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Abstract

Given the set of vertical pairs of matrices M ⊂Mm,n(C)×Mn(C)
keeping the subspace Cd×{0} ⊂ Cn invariant, we compute miniversal
deformations of a given pair when it is observable and the subspace
Cd × {0} is marked. Moreover, we obtain the dimension of the orbit,
characterize the structurally stable vertical pairs and study the effect
of each deformation parameter.

1 Introduction

This paper contributes to the study of versal deformations when square matrices
or pairs of matrices are considered, together with invariant subspaces. Versal
deformations were introduced by Arnold in [1] (see also [2]) to study the variations
of the invariants of a square matrix when its entries are perturbed. Thanks to a
natural generalization contained in [22], the same technique has been applied to
other cases, such as perturbations of pairs of matrices representing linear systems
([12], [13]).

Invariant subspaces play a key role both in matrix theory (see [18]) and linear
control systems (see [24]), where they are often called ”conditioned” invariant
subspaces. For instance, in [24] invariant subspaces are used in control problems
such as Disturbance Decoupling or Output Regulation. From a theoretical point
of view, the differentiable structure of the set of invariant subspaces of a square
matrix has been studied in [21] and that of conditioned invariant subspaces of a
pair in [16] and [17].

1Supported by DGICYT MTM2011-23892.
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In the context of versal deformations, it seems natural to consider the situation
when both a matrix and an invariant subspace are involved and both or one of
the elements of this couple is perturbed. So, in [10] the perturbation of a square
matrix preserving an invariant subspace is studied. In particular, this perturbation
gives all the solutions of the Carlson problem, and hence explicit realizations can
be obtained (see [7]).

Here we complete the generalization of [10] to linear systems started in [9].
That is to say, we consider the perturbation of a pair of matrices preserving a
given conditioned invariant subspace: we obtain the explicit form of the miniver-
sal deformation of a given pair when it is observable and the subspace is marked
(that is to say, when there is a BK-basis of the subspace extendible to a BK-basis
of the whole space), by solving the equations obtained in [9]. Some applications
are derived: computation of the dimension of the orbits, characterization of struc-
turally stable objects, study of bifurcations diagrams...

We use the following notation. We write Mp,q(C) the set of complex matrices
having p rows and q columns. If p = q, we simply write Mp(C), and Gl(p) will
be the group of non-singular matrices in it. We consider the set M ⊂Mn+m,n(C)
of vertically embedded pairs of matrices having Cd as a conditioned invariant
subspace. We restrict ourselves to the maximal stratum M∗, which is an open
dense set in M.

The organization of this paper is as follows. In Section 2 and Section 3 we
recall some results obtained in [9] regarding the differentiable structure of M and
the implicit form of a miniversal deformation of a pair A ∈ M∗, respectively.
In Section 4, we solve the above equations when the pair is observable and the
subspace is marked (Theorem 16), also obtaining a second miniversal deformation
without repeated parameters (Theorem 18). Finally, in Section 5 we obtain the
dimension of the orbit (Corollary 19), characterize the structurally stable vertical
pairs (Corollary 21) and study the effect of each deformation parameter.

2 Pairs of matrices having a (C,A)-invariant

fixed subspace

We will deal with matrices of the form

(
A
C

)
∈Mn+m,n(C), which we will identify

with the pairs of matrices (C,A), and which will be simply denoted as A if no
confusion is possible.

Definition 1 Given a pair of matrices (C,A) ∈ Mn+m,n(C), the pair (C,A) is

2
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called observable if

rank


C
CA
...

CAn−1

 = n.

We recall the definition of BK-equivalence or block similarity between pairs of
matrices:

Definition 2 Given two pairs of matrices (C,A), (C ′, A′) ∈ Mn+m,n(C), we say
that they are Brunovsky-Kronecker equivalent (or simply BK-equivalent) or block-
similar if there are matrices P ∈ Gl(n), Q ∈ Gl(m) and R ∈Mn,m(C) such that

A′ = PAP−1 +RCP−1, C ′ = QCP−1.

