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Abstract. The specialization relationship is offered by the i* modeling 

language through the is-a construct defined over actors (a subactor is-a 

superactor). Although the overall meaning of this construct is highly intuitive, 

its semantics when it comes to the fine-grained level of strategic rationale (SR) 

diagrams is not defined, hampering seriously its appropriate use. In this paper 

we provide a formal definition of the specialization relationship at the level of 

i* SR diagrams. We root our proposal over existing work in conceptual 

modeling in general, and object-orientation in particular. Also, we use the 

results of a survey conducted in the i* community that provides some hints 

about what i* modelers expect from specialization. As a consequence of this 

twofold analysis, we identify, define and specify two specialization operations, 

extension and refinement, that can be applied over SR diagrams. Correctness 

conditions for them are also clearly stated. The result of our work is a formal 

proposal of specialization for i* that allows its use in a well-defined manner.  

Keywords: i* framework, i-star, goal-oriented modeling, specialization, 

generalization, subtyping, inheritance. 

1 Introduction 

The i* (pronounced eye-star) framework [1] is currently one of the most widespread 

goal- and agent-oriented modeling and reasoning frameworks. It has been applied for 

modeling organizations, business processes and system requirements, among others.  

In the heart of the framework lies a conceptual modeling language, that we will 

name “the i* language” throughout the paper. It is characterised by a core whose 

constructs, although subject of discussion in some details [2], are quite agreed by the 

community. A rough classification of the core distinguishes six main concepts: actors, 

intentional elements (IE), dependencies, boundaries, IE links and actor association 

links [3]. They can be used to build two types of diagrams: Strategic Dependency 

(SD) diagrams, composed by actors, dependencies and actor association links among 

them; and Strategic Rationale (SR) diagrams, that introduce IEs, with their respective 

links, inside actors’ boundaries, and reallocate the dependencies from actors to IEs. 

Among actor association links, we may find a typical conceptual modeling 

construct: specialization, represented by the is-a language construct. The i* Guide 

[4] defines this construct as follows: “The is-a association represents a generali-

                                                           
1 This work has been supported by the Spanish project TIN2010-19130-C02-01. 
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zation, with an actor being a specialized case of another actor”. In other words, this 

construct is defined at the SD level as: an actor a (subactor) may be declared as a 

specialization of an actor b (superactor) using is-a. No more details are given and in 

particular, the effects that a specialization link may have on SR diagrams is not stated. 

Despite the widespread use of specialization in i* models, a systematic analysis of 

the literature reveals that none of these works has defined formally the effects of the 

is-a link beyond the sketchy definition we have presented above, or proposed 

methodological guidelines for its usage. In particular, and this is the focus of our 

work, given the relationship a is-a b, the consequences at the SR diagram involving 

a are not clear. Therefore, several questions have not a well-defined answer. For 

instance, consider the model at Fig. 1: how are IEs belonging to Customer inherited in 

Family?, what modifications are valid over these inherited elements?, do depen-

dencies as Easily Bought also apply to Family?, may Buy Travel have additional sub-

tasks in Family?, etc. This uncertainness makes the modeller hesitant about the use of 

specialization and then about the correctness of the i* models that use this construct. 

 

Fig. 1. Fragment of i* SR model with two actors linked with is-a. 

The work presented here addresses these questions and specifically tries to answer 

the following research question divided into subquestions: 

– RQ. Given an actor specialization relationship declared at the SD level, what 

modeling operations can be defined at the SR level? 

SQR1. What is the relevant background to make this decision? 

SQR2. What are the effects of these operations? 

SQR3. What are the correctness conditions to be fulfilled for their application? 

The rest of the paper is structured as follows. Section 2 presents the background for 

our work from which we identify two specialization operations, extension and 

refinement, defined formally in sections 4 and 5 upon the algebraic specification of i* 

and the correctness notion given in Section 3. Section 6 provides the conclusions and 

future work. Basic knowledge of i* is assumed, see [1] and [4] for details. 

2 Background and Specialization Operations in i* 

The idea of organizing concepts into is-a hierarchies emerged very early in Informa-

tion Systems and Software Engineering. The main concepts that appear around 

taxonomies are specialization or how to make something generic more concrete; its 

counterpart generalization; and inheritance as the mechanism that determines how the 

characteristics from the most generic concept are transferred to the most concrete one. 
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2.1 The concept of specialization and its use in conceptual modeling 

In this subsection we focus on specialization in three areas of interest: knowledge 

representation, software development and conceptual modeling. 

