwise if you are connected to a Sensor/Actuator device go to section

3.3.5.

Connected to Sensor/Actuador device

In this execution mode is only enabled monitoring option, clean text and
graphic export, so you may start clicking monitor button, and if you have
the Sensor/Actuator connected to serial port we would see the real time
graph. And in the text box we would see all received data. Like the figure
3.23.

If we want to export the graph firstly we need to stop the monitoring
(see the section 3.3.5).

78



Figure 3.20: DCSMonitor main window.

Figure 3.21: Preferences.

Connected to Monitor device

In this execution mode we have all the options enabled. Firstly we must
click the buttonbList devices and then we would see a list with all id plants
connected to CAN bus (there is an example 3.24).

Once we had a list of plants, it is recommended to stop updating devices
list, because computer and Monitor device will work faster.

79



Figure 3.22: DCSMonitor connecting to serial port.

Figure 3.23: DCSMonitor program connected to a Sensor/Actuador device
when we are monitoring we would see a real time graphic and data in the
text box.

After that we must select any id plant of the list and click in Monitorize
button to start receiving his values. Then we would see a real time graphic
and their values in text box below (figure 3.25). We can enable or disable

80



Figure 3.24: Requesting for id plants in the CAN bus to DCSMonitor device.

any of the plots checking it in the options section at the right (figure 3.26).

Figure 3.25: All plots in the graphic.

There is an other option in this execution mode, we can send a message
to the Monitor device to start sending messages into CAN bus, it is possible
dragging the Saturation bar (figure 3.27) since the wanted value. This will

81



Figure 3.26: Only reference and second integral in the graph.

provoke monitor device to send maximal prioriti messages into the CAN
bus.

Figure 3.27: Saturation bar.

Graph exporting

In all execution modes we can take an instance of the graph. To do that we
must stop the monitoring in the wanted instance, then check the plots to
be showed in the Options panel, and finally push the button Export graph
figure 3.28). You only need to select the folder and assign a name to the
file, with preferred extension (.pdf, .eps, .ps, .png, and more) (there is an
example exporting an image to the desktop in figure 3.29).

82



Figure 3.28: Choosing a name for the exported graph.

Figure 3.29: Example of exported graphic.

3.4 Installing

It is possible to install this Live CD into the computer side by side with
another Operating System or alone. You must know that installing an op-

83



erating system may erase your important data, so you must make this at
your own risk.

There is also the option to create a virtual machine (with VirtualBox or
VMWare program) and thus work from our current operating system, and
running a virtual machine with the laboratory.

Then you can see a step by step guide on how to install the live CD.
In the Live CD main menu (figure 3.30), select the option Install.

Figure 3.30: Live CD main menu, installing on computer.

Once we selected install we will see Ubuntu logo (figure 3.31) and then
the CD will prepare the installation environment.

Figure 3.31: Ubuntu loading log.

Once the environment is ready, then we may choose the language, and
after that click on next.

Then select your time zone to synchronise the computers time. And
after that select your keyboard distribution.

At this point we need to choose where install the Live CD (figure 3.32).
The options are:

• Install LiveCD next to other operating system (recommended option)

• Install LiveCD in the entire disc.

• Install LiveCD partitioning the disc manually (advanced).

84



Figure 3.32: Hard disc partitioning.

If we don’t know wich option choose, we must select the first option.
Once we finish this step, we would see an advertisement indicating the

disc modifications. This step is not reversible, then accept in our own risk.
Now we must wait until it finish partitioning. Once the disc is parted we

must select an user and password (figure 3.33). This LiveCD was created to
be the user and password student then you need to specify this string.

Once we specified all the options, we would see a summary. When we
accept this it will start installing the system (this may take some time de-
pending on the machine).

When the bar get the 100% we will see an advertisement of completed
installation, then click on reboot now, extract the disc and push enter.

When the computer starts we must select the new operating system
Ubuntu. And then introduce the user and password student (figure 3.34).

Now we will have the environment ready to try the differents device
programs (LiveCD desktop 3.35).

