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ABSTRACT
The incompressible Navier-Stokes equations

constitute an excellent mathematical modelization of
turbulence. Unfortunately, attempts at performing
direct simulations are limited to relatively
low-Reynolds numbers because of the almost
numberless small scales produced by the non-linear
convective term. Alternatively, a dynamically less
complex formulation is proposed here. Namely,
regularizations of the Navier-Stokes equations that
preserve the symmetry and conservation properties
exactly. To do so, both convective and diffusive term
are altered in the same vein. In this way, the convective
production of small scales is effectively restrained
whereas the modified diffusive term introduces a
hyperviscosity effect and consequently enhances
the destruction of small scales. In practise, the only
additional ingredient is a self-adjoint linear filter whose
local filter length is determined from the requirement
that vortex-stretching must stop at the smallest
grid scale. In the present work, the performance
of the above-mentioned recent improvements is
assessed through application to homogeneous isotropic
turbulence, a turbulent channel flow and a turbulent
boundary layer. As a final application, regularization
modelling will be applied for large-scale numerical
simulation of the atmospheric boundary layer through
wind farms.

Keywords: Energy conserving, Hyperviscosity,
Regularization modelling, Turbulence, Wind power

NOMENCLATURE
C(u, v) convective operator, (u · ∇)v
Du diffusive operator, νΔu
H4(ĝk) overall damping effect introduced in the

k-th Fourier-mode
Q second invariant of S, −1/2tr(S2)
R third invariant of S, −1/3tr(S3)

Re Reynolds number
S strain tensor, 1/2(∇u+∇uT )
fγ
4 (ĝk) damping effect introduced by the Cγ4

regularization in the k-th Fourier-mode
ĝk k-th Fourier-mode of the convolution

kernel of the filter
h local grid size
hγ
4 (ĝk) hyper-viscosity effect introduced in the

k-th Fourier-mode
k k-th Fourier-mode
kc smallest grid scale
p pressure
u velocity field
α ε/

√
24

γ , γ̃ parameter in Cγ4 model, γ̃ = 1/2(1 + γ)
ε filter length
ε dissipation rate of kinetic energy
λi eigenvalues of S, λ1 ≤ λ2 ≤ λ3

λΔ largest non-zero eigenvalue of the
Laplacian operator

ν kinematic viscosity
ω vorticity,∇× u

Subscripts and Superscripts
(·) , (·)′ symmetric linear filter and its residual

(̂·) Fourier transform
(·)∗ conjugate transpose

1. INTRODUCTION
The incompressible Navier-Stokes (NS) equations

form an excellent mathematical model for turbulent
flows. In primitive variables they read

∂tu+ C(u, u) = Du−∇p ; ∇ · u = 0, (1)

where u denotes the velocity field, p represents the
pressure, the non-linear convective term is defined by
C(u, v) = (u · ∇) v, and the diffusive term readsDu =
νΔu, where ν is the kinematic viscosity. Preserving
the symmetries of the continuous differential operators
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when discretizing them has been shown to be a
very suitable approach for direct numerical simulation
(DNS) (see [1, 2, 3], for instance). Doing so, certain
fundamental properties such as the inviscid invariants -
kinetic energy, enstrophy (in 2D) and helicity (in 3D)
- are exactly preserved in a discrete sense. However,
direct simulations at high Reynolds numbers (Re) are
not feasible because the convective term produces far
too many relevant scales of motion. In the quest for
a dynamically less complex formulation we consider
regularizations [4, 5, 6] of non-linearity that preserve
the symmetry and conservation properties exactly [7].
In this way, the convective production of small scales
is effectively restrained in an unconditionally stable
manner. In our previous works, we restrict ourselves
to the C4 approximation: the convective term in the
NS equations (1) is then replaced by the following
O(ε4)-accurate smooth approximation C4(u, v) given
by

C4(u, v) = C(u, v) + C(u, v′) + C(u′, v), (2)

where the prime indicates the residual of the filter, e.g.
u′ = u − u, which can be explicitly evaluated, and (·)
represents a symmetric linear filter with filter length ε.
Therefore, the governing equations result to