The above pairs of matrices can be reduced to the following form:

Theorem 3 [14] Given (C,A) ∈Mn+m,n(C), there exist integers k1 ≥ k2 ≥ · · · ≥
ks > 0 called Brunovsky-Kronecker indices (or simply BK-indices) and convenient
matrices P,Q,R as in Definition 2 which transform (C,A) in its hereafter called
BK-canonical form

ABK =


N 0
0 J

E 0
0 0

 ,

where

(i) N = diag(N1, . . . , Ns), with Ni =


0 . . . 0

1
. . .

...
. . . 0

1 0

 ∈ Mki(C), 1 ≤

i ≤ s,

(ii) E = diag(E1, . . . , Es), with Ei =
(
0 · · · 0 1

)
∈ M1,ki(C), 1 ≤

i ≤ s,

(iii) J is a Jordan matrix.

We refer the matrices of the above form as a BK-matrix. If s = m it is said
that it has full rank.

The block J does not appear if (C,A) is observable.

3
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We are interested in pairs (C,A) having a fixed subspace S ∈ Cn as “invariant”,
in the sense of [3].

Definition 4 A subspace S ⊂ Cn is (C,A)-invariant or conditioned invariant if
A(S ∩KerC) ⊂ S.

When conditioned invariant subspaces are involved, the BK-equivalence in Def-
inition 2 is restricted in a natural way:

Definition 5 Given two pairs of matrices (C,A), (C ′, A′) ∈ Mn+m,n(C) having
S ⊂ Cn as a conditioned invariant subspace, we say that they are S-equivalent (or
simply equivalent if no confusion is possible) if

(i) the pairs are BK-equivalent, that is, A′ = PAP−1 +RCP−1, C ′ = QCP−1,
where P ∈ Gl(n), Q ∈ Gl(m), R ∈Mn,m(C), and

(ii) the change of basis P preserves S, that is, PS = S.

The subspace S may be identified with Cd by considering ”adapted basis”:

Definition 6 Let us consider a subspace S ⊂ Cn, dimS = d. A basis of Cn whose
d first vectors form a basis of S is called an adapted basis to the subspace.

In the above conditions, we will assume that the matrices A and C are block-
partitioned into

A =

(
A1 A3

A4 A2

)
, C =

(
C1 C2

)
,

where A1 ∈Md(C), C1 ∈Mm,d(C), and the matrix of the basis change P into

P =

(
P1 P3

0 P2

)
,

where P1 ∈ Md(C), and the left bottom block being zero is just the condition
PS = S.

Now we define and characterize the set M formed by the pairs of matrices
having the subspace S ⊂ Cn as a conditioned invariant:

Definition 7 Given S = Cd ⊂ Cn, let

M = {(C,A) ∈Mn+m,n(C) : A(S ∩KerC) ⊂ S}

(that is to say, S is (C,A)-invariant.)

Moreover,
M∗ = {A ∈ M : rankC1 = r∗},

where r∗ = min(d,m).

4
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In [9] one characterizes (Proposition 8[9]) the elements of the set M. Moreover,
one shows (Theorem 10[9]) that these elements form a stratified manifold and that
the stratum M∗ is an open dense subset in M. Finally one describes (Proposition
12[9]) a Lie group that acts on M in such a way that the orbits are just the
equivalence classes in Definition 5.

3 Miniversal deformation preserving a (C,A)-

invariant subspace

In order to study the perturbations of a pair (C,A) preserving a conditioned invari-
ant subspace, we will use Arnold’s techniques of the so-called versal deformations
(that is, canonical forms of local differentiable families of perturbations). The
starting point is the fact that the equivalence classes are orbits under the action
of a Lie group, and hence they are submanifolds.

Then versal/miniversal deformations can be obtained as submanifolds which
are transversal/minitransversal to the orbit. We recall some general definitions
and results which we will apply to N = M∗.

Definition 8 Let N be a manifold. An l-dimensional deformation of A ∈ N is a
differentiable map

φ : Λ −→ N ,

where Λ is a neighborhood of the origin in Cl and φ(0) = A. The image φ(Λ) is
said to be a family of deformations of A ∈ N .