If the LiveCD is installed in a VirtualBox we can install the package
Guest Additions. This package will give us a lot of facilities to interact with
the virtual machine.

To install this package you must start the virtual machine, once you will
in the desktop select the option in the windowDevices− > InstallGuestAdditions,
this action will create a new virtual disc in your virtual desktop, then you

85



Figure 3.33: User and password configuration: we must specifiy user and
password student.

Figure 3.34: Login.

must open it and follow his instructions.
There is a known problem if your host is an Ubuntu machine, after you

installed the Guest Additions it is possible that it do not work properly.
Then in the virtual machine you must do this steps in a terminal:

1. sudo apt-get update

2. sudo apt-get install build-essential linux-headers-$uname− r

86



Figure 3.35: Live CD desktop in new installation

3. sudo apt-get install virtualbox-ose-guest-x11

87



Chapter 4

Quick guide to start working

4.1 Development Environment

To program the Flex boards for conducting laboratory you need to have
development environment ready with the following programs:

• Eclipse (EE 160) : programming environment, renamed Erika Enter-
prise (EE) RTDruid.

• Mplab (mplabx ide beta 7) : program to burn binaries to dsPIC.

• Matlab (matlab 7.8) : program to establish communication between
computer and dsPIC.

• Python (Python 2.7) : python shell.

– PySerial : Serial communication package.

– Matplotlib : Package to draw graphic plots.

All this programs are free of charge (Matlab is an exception), and all of
this can be downloaded in his official web-pages:

• Eclipse

http://erika.tuxfamily.org/erika-for-multiple-devices.html

• Mplabx

http://ww1.microchip.com/downloads/mplab/X_Beta/installer.

html

88



• Python

http://www.python.org/download/

• PySerial

http://pypi.python.org/pypi/pyserial

• Matplotlib

http://matplotlib.sourceforge.net/users/installing.html

• PyQT4

http://www.riverbankcomputing.co.uk/software/pyqt/download

Python packages sudo apt-get install gnuplot sudo apt-get install python-
matplotlib sudo apt-get install python-scitools sudo apt-get install python-
qt4

4.1.1 Mplab installation

MplabX needs Java to be run, in most cases (in our case running Ubuntu)
this is pre-installed, but in other cases it is necessari to download and install
from his official web-page:

http://www.java.com/es/

If you need to install it in Ubuntu, you can do it directly from terminal
with the next commands:

sudo apt-get update

sudo apt-get install default-jre

Once Java is installed, go to MplabX web-page (figure 4.1) and select :

• MPLAB IDE X Beta

• MPLAB C30 Lite Compiler for dsPIC DSCs and PIC24 MCUs

http://ww1.microchip.com/downloads/mplab/X_Beta/installer.html

Once downloaded, open a terminal to install them (Figura 4.2):
Access the directory where the files have been downloaded and verify

that indeed have been downloaded:

cd ~/Downloads/

ls

89



Figure 4.1: MplabX Official page. In this page you can download last version
of this program.

Figure 4.2: Opening a terminal: to open a terminal go to Applications -¿
Accessories -¿ Terminal.

Figure 4.3: Installing MplabX IDE

We give permission to run mplabx-ide and install MplabX IDE (Figura
4.3):

chmod u+x mplabx-ide-beta7.12-linux-installer.run

sudo ./mplabx-ide-beta7.12-linux-installer.run

90



Then we’ll just accept all the conditions of use (Figura 4.4) and specify
the installation directory (Figura 4.5), we can let this by default to ‘/op-
t/microchip/mplabx‘.

Figure 4.4: Use conditions on MplabX IDE: we need to accept this terms
and conditions of MplabX

Figure 4.5: MplabX installation directory: we can let this by default

After that we need to reboot (Figura 4.6), but firstly install the other

91



package.

Figure 4.6: MplabX IDE installations end: it says that we need to reboot.