∂tuε + C4(uε, uε) = Duε −∇pε; ∇ · uε = 0, (3)

where the variable names are changed from u and p
to uε and pε, respectively, to stress that the solution
of (3) differs from that of (1). Note that the C4
approximation is also a skew-symmetric operator like
the original convective operator. Hence, the same
inviscid invariants than the original NS equations
are preserved for the new set of partial differential
equations (3). The numerical algorithm used to solve
the governing equations preserves the symmetries and
conservation properties too. In practise, the only
additional ingredient is a self-adjoint linear filter [8]
whose local filter length is determined from the
requirement that vortex-stretching must stop at the
smallest grid scale [9]. Altogether, the method
constitutes a parameter-free turbulence model that has
already been successfully tested for a variety of natural
and forced convection configurations (see [7, 9], for
instance). However, two main drawbacks have been
observed: (i) due to the energy conservation, the model
solution tends to display an additional hump in the
tail of the spectrum and (ii) for very coarse meshes
the damping factor can eventually take very small
values. These two issues are addressed in the following
section.

2. RESTORING THE GALILEAN
INVARIANCE: HYPERVISCOSITY
EFFECT

The C4 regularization preserves all the invariant
transformations of the original NS equations, except
the Galilean transformation. This is a usual feature

for most of the regularizations of the non-linear
term [10]. This can always be recover by means
of a proper modification of the time-derivative term.
With this idea in mind, and following the same
principles than in [7], new regularizations have been
recently proposed in [11]. Actually, they can
be viewed as a generalisation of the regularization
methods proposed in [7] where Galilean invariance
is partially recovered by means of a modification
of the diffusive term. Shortly, by imposing all
the symmetries and conservation properties of the
original convective operator, C(u, u), and cancelling
the second-order terms leads to the following
one-parameter fourth-order regularization

Cγ4 (u, v) =
1

2
((C4 + C6) + γ(C4 − C6))(u, v). (4)

Notice that for γ = 1 and γ = −1, Cγ4 becomes
respectively the C4 and C6 approximations proposed
in [7],

C4(u, v) = C(u, v) + C(u, v′) + C(u′, v),
C6(u, v) = C(u, v) + C(u, v′) + C(u′, v) + C(u′, v′).

Then, to restore the Galilean invariance we need to
replace the time-derivative, ∂tuε, by the following
fourth-order approximation:

(∂t)
γ
4uε = ∂t(uε − 1/2(1 + γ)u′′ε ) = Gγ

4 (∂tuε), (5)

where Gγ
4 (φ) = φ − 1/2(1 + γ)φ′′. In this case, the

new set of PDEs reads

(∂t)
γ
4uε + Cγ4 (uε, uε) = Duε −∇pε. (6)

Therefore, Galilean invariance might be restored by
simply setting γ = −1. However, this approach
suffers from several practical drawbacks [11]. Another
possibility relies on modifying appropriately other
terms, i.e. viscous dissipation. The energy equation for
(6) becomes

d

dt
(|uε|2 − 1/2(1 + γ)|u′ε|2) = (uε,Duε) < 0, (7)

provided that the filter is self-adjoint, |u|2 = (u, u),
and the innerproduct of functions is defined in the
usual way: (a, b) =

∫
Ω
a · bdΩ. Therefore, the

modification of time-derivative term (5) constitutes a
dissipation model. Recalling that (Gγ

4 )
−1(φ) ≈ 2φ −

Gγ
4 (φ) +O(ε6), we can obtain an energetically almost

equivalent set of equations by modifying the viscous
diffusive term

∂tuε + Cγ4 (uε, uε) = Dγ
4uε −∇pε, (8)

where the linear operatorDγ
4u is given by
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Dγ
4u = Du + 1/2(1 + γ)(Du′)′. (9)

In this way, we are reinforcing the dissipation by
means of a hyperviscosity term. As expected, this
basically acts at the tail of the energy spectrum and
therefore helps to mitigate the two above-mentioned
drawbacks of the original C4 regularization. Then,
to apply the method two parameters still need to be
determined; namely, the local filter length, ε, and the
constant γ. These two issues are addressed in the
forthcoming sections 3 and 4, respectively.