If there is a Lie group G acting on the differentiable manifold N , G×N −→ N ,
(P,A) 7−→ P ∗ A, a deformation is called “versal” if any other deformation is
induced from it in the following sense:

Definition 9 Let N be a manifold and G a Lie group acting on it. A deformation
of A ∈ N , φ : Λ −→ N is called versal if, given any other deformation of A ∈ N ,
ψ : Γ −→ N , there is a neighborhood of the origin Γ′ ⊂ Γ, a differentiable map
ρ : Γ′ −→ Λ and a deformation of the identity I ∈ G, δ : Γ′ −→ G such that

ψ(τ) = δ(τ) ∗ φ(ρ(τ)) ,∀τ ∈ Γ′.

It is called miniversal if it has the minimal dimension among the versal defor-
mations.

Remark 10 In order to get a miniversal deformation of a point it is enough to
compute it at any other point of the orbit: then the desired one is induced by the
group action.

5
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We now recall the key relation between “versality” and “transversality” proved
in [1] for square matrices, and which can be generalized (for example [22]) to the
cases like the above one, where the equivalence classes are submanifolds given as
orbits under the action of a Lie group.

Theorem 11 In the above conditions, (any parameterization of) the submanifold
L ⊂ N is a versal deformation of A ∈ L if and only if L is transversal to OA at
A, that is to say, if

TAL+ TAOA = TAN ,

where TA(·) means the tangent space to (·) at point A. Furthermore, it is miniver-
sal if and only if it is minitransversal, that is to say, if the above sum is direct.
Notice that, if L is a miniversal deformation of A ∈ N , then

dimOA = dimN − dimL.

Thus, applying these techniques, one obtains the main result in [9], valid for a
generic pair A ∈ M∗ ⊂ M:

Theorem 12 [9] Let A = (C,A) ∈Mn+m,n(C) be a pair of matrices and S ⊂ Cn

a d-dimensional (C,A)-invariant subspace:

A =

(
A
C

)
=

 A1 A3

0 A2

C1 C2


Assume A ∈ M∗, that is to say, rankC1 = r∗ = min(d,m). Then the following
statements hold.

(i) If m ≤ d, a miniversal deformation of A in M∗ preserving S as conditioned
invariant subspace is given by the linear submanifold L ⊂ M∗ formed by the
matrices:

A+

 X1 X3

Z(C1 + Y1) X2

Y1 Y2


satisfying the conditions

(1) X2C
∗
2 + Z = 0,

(2) Y1C
∗
1 + Y2C

∗
2 = 0,

(3) X1C
∗
1 +X3C

∗
2 = 0,

(4) X3A
∗
2 −A∗

1X3 − C∗
1Y2 = 0,

(5) X1A
∗
1 +X3A

∗
3 −A∗

1X1 − C∗
1Y1 = 0,

(6) X2A
∗
2 −A∗

3X3 −A∗
2X2 − C∗

2Y2 = 0.

6
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(ii) If d < m, without loss of generality we can assume Ct
1 = (Id, 0). Then, a

miniversal deformation of A in M∗ preserving S as conditioned invariant
subspace is given by the set of matrices

A+

 X1 X3

Z(Id + Y11) X2

Y1 Y2

 ,

where Y1 =

(
Y11
Y12

)
, Y11 ∈Md(C), satisfying (2)-(6) above and

(1′) X2C
∗
2 + (Z, 0) = 0, with Z ∈Mn−d,d(C),

4 Miniversal deformations of observable marked

matrices

In [18] the ”interesting class” of the so-called marked subspaces, namely, the in-
variant subspaces having a Jordan basis which can be extended to a Jordan basis
of the whole space, is introduced. For instance, in [6] one proves that the ”sim-
plest” solutions of the Carlson problem are marked, and any other appears in a
neighborhood of the marked ones. This notion was extended to pairs of matrices
in [5] and used in [7] for the analogue to the Carlson problem: again the marked
solutions cover all the possibilities and are the simplest realizations. Moreover,
from the versal deformation of a pair in [12] it follows that ”minimal” observable
perturbations of a non-observable pair are marked.