Knowledge representation. Quillian introduced inheritance as part of his defini-

tion of semantic networks [5]. Brachman and Levesque distinguished two kinds of 

inheritance semantics [6]. In strict inheritance, a concept inherits all the attributes of 

its ancestors on the is-a hierarchy and can add its own attributes. In defeasible inhe-

ritance, it is allowed cancelling attributes from the ancestors. Although cancellation 

can help to represent knowledge, it poses some problems to infer information [7]. 

Object-oriented (OO) programming languages. Simula 67 [8] was the first 

programming language proposing the notions of class and inheritance. It adopted a 

strict inheritance strategy. Later on, languages as Smalltalk-80, Delphi, C++, C# and 

Java aligned with defeasible inheritance allowing modifying the implementation of a 

method (overriding). Visual Basic for .NET allowed in addition cancelling properties 

(shadowing). As a kind of compromise between the strict and defeasible approaches, 

Eiffel introduced the concept of design by contract [9] to delimit the changes included 

in an overridden method and facilitating the declaration of class invariants. 

Conceptual modeling. First works on conceptual modeling focused on semantic 

data models for database logical design. Smith and Smith introduced the notion of 

generalization in database modeling according to the concept of strict inheritance 

[10]. Afterwards, conceptual modeling languages and methodologies for specification 

and design in the OO paradigm started to proliferate. For instance, Borgida et al. 

proposed a software specification methodology based on generalization/specialization 

that uses the concept of strict inheritance adding the refinement of attributes [11]. 

Concerning languages, the UML became the dominant proposal [12]. Inheritance is 

used in class diagrams in the same way it was used the semantic data models. 

Table 1 classifies these approaches using Meyer’s Taxomania rule [9]: “Every heir 

must introduce a feature, redeclare an inherited feature, or add an invariant clause”.   

Table 1. Summary of specialization behaviour in different areas.  
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feature 

Add 

Invariant 

Redeclare feature 

Knowledge 

Representation 

Strict New 

Attributes 
No 

No 

Defeasible Attribute Cancellation 

OO Languages 

Simula 67 

New 

Properties & 

Methods 

Simulation 

accessing 

properties 

via methods 

No 

Smalltalk-80, Delphi, 

C++, C#, Java 

Overrides for methods 

Simulation for properties 

accessing via methods 

Visual Basic 
Overrides and Shadows 

for properties and methods 

Eiffel 
Adding 

invariants 

Renaming and Redefi-

nition for routines and 

procedures using contracts 

Conceptual 

Modeling 

Semantic data models New 

Attributes & 

Methods 

No 

No 
UML 

Borgida & 

Mylopoulos 

For 

attributes 



4      Lidia López, Xavier Franch, Jordi Marco 

2.2 Specialization in the i* framework: antecedents 

Inheritance appeared in i* from the very beginning. Yu used the is-a relationship as 

actor specialization in his thesis [1]. This link is only used in SD models between 

actors but it is not formally defined; the only observable effect in the examples is the 

addition of new incoming dependencies to the subactor. No examples are given of SR 

diagrams for subactors so the precise effects of is-a at this level remain unknown. 

The is-a construct has been used in several works with the same meaning than 

Yu’s. A non-exhaustive list is: [13][14] as a regular modeling construct; [15] for 

model-driven generation; [16] for modeling actor states, and [17] for deriving feature 

models. In all of these works the level of detail given is as insufficient as in [1].  

2.3 A community perception on specialization from i* researchers 

In order to complete our preliminary analysis, we conducted a survey to know i* 

modelers’ concept of specialization. It was conducted from June to September 2010. 

Most of the answers come from attendees to the 4
th

 Intl’ iStar Workshop, where the 

survey was first presented. It was responded anonymously. We finally got 21 valid 

answers. Even if it seems a low number, it has to be considered that the core com-

munity of researchers is not too big. As an indicator, we explored the literature review 

presented in [18] and counted 196 authors contributing to the 146 papers found; thus 

the survey’s population was about the 10% of this core community of authors. 

The questions were very basic and are listed in Table 2; the full text, including the 

proposed answers, is available in [19].  

Table 2. Questions appearing in the survey on i* specialization.  

Q1. How often do you use is-a links in the i* models that you develop? 

Q2. If you use is-a links, do you have any doubts about their usage? 

Q3. If A is-a B, what is the consequence regarding dependencies at SD model level? 

Q4. If A is-a B, what is the consequence regarding the SR model level? 

Fig. 2 shows the results for the first two questions, which are of exploratory nature 

and admitted just one answer. According to these results, the construct is frequently 

used (57% answered sometimes or more in Q1) but mostly with some concerns about 

its usage (84% answered yes in Q2). This contradiction is explained because in fact 

68% answered Q2 as: yes, but these doubts are not fundamental for my models.  