3. RESTRAINING THE PRODUCTION
OF SMALL SCALES OF MOTION

3.1. Interscale interactions

To study the interscale interactions in more detail,
we continue in the spectral space. The spectral
representation of the convective term in the NS
equations is given by

C(u, u)k = iΠ(k)
∑

p+q=k

ûpqûq, (10)

where Π(k) = I−kkT/|k|2 denotes the projector onto
divergence-free velocity fields in the spectral space.
Taking the Fourier transform of (8), we obtain the
evolution of each Fourier-mode ûk(t) of uε(t) for the
{CD}4 approximation1

(
d

dt
+ hγ

4(ĝk)ν|k|2
)
ûk+

iΠ(k)
∑

p+q=k

fγ
4 (ĝk, ĝp, ĝq) ûpqv̂q = Fk, (11)

where ĝk denotes the k-th Fourier-mode of the kernel
of the convolution filter, i.e., ûk = ĝkûk. The mode ûk

interacts only with those modes whose wavevectors p
and q form a triangle with the vector k. Thus, compared
with (10), every triad interaction is multiplied by

fγ
4 (ĝk, ĝp, ĝq) = (γ̃f4 + (1 − γ̃)f6)(ĝk, ĝp, ĝq) (12)

where γ̃ = 1/2(1 + γ) and f4 and f6 are given by

f4(ĝk, ĝp, ĝq) = ĝk(ĝp + ĝq) + ĝpĝq − 2ĝkĝpĝq (13)

f6(ĝk, ĝp, ĝq) = 1− (1− ĝk)(1− ĝp)(1 − ĝq), (14)

where 0 < fn ≤ 1 (n = 4, 6). On the other hand, the
k-th Fourier mode of the diffusive term is multiplied by

hγ
4 (ĝk) = 1 + γ̃(1− ĝk)

2 (15)

where h4 ≥ 1. Moreover, since for a generic
symmetric convolution filter (see [12], for instance),
ĝk = 1 − α2|k|2 + O(α4) with α2 = ε2/24, the
functions fγ

4 and hγ
4 can be approximated by fγ

4 ≈
1Hereafter, for simplicity, the subindex ε is dropped.

1 − 1/2(1 + γ)α4(|k|2|p|2 + |k|2|q|2 + |p|2|q|2) and
h4 ≈ 1+1/2(1+γ)α4|k|4, respectively. Therefore, the
interactions between large scales of motion (ε|k| < 1)
approximate the NS dynamics up to O(ε4). Hence,
the triadic interactions between large scales are only
slightly altered. All interactions involving longer
wavevectors (smaller scales of motion) are reduced.
The amount by which the interactions between the
wavevector-triple (k, p, q) are lessened depends on the
length of the legs of the triangle k = p + q. For
example, all triadic interactions for which at least
two legs are (much) longer than 1/ε are (strongly)
attenuated; whereas, interactions for which at least two
legs are (much) shorter than 1/ε are reduced to a small
degree only.

3.2. Stopping the vortex-stretching mechanism

Taking the curl of Eq.(8) leads to

∂tω + Cγ4 (u, ω) = Cγ4 (ω, u) +Dγ
4ω. (16)

This equation resembles the vorticity equation that
results from the NS equations: the only difference is
that C and D are replaced by their regularizations Cγ4
and Dγ

4 , respectively. If it happens that the vortex
stretching term Cγ4 (ω, u) in Eq.(16) is so strong that the
dissipative termDγ

4ω cannot prevent the intensification
of vorticity, smaller vortical structures are produced.
Left-multiplying the vorticity transport Eq.(16) by ω,
we can obtain the evolution of |ω|2. In this way, the
vortex-stretching and dissipation term contributions to
∂t|ω|2 result

ω · Cγ4 (ω, u) and ω · Dγ
4ω, (17)

respectively. In order to prevent local intensification
of vorticity, dissipation must dominate the
vortex-stretching term contribution at the smallest
grid scale, kc = π/h. In spectral space, this
requirement leads to the following inequality