Once we have installed MplabX IDE, lets go to install the other package:

chmod u+x mplabc30-v3.30c-linux-installer.run

sudo ./mplabc30-v3.30c-linux-installer.run

Likely the other installation we need to accept terms and conditions
(Figura 4.7) and let installation directory by default to ‘/opt/microchip/m-
plabc30/v3.30c‘

Figure 4.7: MplabX C30 compiler’s terms: we accept this terms.

92



Figure 4.8: MplabX C30 compiler’s installation directory: it is recommended
to let by default.

4.1.2 Eclipse installation

Here we are going to install Eclipse following the steps of his web-page:
http://www.eclipse.org/

There is in Linux repositories. Lets do this in a terminal:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install eclipse

4.1.3 Installing RTDruid plugin on Eclipse

Once we installed Eclipse, we need this plugin to program the RTOS Erika.
Lets do this steps:

Go to:

• Help -¿ Install new Software...

We need to add a new entry (Figura 4.10) clicking in:

• Add...

In next window (Figura 4.11) fill entries with next data:

• Name ->RTDruid

93



Figure 4.9: Installing Eclipse’s plugin: to install new plugins in Eclipse go
to Help -¿ Install new Software...

Figure 4.10: Window to add new plugins: in this window we can add new
Eclipse’s plugins.

• Location ->http://download.tuxfamily.org/erika/webdownload/
rtdruid_160_nb/

Then it must be to appear the packages that there is in this url (Figura
4.12), we need to check all of them.

Then will appear a summary of the packages to be installed, lets accept
terms and conditions (Figura 4.13)

Be aware on installation because there is a moment that will popup a
hidden advisement about the trust of the package, and we need to accept it
(Figure 4.14).

Finally we must to reboot the computer for the changes to take effect.

94



Figure 4.11: Adding new plugin’s url: here we can add urls to Eclipse’s
plugins.

Figure 4.12: Available plugins: there is a list of plugins available in the url.

Then reboot it (Figure 4.15).
It is necessary to specify the path of the compiler to RT-Druid to compile

and generate .elf files. Then specify this going to:

95



Figure 4.13: RTDruid terms and conditions: we need to accept this.

Figure 4.14: Trust of the package RTDruid: we need to accept the trust of
RTDruid.

• Window -> Preferences

In the preferences go to:

96



Figure 4.15: Reboot Eclipse: we need to reboot Eclipse.

• RTDruid -> Oil -> dsPic

And we must check if the path is correct (Figure 4.16) (Be careful because
its possible that you have another Mplab version, but this is an example of
how it must to seem:

• Gcc path /opt/microchip/mplabc30/X.XXy

• Asm path /opt/microchip/mplabx/asm30

Figure 4.16: RTDruid compilator’s path: here we must introduce the path
of MplabX installation.

With this steps we will have the environment to program the microcon-
trolers with the Real-Time Operating Systems Erika

97



4.2 Led Blinking

Here we can see the necessary steps to create a new project with a template,
and then compile and program the microcontroler.

4.2.1 Eclipse environment

Firstly we need to open Eclipse, this is an programming IDE, and in this
case we will use the RTDruid plugin of Evidence. This plugin will allow to
program RTOS Erika.

Once the program is opened, lets create a new project (Figure 4.17)

• File -> New -> Project...

Figure 4.17: RTDruid new project.

We must to select this kind of project (Figura 4.18):

• Evidence -> RTDruid Oil and C/C++ Project

98



Figure 4.18: Selecting type of RTDruid project.

Then we must assign a name to this project (Figura 4.19) and let the
other options by default (you could change the directory, but we recommend
to let by default to workspace).

In this step we can select a template for the project (Figura 4.20), this
will give us all the basic structure to program Erika RTOS. So lets do the
following steps:

Check the box Create a project using one of these templates and select
pic30 (because in this case we want to program a dsPIC33) and here select
any of this templates templates, in our case:

• pic30 -> FLEX -> EDF: Periodic task with period

Once we push the Finish button we will have all the environment ready
to compile de program.