  

Fig. 2. Survey on i* specialization: results of Q1 (left) and Q2 (right). 
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Fig. 3 shows the results of the last two questions, which are of interpretative nature 

and admitted more than one answer. According to these results, when actor a is-a 

actor b, new elements can be added in the actor a (86% for dependencies (Q3); 90% 

for intentional elements (Q4)). There is less agreement about modification (38% and 

14% respectively). Finally, almost none of the respondents supported the option of 

removing elements (5% and 10% respectively).  

  

Fig. 3. Survey on i* specialization: results of Q3 (left) and Q4 (right). 

2.4  Conclusion 

Considering the review presented in this section, it can be concluded that specializa-

tion consists on adding new and modifying the inherited information. Meyer summa-

ryzes these operations in his Taxomania Rule, which can be applied to i* as: 

– Extension (from Taxomania rule: “introducing a feature”). A new IE or 

dependency, related somehow to inherited elements, is added to the subactor. 

– Redefinition (“redeclaring an inherited feature”). An IE or dependency that exists 

in the superactor is changed in the subactor. 

– Refinement (“adding an invariant clause”). The semantics of an inherited IE or 

dependency is made more specific. 

Our goal is to align i* specialization with the general concept of specialization 

(Section 2.1), considering the uses made by i* researchers (Section 2.2) and their 

reported preferences (Section 2.3). For this reason, we do not consider redefinition in 

this work, since it is not used in main conceptual modeling proposals and clearly 

rejected by the i* community (“Remove” in the survey), whilst we adopt extension 

(“Add”), since the introduction of new features is the essence of specialization. As for 

refinement (“Modify”), where the most diversity exist, we include it due to the highly 

strategic nature of i*, which demands a richer conceptual modeling language. The 

questions that arise are then: 

– What extension and refinement operations do exist? 

– Which is their formal definition? 

– Which are the correctness conditions? 

We answer these questions in the next sections. First, we need to formalize the 

definition of i* SR models to be able to write definitions and correctness proofs. 
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3 Notion of Correctness 

In this section we introduce the notion of satisfaction required to reason about 

specialization correctness. For the purposes of this work, we make some 

simplifications over the language: 

– actors are restricted to general actors (without roles, positions and agents); 

– actors links are restricted to actor specialization (is-part-of is not considered); 

– an IE cannot be decomposed using more than one IE link type simultaneously; 

To avoid the need of distinguishing continuously special cases, and since we are 

interested in SR models, we assume that: 

– the rationale of all actors is declared (i.e., at least one IE exists inside each actor); 

– dependency ends are always connecting IEs and not actors. 

Table 3 summarizes the formal definition of the resulting i* language under these 

simplifications and assumptions. An i* (SR) model contains actors, dependencies, 

dependums and actor specialization links. Actors contain IEs connected by IE links of 

different types. Dependencies connect IEs and have a dependum (that is also an IE). 

Throughout the paper, we can use auxiliary predicates and functions to obtain 

components of a model element (e.g., in fourth and fifth rows, we use the function 

actor that returns the actor that contains a given IE). We introduce a couple of 

auxiliary derived concepts that are used when defining the specialization operations.  

Table 3. Formal definition of the i* language as used in this paper.  

i* concept Definition Components 

  i* (SR) model M = (A, DL, DP, AL) A: set of actors; DL: set of dependencies 

DP: set of dependums; AL: set of actor specialization links 

Actor a = (n, IE, IEL) n: name; IE: set of IEs; IEL: set of IE links 

IE ie = (n, t) n: name; t: type of IE, t {goal, softgoal, task, resource} 

IE link l = (p, q, t, v) 

p, q: IEs (source and target). actor(p)=actor(q) (intra-actor links) 

t: type of IE link, t {means-end, task-decomp., contribution} 

target(means-end) ≠ softgoal, target(task-decomposition) = task, 

target(contribution) = softgoal 

v: contribution value, v CT+ CT– {Unknown} 

         CT+ = {Make, Some+, Help}, CT– = {Break, Some-, Hurt} 

Dependency 

d = ((dr,sr), 
        (de,se), 

        dm) 

dr, de, dm: IEs (depender, dependee and dependum, resp.) 

sr, se: strengths, sr, se {open, committed, critical} 

actor(dr) ≠ actor(de) (an actor cannot depend on itself) 

Dependum dm = (n, t) dm: IE 

Actor specia-

lization link 
l = (a, b) a, b: actors (subactor and superactor). No cycles allowed 