Generalizing the concept of a marked subspace with regard to an endomor-
phism, we say that a (C,A)-invariant subspace is marked if there is some BK-basis
of the restriction which can be extended to a BK-basis of (C,A):

Definition 13 [5] Let S ⊂ Cn be a (C,A)-invariant subspace. S is said to be
(C,A)-marked if there exists an adapted basis to S in which the matrix of the pair
(C,A) has the form (

Ā
C̄

)
=


A1 A3

0 A2

C
′
1 C

′
3

0 C
′
2

 ,

and

(i) (C
′
1, A1) is a BK-matrix.

(ii) (C̄, Ā) is a BK-matrix, except for permutations, that is, there exists a per-
mutation matrix P ∈MN (C) such that (C̄P, P tĀP ) is a BK-matrix.

7
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Then we say that (C̄, Ā) is a marked matrix (with regard to S).

We will solve the equations in Theorem 11 explicitly in those cases where
A ∈ M∗ is an observable marked matrix (then r∗ = m). It can be easily observed
(see [5] for further explanation) that if A ∈ M∗ is observable, A ∈ M∗ is marked
if and only if there exists a matrix Ac ∈ OA of the form described in the following
definition which we will call its canonical form.

Definition 14 Let

Ac =

 A1 A3

0 A2

C1 0

 ∈ M∗

be an observable marked matrix with q = (q1, . . . , qs) and p = (p1, . . . , ps) being
the BK-indices of the pairs (C1, A1) and (C,A), respectively, verifying q1 ≥ q2 ≥
· · · ≥ qs, pi ≥ qi, q1 + · · ·+ qs = d, p1 + · · ·+ ps = n, and let us define δi = pi − qi.
Notice that (p1, . . . , ps) are not necessarily in non increasing order.

(i) We say that A is in canonical form (and then we write Ac) if

(1) (C1, A1) is a Brunovsky pair.

(2) A2 = diag(Nδ1 , . . . , Nδs) ∈ Mn−d(C), where only δi ̸= 0 are consid-
ered.

(3) A3 = (A3,i,j)1≤i,j≤s, A3 ∈Md,n−d(C), A3,i,j ∈Mqi,δj (C)

A3,i,i =

[
eδi
0

]
if 1 ≤ i ≤ s, A3,i,j = 0 otherwise, where only δi ̸= 0

are considered, and then eδi will be a row matrix of zeros and one 1 in the
position δi with the size corresponding to the context.

(ii) We say that all the matrices equivalent to the preceding one are of type (q, p).

Example 1 The following matrix is an observable marked matrix in canonical
form of type ((3, 3, 2, 1), (4, 3, 6, 3)):

8
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When we solve the set of equations in Theorem 12, the following special types
of Toeplitz matrices often appear:

Definition 15 (1) We say that a matrix X = (xi,j) ∈ Mγ,β(C) is a Toeplitz
matrix if it is constant along the diagonals.

(2) If X is a Toeplitz matrix such that xi,1 = 0 if i > 1, we say that X is an
upper Toeplitz matrix.

(3) We say that a block matrix X =
[
Xi,j

]
1≤i≤r,1≤j≤s

, Xi,j ∈ Mγi,βj
(C) is a

block Toeplitz matrix if each block Xi,j is a T-matrix. We define a block
upper Toeplitz matrix analogously.

We now solve equations (1)− (6) in Theorem 12 when the matrix Ac ∈ M∗ is
an observable marked matrix in canonical form. The following theorem describes
the corresponding solutions:

Theorem 16 (First Miniversal Deformation) Let Ac ∈ M∗ be an observable
marked matrix in canonical form of type (q, p) as in Definition 14.

Then, a miniversal deformation of Ac ∈ M∗ is given by the set of matrices

Ac +

 X1 X3

0 X2

Y1 Y2


such that

9
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(2’) (Y1,h,k)qk = 0,

(3’) (X1,h,k)qk = 0,

(4’)

[
X3,h,k

Y2,h,k

]
UT-matrix,

(5’)

[
(X3,h,k)δk X1,h,k

0 Y1,h,k

]
T -matrix if δk > 0,

[
X1,h,k

Y1,h,k

]
UT -matrix if δk = 0,

(6’)

[
X2,h,k

(X3,h,k)
1

]
UT-matrix provided that δh > 0 and δk > 0,

where (·)ν , (·)ν mean, respectively, the ν column/row of (·).