ω̂kc · Cγ4 (ω, u)∗kc
+ Cγ4 (ω, u)kc

· ω̂∗kc

2ω̂kc · ω̂∗kc

≤ hγ
4 (ĝk) νk

2
c ,

(18)
where the vortex-stretching term, Cγ4 (ω, u)kc

, is given
by

Cγ4 (ω, u)kc
=

∑
p+q=kc

fγ
4 (ĝkc , ĝp, ĝq) ω̂piqûq. (19)

Note that fγ
4 (ĝkc , ĝp, ĝq) depends on the filter length ε

and, in general, on the wavevectors p and q = kc − p.
This makes very difficult to control the damping effect
because fγ

4 cannot be taken out of the summation
in (19). To avoid this, filters should be constructed
from the requirement that the damping effect of all
the triadic interactions at the smallest scale must be
virtually independent of the interacting pairs, i.e.
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fγ
4 (ĝkc , ĝp, ĝq) ≈ fγ

4 (ĝkc). (20)

This is a crucial property to control the subtle
balance between convection and diffusion in order
to stop the vortex-stretching mechanism. This point
was addressed in detail by [8]. Then, the overall
damping effect at the smallest grid scale, H4(ĝkc) =
fγ
4 (ĝkc)/h

γ
4 (ĝkc), follows straightforwardly

H4(ĝkc) =
2νk2c ω̂kc · ω̂∗kc

ω̂kc · C(ω, u)∗kc
+ C(ω, u)kc

· ω̂∗kc

, (21)

with the condition that 0 < H4(ĝkc) ≤ 1.

3.3. From spectral to physical space

In the previous subsection we applied our analysis
on a spectral space. However, the method needs to
be applied on a physical domain in R

3. To that end,
here we propose to express the overall damping effect,
H4(ĝkc), as a function of the invariants of the strain
tensor, S(u) = 1/2(∇u + ∇uT ). Recalling that the
velocity field, u, is solenoidal (∇ · u = 0); tr(S) = 0
and the characteristic equation of S reads

λ3 +Qλ+R = 0, (22)

where R = −1/3tr(S3) = −det(S) = −λ1λ2λ3 and
Q = −1/2tr(S2) = −1/2(λ2

1 + λ2
2 + λ2

3) are the
invariants of S, respectively. We order the eigenvalues
of S by λ1 ≤ λ2 ≤ λ3. Let us now consider
an arbitrary part of the flow domain Ω with periodic
boundary conditions. The innerproduct is defined in
the usual way: (a, b) =

∫
Ω a · bdΩ. Then, taking the L2

innerproduct of (1) with −Δu leads to the enstrophy
equation

1

2

d

dt
|ω|2 = (ω, C(ω, u))− ν (∇ω,∇ω) , (23)

where |ω|2 = (ω, ω) and the convective term
contribution (C(u, ω), ω) = 0 vanishes because of
the skew-symmetry of the convective operator. Using
the results obtained by [13] and following the same
arguments than in [14], it can be shown that the
vortex-stretching term can be expressed in terms of the
invariant R of S(u)

(ω, C(ω, u)) = −4

3

∫
Ω

tr(S3)dΩ = 4

∫
Ω

RdΩ, (24)

and the L2(Ω)-norm of ω in terms of the invariant Q

|ω|2 = −4
∫
Ω

QdΩ. (25)

Then, the diffusive term can be bounded by

(∇ω,∇ω) = − (ω,Δω) ≤ −λΔ (ω, ω) , (26)

where λΔ < 0 is the largest (smallest in absolute
value) non-zero eigenvalue of the Laplacian operator
Δ on Ω. If we now consider that the domain Ω is a
periodic box of volume h, then λΔ = −(π/h)2. In a
numerical simulation h would be related with the local
grid size. Then, to prevent a local intensification of
vorticity, i.e. |ω|t ≤ 0, the following inequality must
be hold

H4(ĝkc)
(ω, Sω)

(ω, ω)
≤ −νλΔ, (27)

where, in this case, kc = π/h. This inequality is
the analog to Eq.(21) in physical space. Rayleigh’s
principle states that

max
ω �=0

(ω, Sω)