Derived concepts Definition 

Main IEs of 

an actor 
mainIEs(a) = {ie IE | ancestors(IEL, ie) = }, mainIEs(a) ≠  

Decompo-

sition link 
decompositionLink(l)  type(l) {means-end, task-decomposition} 

                                                        (type(l)=contribution  value(l)  {And, Or}) 

We can now address the notion of specialization correctness, in other words, what 

conditions have to be fulfilled in order to consider this specialization correct. We 

consider the notion of satisfaction as the baseline to define correctness: subactor’s 

satisfaction must imply superactors’ satisfaction. This property ensures that the 

subactor a may be used in those contexts where the superactor is expected. 
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Definition 1. Actor specialization satisfaction.  

Given an i* model M = (A, DL, DP, AL) and two actors a, b A such that (a, b) AL, 

we define actor specialization satisfaction as: sat(a, M)  sat(b, M) 

Given our simplifications and assumptions, each actor contains at least one main 

intentional element, hence we reduce the actor satisfaction to IE satisfaction.  

Definition 2. Actor satisfaction.  

Given an i* model M = (A, DL, DP, AL) and an actor a A, a = (n, IE, IEL) with       

IE ≠ , we define a’s satisfaction, sat(a, M), as the satisfaction of all its main IEs:  

ie mainIEs(a): sat(ie, M). 

Satisfaction of an IE depends on the IE links that reach that IE. If there are no links, 

satisfaction is up to the modeler. If there are decomposition links or dependencies, a 

logical implication may be established. In the case of contributions to softgoals, we 

adopt Horkoff and Yu’s [20] proposal. 

Definition 3. IE satisfaction.  

Given a model M = (A, DL, DP, AL) and an IE ie IE, we define ie’s satisfaction, 

sat(ie, M), according to the cases below (note that the second and third cases can 

happen simultaneously with the fourth, then both conditions apply): 

– ie is neither decomposed nor has outgoing dependencies: satisfaction has to be 

explicitly provided by the analyst/modeler. 

– ie is decomposed by decomposition links: satisfaction depends on the link type: 

 task-decomposition: according to the i* definition (an incomplete AND-

decomposition), the sources are AND-ed: 

      ieand: (ieand, ie, task-decomposition, ) IEL: sat(ie, M)  sat(ieand, M) 

 means-end: according to the i* definition, the sources are OR-ed: 

      ieor: (ieor, ie, means-end, ) IEL: sat(ieor, M)  sat(ie, M) 

– ie is softgoal with contribution links: satisfaction is defined as in [20]. 

– ie has outgoing dependencies: satisfaction depends on dependum’s: 

 ((ie, sie), (de, sde), dm) DL: sat(ie, M)  sat(dm, M) 

Note that the implication cannot be an equivalence because the ie can be 

decomposed and then its satisfaction would depend on its decomposition. 

At this point, we have completely defined the notion of specialization satisfaction and 

may therefore proceed to define extension and refinement operations. 

4   Extension Operations 

Extension means adding a new model element to the subactor. There are two types of 

elements to consider: 

– IEs. An IE can be added extending an inherited IE or as a main IE: 

 IE extension. In the subactor, some IE is added as a decomposition of an 

inherited IE.  

 New main IE. Some IE is added as a main IE due to the subactor has a new 

intentionality that is not covered by the superactor’s main IEs. 
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– Dependencies. A dependency can be added to an IE ie in two different directions:  

 Outgoing dependencies. This case is not allowed. The reason is that if a super-

actor is able to satisfy ie by itself, its subactors must be able to do so as well.  

 Incoming dependencies. Adding a new incoming dependency does not affect 

ie’s satisfaction, but the satisfaction of the IE that acts as depender. This means 

that this dependency needs not to be considered in the analysis of ie. 

 As a conclusion, we need two extension operations for IEs, but none for 

dependencies. We present in the rest of the section these two operations. 

CASE 1. IE extension. An IE inherited from a superactor can be extended in a 

subactor by adding a new decomposition link: 

– Task-decomposition link: Since task-decompositions are not necessarily complete, 

it is always possible to add a new IE that provides more detail in the way in which 

a task is performed. By defining a task-decomposition link, the linked element is 

considered AND-ed with the elements that decompose the task in the superactor. 

– Means-end link: An element may be considered as a new means to achieve an end. 

By defining a means-end link, the linked element is considered OR-ed with the 

means that appear in the superactor. 