Proof.

We will denote by (·)ν̂ and (·)ν̂ the matrix (·) from which the ν column/row,
respectively, has been removed.

Solving each equation in Theorem 12, we have:

(1) X2C
∗
2 + Z = 0

Using that C2 = 0 (from Definition 14), it turns out that Z = 0.

(2) Y1C
∗
1 + Y2C

∗
2 = 0

Also using that C2 = 0 and the decomposition into blocks of the matrices,
we have

0 =

m∑
i=1

Y1,h,iC
∗
1,k,i , 1 ≤ h, k ≤ m

and using the form of the blocks of C1, we obtain 0 = Y1,h,kC
∗
1,k,k ,. Finally,

using the introduced notation, this equation is equivalent (Y1,h,k)qk = 0.

(3) X1C
∗
1 +X3C

∗
2 = 0

This equation is the same as (2), but the matrices involved are now X1 ∈
Md(C), X3 ∈Md,n−d(C).

(4) X3A
∗
2 −A∗

1X3 − C∗
1Y2 = 0

Using the decomposition into blocks of the matrices, we have

n∑
i=1

X3,h,iA
∗
2,k,i −

m∑
j=1

A∗
1,j,hX3,j,k −

n∑
ℓ=1

C∗
1,ℓ,hY2,ℓ,k = 0 , 1 ≤ h, k ≤ m.

10
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Considering the form of the matrices A1, A2 and C1, we have X3,h,kN
∗
δk

−
N∗

qh
X3,h,k−e∗qhY2,h,k = 0 ; and using the above notation, we obtain

[
0 (X3,h,k)δ̂k

]
=[

(X3,h,k)
1̂

Y2,h,k

]
, which is equivalent to (4’).

(5) X1A
∗
1 +X3A

∗
3 −A∗

1X1 − C∗
1Y1 = 0

Using the decomposition into blocks, the last equation is equal to

m∑
i=1

X1,h,iA
∗
1,k,i+

n∑
i=1

X3,h,iA
∗
3,k,i =

m∑
i=1

A∗
1,i,hX1,i,k+

n∑
i=1

C∗
1,i,hY1,i,k , 1 ≤ h, k ≤ m.

Considering the form of the matrices, we distinguish two cases:

(a) If δk > 0, X1,h,kN
∗
qk

+X3,h,k

[
eδk
0

]∗
= N∗

qh
X1,h,k + e∗qhY1,h,k .

Using the above notation, we have
[
(X3,h,k)δk , (X1,h,k)q̂k

]
=

[
(X1,h,k)

1̂

Y1,h,k

]
,

which is equivalent to (5’).

(b) If δk = 0, X1,h,kN
∗
qk

= N∗
qh
X1,h,k + e∗qhY1,h,k .

Using the above notation, we have
[
0, (X1,h,k)q̂k

]
=

[
(X1,h,k)

1̂

Y1,h,k

]
.

Therefore, the solution for this case is equivalent to considering (X3,h,k)δk =
0 in the general case, and this gives us (5’).

(6) X2A
∗
2 −A∗

3X3 −A∗
2X2 − C∗

2Y2 = 0

Using the decomposition into blocks of the matrices and that C2 = 0, we
have∑n

i=1X2,h,iA
∗
2,k,i −

∑m
i=1A

∗
3,i,hX3,i,k −

∑n
i=1A

∗
2,i,hX2,i,k = 0 , 1 ≤ h, k ≤

m, δh > 0, δk > 0.

Considering the form of the matrices, we have X2,h,kN
∗
δk

− A∗
3,h,hX3,h,k −

N∗
δh
X2,h,k = 0 . This equation is equivalent to

[
0, (X2,h,k)δ̂k

]
=

[
(X2,h,k)

1̂

(X3,h,k)
1

]
,

and we obtain (6’). �

Example 2 Given the observable marked matrix in canonical form of type
((3, 3, 2, 1), (4, 3, 6, 3)) in Example 1, its miniversal deformation given by Theorem
16 is
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1

1

1
1

1
1

1
1

1
1

1

1
1

1
1

1

t5

t5

t5

t1 t2 t3 t4
t5

t3 t4
t3 t4

t5

t1 t2 t4 t3

t7 t6

t6
t6
t6

t7
t7
t7

where the parameters shown with the lines appear only in the corresponding
block and the elements on each line are the same, and ti are the parameters ap-
pearing in more than one block in X1, X2, X3, Y1, Y2.