(ω, ω)
= λ3, (28)

and therefore gives a lower bound for the damping
function, H4(ĝkc) ≤ ν(−λΔ/λ3). This was the
approach consider in our previous work [9]. However,
the maximum value is attained only if ω is aligned
with the eigenvector corresponding to λ3, and therefore
the convective terms tends to be over-damped. This
becomes especially relevant near the walls. In order
to overcome this drawback here we propose to rewrite
the inequality (27) in terms of the invariants Q and R.
From Eqs. (24)-(27) we deduce

H4(ĝkc) ≤ νλΔ
Q

R+
, (29)

where R+ = max{R, 0} and the overall damping
factor 0 < H4 ≤ 1. Thus, a proper definition of
the overall damping factor at the smallest grid scale is
given by

H4(ĝkc) = min

{
νλΔ

Q

R+
, 1

}
. (30)

Notice that the invariant Q is always negative
whereas R can be either positive or negative. In terms
of the Reynolds number, the quotient of R and Q
scales like R/Q ∝ (Re3/2)/Re = Re1/2. Then,
recalling that λΔ ∝ h−2, it yields to H4(ĝkc) ∝
h−2Re−1Q/R ∝ h−2Re−3/2. Therefore, we obtain
H4(ĝkc) → 1 if h ∝ Re−3/4. This shows that
the model switches off when h approaches to the
smallest scale in a turbulent flow. Another interesting
feature of the model is that it automatically switches
off (R → 0) for laminar flows (no vortex-stretching)
and 2D flows (λ2 = 0 → R = 0). The near-wall
behaviour of the invariants is given by R ∝ y3 and
Q ∝ y0, respectively, where y is the distance to the
wall. Consequently, it results into a model that switches
off in the wall.

For convenience, let us now define the ratio
between λ2 and λ3, η = λ2/λ3. Note that λ1 ≤ 0
and λ3 ≥ 0, whereas the middle eigenvalue, λ2, can
be both positive or negative. Actually, the sign of the
invariant R = −λ1λ2λ3, λ2 and η are the same. Then,
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recalling that the strain tensor is traceless (tr(S) = 0),
i.e. λ1 + λ2 + λ3 = 0, the first eigenvalue can also
be written in terms of λ3 and η: λ1 = −(1 + η)λ3.
Then, the ratio Q/R results into (−Q/R)−1 = λQR =
(1+ η)η/(η2 + η+1)λ3. Here, λQR can be viewed as
the rate of amplification of vorticity at the smallest grid
scale. Then, assuming that |η| 	 1, λQR ≈ ηλ3 =
λ2 and therefore it is consistent with the preferential
vorticity alignment with the intermediate eigenvector
(see the work by [15] and references therein).

4. ON THE DETERMINATION OF γ

A criterion to determine the local filter length, ε,
has been presented in the previous section. Then,
the only parameter that still needs to be determined
in Eq.(9) is the constant γ. As stated before,
by simply setting γ = −1, the Cγ4 becomes
the sixth-order accurate C6 regularization and the
Galilean invariance is restored without introducing
any additional modification in the dissipation term.
However, the C6 approximation itself suffers from a
fundamental drawback. Namely, the overall method
relies on the fact that Eq.(20) is approximately satisfied
and therefore, the damping factor Cγ4 can be taken out
of the summation in (19). This is not the case of
f6: notice that since ĝ0 = 1, f6(ĝkc , ĝkc , ĝ0) = 1
irrespectively of the value of ĝkc .

At this point, the ’optimal’ value of γ could be
determined by means of a trial-and-error numerical
procedure. Alternatively, the constant γ can be
obtained by assuming that the smallest grid scale
kc = π/h lies within the inertial range for a classical
Kolmogorov energy spectrum E(k) = CKε2/3k−5/3.
In such a case, and recalling that ĝk = 1 − α2|k|2 +
O(α4), the total dissipation for kT ≤ k ≤ kc can be
approximated by the contribution of the following two
terms

Dν ≡ ν

∫ kc

kT

k2E(k)dk, (31)

D′′
ν ≡ ν

∫ kc

kT

k4α4E(k)dk, (32)

where Dν is the physical viscous dissipation and
D′′

ν is the additional dissipation introduced by the
hyperviscosity term, (Du′)′. Hence, integration for
a Kolmogorov energy spectrum, the total dissipation
within the range kT ≤ k ≤ kc is given by