In case of option Build Automatically is activated, Eclipse will compile
automatically the first time. It is needed to deactivate this option now. So
lets check if the option Build Automatically” is unchecked (Figure 4.22):

• Project -> Build Automatically

99



Figure 4.19: Assigning name to a RTDruid new project.

Figure 4.20: Templates RTDruid: in this section we may select any of this
templates. This only need to be compiled and programmed to the FLEX
board.

100



Figure 4.21: Eclipse environment: ready to compile.

Figure 4.22: Eclipse environment: build

In this moment we can modify the code. When we want to compile the
code we could firstly save the project (if you do not save the project
before compiling, the code compiled may not be the last), once we saved the
project go to:

• Project -> Clean

We want to clean to be sure that compiled code is the last saved, and let
the other options by default (Figure 4.23) (this options will clean the project
and compile it), or select Clean projects selected below and Build only the
selected projects to clean and compile only the selected project.

101



Figure 4.23: Compiling in Eclipse: before compile it is recommended to
clean the project.

Once the compilation is complete it will show this message Compila-
tion terminated successfully! (Figure 4.24), in this step we would have a
new pic30.elf file in Debug directory. This is the file to be saved in the
microcontroller with MplabX.

Figure 4.24: Eclipse compiled successfully message.

It is possible that in the compilation step RTDruid do not find compila-
tor’s path. In this case check you would check if the installation step 4.1.3
is correct (Figure 4.16).

102



4.2.2 Mplab X environment

Once we have created the pic30.elf file, is time to open the program MplabX.
With this program we would program the microcontroller.

Then lets open the program, and lets to create a new project (Figure
4.25):

• File -> New Project...

Figure 4.25: MplabX new project.

Now the program let us to choose the project kind. In our case we have
precompiled file and then we want to select our file (Figure 4.26).

Figure 4.26: MplabX precompiled project.

• Categories : Microchip Embedded

• Projects: Prebuilt (Hex, Loadable image) Project

103



In next section we need to select our precompiled file, so lets select it
(Figure 4.27). If you done all this guide steps, the path must be like this:

• home/student/workspace/flexblink/Debug/pic30.elf

Figure 4.27: Selecting precompiled file in MplabX.

In this step we need to select witch microcontroller we want to program
(Figura 4.28), in our case it is:

Figure 4.28: Selecting device in MplabX.

• Family: DSPIC33

104



• Device: dsPIC33FJ256MC710

Now is the time to select the programmer, in our case to program the
FLEX boards we need the Mplab ICD3 programmer (Figura 4.30). We need
to connect the programer to the FLEX board in this moment (Figura 4.29):

Figure 4.29: Flex and Mplab ICD3: ready to be programed..

In case of choose another programmer, we need to know what means the
the colour in the list:

Figure 4.30: List of programmers in MplabX: the colours of the programmers
have a meaning that can be consulted at table 4.1.

At last we only have to select a name for this project (Figure 4.31), and
it is very important to change the directory out of Debug (Figure 4.32). If

105



Green This colour means that the programmer is fully functional in
this version. .

Yellow This colour means that the programmer is partially functional
in this version. In this case it is possible to select, but it may
not work.

Red This colour means that the programmer is not functional in this
version. In this case is not possible to select it.

Table 4.1: Programmers compatibility in MplabX

we leave this by default when we modify the source code with Eclipse and
make a Clean we would have problems with this project in MplabX.

Figure 4.31: Selecting a name for the project in MplabX.

Figure 4.32: Taking out of the directory Debug : if we leave this by default
when we modify the source code with Eclipse and make a Clean we would
have problems with this project in MplabX.

Finally MplabX will show up all details of this new project, so we accept
and would have all the environment prepared to program the microcon-
troller.

To program the FLEX board, we must click at buttonMake and Program
Device up to the right (Figura 4.33).

Once we have programmed the board, the first orange led of the left
would start blinking (Figura 4.34).

106



Figure 4.33: Programming FLEX board with MplabX: to program any con-
troller we need to click this button.

Figure 4.34: FLEX board running program Blink : with this program the
first led will blink every half second.

107