As an application we will compute codim OAc in Section 5. In fact, we use it
to derive a new miniversal deformation of Ac ∈ M∗ without repeated parameters,
which will be more useful to study the effect of each parameter.

Definition 17 Let Ac ∈ M∗ be an observable marked matrix in canonical form
(see Definition 14). We define the matrices Ci

1hk, Ai
2hk and Ai

3hk in Mm,n(C) ×
Mn(C) having the same block sizes as Ac ∈ M∗, and all the entries 0 except one
1 placed in the first row of the block C1hk, A2hk or A3hk, respectively, and in their
i-column.

We will be mainly interested in the following subspaces spanned by some of
these matrices:

1. S1 = [Cl
1hk : 1 ≤ h, k ≤ m, qh < l ≤ qk − 1]. We will write it 0 0

0 0

Y obs
1 0

 ,

(C1 + Y obs
1 , A1) is the miniversal deformation in [12] of the observable pair

(C1, A1),
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2. S2 = [Ai
2hk : 1 ≤ h, k ≤ m, δk − δh < i ≤ δk]. We will write it 0 0

0 Xend
2

0 0

 ,

A2 +Xend
2 is the miniversal deformation in [1] of the square matrix A2.

3. S3 spanned by the matrices Aj
3hk with 1 ≤ h, k ≤ m, and the index j varying

as follows:
if δh > 0, ph − qh < j ≤ δk − qh, and max(0, ph − δk) + δk − qh < j ≤
min(qh, qk − 1) + δk − qh;
if δh = 0, 0 < j ≤ min(qk − 1, pk − qh − 1, δk) + δk − qh]. We will write it 0 X ′

3

0 0

0 0

 .

Theorem 18 (Second Miniversal Deformation) Let Ac ∈ M∗ be an ob-
servable marked matrix in canonical form of type (q, p) as in Definition 14 and
SAc = S1 + S2 + S3 (see Definition 17).

Then, a miniversal deformation of Ac ∈ M∗ is given by the subvariety Ac +
SAc, that is to say, it is given by the set of matrices

Ac +

 0 X
′
3

0 Xend
2

Y obs
1 0

 .

Proof.

By construction, the generators of SAc are linearly independent and its dimen-
sion is the codimension of OAc . We will see that SAc is a supplementary subspace
of TAcOAc by proving that its intersection is the null space. In order to do so,
we consider the usual scalar product in matrix spaces < M,N >= trace(MN∗),
where N∗ means the conjugate-transpose matrix of N , and we will prove that
for every non null vector of SAc , there is a vector of (TAcOAc)

⊥ such that their
product is not zero.

Notice that if X ∈ (TAcOAc)
⊥, we then have

< X ,Ai
2hk >= (X2hk)1,i,

< X ,Aj
3hk >= (X3hk)1,j ,

< X , Cl
1hk >= (Y1hk)l.
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Now let

V =
∑
h,k,i

xi2hkAi
2hk +

∑
h,k,j

xj3hkA
j
3hk +

∑
h,k,l

yl1hkCl
1hk

be an element of SAc .

We consider the element X =

 X1 X3

0 X2

Y1 Y2

 ∈ (TAcOAc)
⊥ defined by

(X2hk)1,i = xi2hk,

(X3hk)j = xj3hk,

(Y1hk)l = yl1hk,

where the indices vary as in Definition 17.
Then,

< V,X >=
∑
h,k,i

|xi2hk|2 +
∑
h,k,j

|xj3hk|
2 +

∑
h,k,l

|yl1hk|2 ,

and this implies that < V,X >= 0 if and only if V = 0.
Hence, we have proved that SAc is a supplementary subspace of TAcOAc . �

Example 3 The new miniversal deformation in Example 2 is

* *

*

*

*

*

1

* * ****

* **

t2

1

1
1

1

1
1

1
1

1

1

1
1

1

1
1

t1

t4t3

t5

t6 t7
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5 Applications

5.1 Dimension of the orbit

As an application of Theorem 16, we obtain the dimension of OAc .