Dν + γ̃D′′
ν =

3ν

16
CKε2/3

{(
4 + γ̃α4k4c

)
k4/3c

− (
4 + γ̃α4k4T

)
k
4/3
T

}
, (33)

where γ̃ = 1/2(1 + γ) has been introduced here for
the sake of simplicity. At the tail of the spectrum the
following

H̃4 ≈ Dν + γ̃D′′
ν

ε
, (34)

represents the ratio between the total dissipation and
the energy transferred from scales larger than kT to
the tail of the spectrum. Let us assume that H̃4 =
O(H4(ĝkc)) where the overall damping at the smallest
grid scale, H4(ĝkc), is given by Eq.(30). However, at
this point it is more suitable to express it in terms of the
invariant Q. To do so, we simply notice that the three
roots of the characteristic cubic equation (22) can be
computed analytically:

λi = −|S|
√

1

3
cos

(
θ

3
− 2π(i− 1)

3

)
i = 1, 2, 3,

(35)
where |S| = √−4Q and the angle θ is given by

θ = arccos

⎛⎝ 1

2
R

/√(
−1

3
Q

)3
⎞⎠ . (36)

Since S is symmetric, the eigenvalues must be
real-valued, λi ∈ R, and, therefore, the invariants Q
and R must satisfy

27R2 + 4Q3 ≤ 0 (37)

Hence, θ ∈ [0, π] and the ratio R+/−Q can be
bounded in terms of the invariant Q

0 ≤
(
R+

−Q
)
≤

√
4

27

√
−Q, (38)

then, plugging this into Eq.(30) leads to

1 ≥ H4(ĝπ) ≥ −
√

27

4

λΔν√−Q. (39)

On the other hand, for a classical Kolmogorov
energy spectrum, the ensemble averaged invariant Q is
approximately given by

< Q >= −1

4

∫ kc

0

k2E(k)dk ≈ − 3

16
CKε2/3k4/3c .

(40)
Finally, combining Eqs.(39) and (40), the energy

balance given by Eq.(34) results

−12λΔνε√
CKε2/3k

4/3
c

� Dν + γ̃D′′
ν . (41)

Then, plugging Eq.(33) and rearranging terms leads to

1 � −C3/2
K k2c

32λΔ

{(
4 + γ̃α4k4c

)
− (

4 + γ̃α4k4T
)(kT

kc

)4/3
}
k2c . (42)
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Recalling that λΔ = −(π/h)2, kc = π/h and α ≈
k−1
c , the previous expression simplifies

1 � C
3/2
K

32

{
(4 + γ̃)−

(
4 + γ̃

(
kT
kc

)4
)(

kT
kc

)4/3
}
.

(43)
Since kc > kT , we can consider than 4� γ̃(kT /kc)

4,
we get a proper bound for γ̃,

γ̃ � 4

{
8C

−3/2
K −

(
1−

(
kT
kc

)4/3
)}

≈ 4
(
8C

−3/2
K − 1

)
. (44)

Hence, for a Kolmogorov constant of CK ≈
1.58 [16] it leads to a lower limit of γ̃ ≈ 12.1 (
γ ≈ 23.2). At this point, numerical experiments are
needed to confirm this estimation; also to provide more
accurate values. To do so, simulation of isotropic
turbulence at Reλ ≈ 72 has been chosen as a first
test-case. The code is pseudo-spectral and uses the
3/2 dealiasing rule. Filters proposed in [8] are applied
in spectral space. The total amount of energy in the
first two modes is kept constant following the approach
proposed in [17]. Figure 1 displays the results for a
box size of 163 for different values of γ̃ from 0 up
to 30. As expected, the original hump displayed for
γ̃ = 0 attenuates for increasing values of γ̃. Moreover,
the lower bound for γ̃ given by Eq.(44) is in a fairly
good agreement with these numerical tests. Even more
important, for γ̃ bigger than a certain value, the results
are virtually independent on the value of γ̃.
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Figure 1. Energy spectra at Reλ ≈ 72 for different
values of γ̃ from 0 up to 30.

Figure 2 displays the results obtained for a box
size of 643 and Reλ ≈ 202. In this case, the
energy-containing and dissipative scales are clearly
separated by an inertial range. Again, the hump at
the tail of the spectrum attenuates for increasing values
of γ̃. More importantly, the inertial range is well
predicted only for those cases with γ̃ � 14, in relatively
good agreement with the lower bound given by Eq.(44).

These are still preliminary results and more simulations
are needed to confirm these conclusions.
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Figure 2. Energy spectra at Reλ ≈ 202 for different
values of γ̃ from 0 up to 30.

5. TOWARDS THE SIMULATION OF
WIND FARM BOUNDARY LAYERS

The final goal of this work is to perform numerical
simulation of atmospheric boundary layer through
wind farms. This challenging application can only
be achieved by combining the most advanced
numerical techniques with reliable turbulence
models. Regarding the former, regularization of
the Navier-Stokes equations have already been
successfully tested for several configurations
(see [7, 9], for instance). Furthermore, it is expected
that the proposed modifications will result into
relevant improvements. With regard to the numerical
techniques, the above-described pseudo-spectral
algorithm is the most appropriate choice for this
type of configurations. Preliminary results for a
three-dimensional homogeneous isotropic turbulence
have been presented in the previous section. The next
test-case is a turbulent channel flow at Reτ = 180.
First results are displayed in Figure 3 together with
the classical results obtained by J.Kim et al. [18].
This configuration was successfully tested for a C4
regularization in [7]. Those results also showed
an additional hump at the tail of the spectrum. It
is expected that the additional hyperviscosity term
will improve the results. This will be presented and
discussed during the conference.

6. CONCLUDING REMARKS AND
FUTURE RESEARCH

Since DNS simulations are not feasible for
real-world applications the {CD}γ4 -regularization of
the NS equations has been proposed as a simulation
shortcut: the convective and diffusive operators in the
NS equations (1) are replaced by the O(ε4)-accurate
smooth approximation given by Eq.(4) and Eq.(9),
respectively. The symmetries and conservation
properties of the original convective term are exactly
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Figure 3. Results for a turbulent channel flow at
Reτ = 180 and grid size 32 × 32 × 32. Top:
mean streamwise velocity profile. Bottom: some
turbulent statistics. Reference data corresponds
with the results published in [18].

preserved. Doing so, the production of smaller
and smaller scales of motion is restrained in an
unconditionally stable manner. In this way, the new
set of equations is dynamically less complex than the
original NS equations, and therefore more amenable to
be numerically solved. The only additional ingredient
is a self-adjoint linear filter whose local filter length is
determined from the requirement that vortex-stretching
must be stopped at the scale set by the grid. This
can be easily satisfied in spectral space via Eq.(21)
provided that discrete filter satisfies Eq.(20), i.e. the
triadic interactions at the smallest scale are virtually
independent of the interacting pairs. This was
addressed in detail by [8]. However, in physical space
it becomes more cumbersome. To circumvent this,
here a criterion based on the two invariants, R and
Q, of the local strain tensor is used. Doing so, the
expected behaviour of a turbulence model is achieved:
it switches off (i.e. H4 = 1) for laminar flows (no
vortex-stretching), 2D flows (R = 0) and near the
walls.

In the present paper, the parameter γ of Eq.(8)
is approximately bounded by assuming a Kolmorogov
energy spectrum. This has been addressed in Section 4

where the following bound has been determined:

γ̃ � 4
(
8C

−3/2
K − 1

)
, (45)

where γ̃ = 1/2(1 + γ) and CK is the Kolmogorov
constant. Preliminary simulations for homogeneous
isotropic turbulence seems to confirm the adequacy of
the bound given by Eq.(45). In this way, the proposed
method constitutes a parameter-free turbulence model
suitable for complex geometries and flows. Apart from
homogeneous isotropic turbulence numerical results
evaluating the performance of the {CD}γ4 method for
wall-bounded configurations will be presented during
the conference. Namely, a turbulent channel flow and
a turbulent boundary layer. As a final application,
regularization modelling will be applied for large-scale
numerical simulation of the atmospheric boundary
layer through wind farms. The analysis of these {CD}γ4
regularization models is also part of our future research
plans.
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