Corollary 19 Let Ac ∈ M∗ be an observable marked matrix in canonical form of
type (q, p) as in Definition 14. Then, the codimension of its orbit is

codim OAc =
∑

1≤h,k≤n
δh·δk>0

min(δh, δk) +
∑

1≤h,k≤n
δh·δk>0

max(0,min(qh, qk − 1)−max(0, ph − δk))

+
∑

1≤h,k≤n
δh·δk>0

max(0, δk − ph) +
∑

1≤h,k≤n

max(0, qk−qh−1)

+
∑

1≤h,k≤n
δh=0

min(qk − 1, pk − qh − 1, δk) +
∑

1≤h,k≤n
δh=0

max(0, δk − qh).

Proof.

To count how many freedom degrees the miniversal deformation has, we study

the number of parameters appearing in the solution X =

 X1 X3

0 X2

Y1 Y2

. The

following figure is useful because it shows all the nullity and constancy conditions
of the diagonals appearing in Theorem 16:

* * · · · *
0
...

0

*

0
...

0

0

X2,h,k

X3,h,k

Y2,h,k

* · · · *

0

...

...

0

0

X1,h,k

Y1,h,k

� -

� -

6

?

6

?

δk=pk−qk

qk

qh

δh=ph−qh

1

* · · · *

We denote by ∗ the origin of the diagonals that can be different from zero.
The remaining conditions of Theorem 16 and the sizes of the blocks will allow us
to obtain the actual ones.
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We distinguish three different cases depending on the number of blocks in the
above figure:

(I) δh, δk > 0

In this case, all the blocks of the solution appear as the above figure shows.
It can be seen that there are four types of parameters:

(a) Those beginning and finishing in X2,h,k.

(b) Those beginning in X2,h,k and finishing in Y1,h,k.

(c) Those beginning in X2,h,k and finishing in Y2,h,k.

(d) Those beginning in X1,h,k and finishing in Y1,h,k.

Indeed, (X2,h,k)1,i = (X2,h,k)1−i+δk,δk 1 ≤ i ≤ δk .We distinguish the cases:

(a) If δk − δh < i ≤ δk.

(b) If 0 < i ≤ δk,δk < i+ ph < pk, (X2,h,k)1,i = (Y1,h,k)i+ph and i+ δh ≤
δk because (Y1,h,k)qk = 0.

(c) If ph < 1− i+ δk, (X2,h,k)1,i = (Y2,h,k)i+ph .

(d) (X1,h,k)1,j = (Y1,h,k)j+qh 1 ≤ j ≤ qk, and j + qh < qk because
(Y1,h,k)qk = 0.

In summary, and taking as reference the elements of the first row of X2,h,k

in case (a) and the elements of the blocks of Y in the other ones, we have
the following parameters:

(a) (X2,h,k)1,i for δk − δh < i ≤ δk.

(b) (Y1,h,k)j for max(0, ph − δk) < j ≤ min(qh, qk − 1).

(c) (Y2,h,k)j for ph < j ≤ δk.

(d) (Y1,h,k)i for qh < i ≤ qk − 1.

Adding up these four types of parameters, classified according to whether
they finish in X2,h,k, Y2,h,k or Y1,h,k, respectively, for the case δh, δk > 0 we
obtain the following total number of freedom degrees:

min(δh, δk) + max(0,min(qh, qk − 1)−max(0, ph − δk)) + max(0, δk − ph)

+max(0, qk − qh − 1) .

(II) δk = 0

In this case, we only have the blocks X1,h,k and Y1,h,k. Repeating the rea-
soning of (I), if δk = 0, there only exist the parameters beginning in X1,h,k,
that is, those given by (d), and the number of parameters is

max(0, qk − qh − 1) .
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(III) δh = 0, δk > 0

In this case, we only have the blocks X1,h,k, X3,h,k, Y1,h,k and Y2,h,k. It can
be seen that there are three types of parameters:

(d) Those beginning in X1,h,k and finishing in Y1,h,k.

(e) Those beginning in X3,h,k and finishing in Y1,h,k.

(f) Those beginning in X3,h,k and finishing in Y2,h,k.

Adding up these three types of parameters, for the case δh = 0, δk > 0 we
obtain the following total number of freedom degrees:

max(0, qk − qh − 1) + min(qk − 1, pk − qh − 1, δk) + max(0, δk − qh) .

Adding up all the preceding cases and grouping them according to the block of
the reference parameter, we have the formula of the corollary. �

Example 4 For the observable marked matrix in Example 1, the addends in
Corollary 19 give, respectively, 15,2,1,2,1 and 1, which correspond to the parame-
ters (*), (t4,t5), (t3), (t1,t2), (t7) and (t6).

5.2 Structural stability

Now we study the observable marked matrices with open orbit, that is, the
ones with the dimension of the manifold as the dimension of their orbit. They are
known as structurally stable matrices.

Definition 20 [23] Let M be a topological manifold, when an equivalence relation
is defined. A point x ∈ M is said to be structurally stable if its equivalence class
contains an open neighborhood of x.

We see that there are no non-trivial pairs of this type.

Corollary 21 The observable marked matrices A ∈ M∗ structurally stable with
regard to the equivalence relation in Definition 5 are only those of the trivial case:

(i) d = n ,

(ii) |pi − pj | ≤ 1 .

Proof.

Let A ∈ M∗ be an observable marked matrix in canonical form of type (q, p).
Then, it will be structurally stable if and only if its miniversal deformation is null.
Or, equivalently, if codim OA = 0. This means that each term in Corollary 19
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must be 0. From the first one, it follows δi = 0, for all i ≤ m, and then d = n.
Now the fourth term gives us |pk − ph| ≤ 1 for 1 ≤ h, k ≤ s.

Conversely, all the terms are null if (i)-(ii) hold. �
Notice that condition (i) implies M∗ = Mn+m,n(C), that is, A ∈ M∗ is a full

rank observable pair. Then, condition (ii) is exactly that obtained in [12] for this
particular case.

5.3 Bifurcation diagrams

The simplicity of the miniversal deformation in Theorem 18 allows us to study
the effect of each parameter in the invariants of Ac. It is clear that the Jordan
form of A2 is perturbed by Xend

2 just in Arnold’s works. Let see the effect of Y obs
1

and X ′
3.

As we have pointed out, (C1 + Y obs
1 , A1) is the miniversal deformation in [12]

of the restriction (C1, A1). Hence, its effect is the well-known perturbation of the
BK-indices of an observable pair: the parameter corresponding to Cl

1hk transforms
qk into l, and qh into qh + qk − l. In general, the initial BK-indices q1, . . . , qs will
change into new indices q

′
1, . . . , q

′
s such that they are majorized by the initial ones

in the following sense (see [19]):
q
′
1 ≤ q1; q

′
1+q

′
2 ≤ q1+q2; · · · ; q

′
1+ · · ·+q′s−1 ≤ q1+ · · ·+qs−1; q

′
1+ · · ·+q′s =

q1 + · · ·+ qs.

That is, the BK-indices of the restriction will be balanced until the maximal
difference between them is 1 (or 0).

In Example 3, for instance, if some of the parameters t1, t2 in Y
′
1 are non zero,

then (q
′
1, q

′
2, q

′
3, q

′
4) = (3, 2, 2, 2).

Note that they are the only BK-indices compatible with the above majorization
relations and are structurally stable because the maximal difference between them
is 1.

Similarly, the BK-indices of (C,A) will be perturbed into majorized ones as
above. For instance, in Example 3 the only BK-indices majorized by the initial
ones (6, 4, 3, 3) are (5, 5, 3, 3), (5, 4, 4, 3) and (4, 4, 4, 4). In fact, the bifurcation
diagram in X

′
3 is

(6, 4, 3, 3) if t3 = t4 = t5 = t6 = t7 = 0,
(5, 5, 3, 3) if t5 ̸= 0, t3 = t4 = t6 = t7 = 0,
(5, 4, 4, 3) if t4t6 − t3t7 = 0, some of them being non zero,
(4, 4, 4, 4) if t4t6 − t3t7 ̸= 0.
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