Fig. 4 presents two examples of extension. In the diagrams, inherited elements in the 

subactor are shown in dotted lines. The subactor UTA shows the extension of a 

superactor TA’s non-decomposed task (Name a price). The FTA adds a third means 

to an inherited end (Travels Contracted Increase) that was already decomposed in TA; 

this new IE, playing the role of means, has just sense in the case of the subactor. In 

both cases, the IE that is being subject of the operation is further decomposed; addi-

tionally, in FTA, some IEs contribute to two softgoals inherited from the superactor, 

shown also in dotted lines to indicate that they are same as in the superactor. 

  

Fig. 4. Specialization operations: adding task-decomposition (UTA) & means-end (FTA) links. 

Extension Operation 1 Intentional element extension with a decomposition link. 

Declaration. extendIEWithDecompositionLink(M, a, iet, ies, t), being: 

 M = (A, DL, DP, AL), an i* model 

 a = (na, IEa, IELa), a A, the subactor where the IE extension takes place 

 iet IEa, the inherited IE to be extended (the target) 

 ies, the new IE to be linked to iet (the source) 

 t, the type of decomposition link, either means-end or task-decomposition. 
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Preconditions. 1) ies is semantically correct with respect to iet given the type of link: 

 means-end: sat(iet, M)  sat(ies, M) 

 task-decomposition: sat(ies, M)  sat(iet, M) 

2) ies is not main element in the superactor: ies mainIEs(superactor(a)) 

Effect. extendIEWithDecompositionLink(M, a, iet, ies, t) yields a model M’ defined as: 

M’ = substituteActor(M, a, a’), being substituteActor a function that replaces 

every occurrence of a in M by a’, a’ = (na, IEa  {ies}, IELa  {(ies, iet, t, v)}). 

Theorem. The operation extendIEWithDecompositionLink(M, a, iet, ies, t) is correct. 

Proof. We demonstrate by induction that this operation keeps actor specialization 

correctness, i.e. sat(a’, M’)  sat(b, M’) (see Definition 1).  

Induction Base Case (IBC). In the IBC, this operation is the first specialization 

operation applied over the subactor a, i.e. IE(a) = IE(b)  IEL(a) = IEL(b) [P1] 

[1] sat(a’, M’)  ie mainIEs(a’): sat(ie, M’), applying Definition 2 over a’ 

[2]   ie mainIEs(a): sat(ie, M), since main elements do not change: 

(ies, iet, t, v) IELs(a’)  precondition 2  mainIEs(a’) = mainIEs(a) 

[3]   ie mainIEs(b): sat(ie, M), since [P1]  mainIEs(b) = mainIEs(a) 

[4]   ie mainIEs(b): sat(ie, M’), since b is the same in M and M’ 

[5]   sat(b, M’), applying Definition 2 over b 

Induction Hypothesis (IH). We assume a state in which after several specialization 

operations applied, still the correctness condition holds: 

sat(a, M)  sat(b, M) 

Induction Step (IS). If this operation is applied over a subactor a that satisfies the 

correctness condition, the resulting subactor a’ satisfies it too: 

sat(a’, M’)  sat(b, M’) 

[1] sat(a’, M’)  ie mainIEs(a’): sat(ie, M’), applying Definition 2 over a’ 

[2]   ie mainIEs(a): sat(ie, M), since ies is not added as main IE 

[3]   sat(a, M), applying Definition 2 over a 

[4]   sat(b, M), applying the IH 

[5]   ie mainIEs(b): sat(ie, M), applying Definition 2 over b 

[6]   ie mainIEs(b): sat(ie, M’), since b is the same in M and M’ 

[7]   sat(b, M’), applying Definition 2 over b 

CASE 2. Main IEs addition. The subactor has an intentionality that is not covered by 

the superactor’s main IEs. Therefore, a new main IE needs to be added. Fig. 5 

presents an example of adding a new main IE in the subactor. Again, this new element 

is further decomposed and its decomposition includes an inherited element (drawn in 

dotted lines) at the second level of decomposition. 

Extension Operation 2 Actor extension with a main intentional element 

Declaration. extendActorWithMainIE(M, a, ienew), being: 

 M = (A, DL, DP, AL), an i* model 

 a = (na, IEa, IELa), a A, the subactor where the new IE is added 

 ienew, the new IE to be added as main IE 
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Fig. 5. Actor specialization operations: adding main IEs. 

 

Precondition. ienew is really enlarging subactor’s intentionality: 

  (sat(ienew, M)  ie mainIEs(a): sat(ie, M)) 

Effect. extendActorWithMainIE(M, a, ienew) yields M’ = substituteActor(M, a, a’), 

where a’ = (na, IEa {ienew}, IELa) and substituteActor defined as above. 

Theorem. The operation extendActorWithMainIE(M, a, ienew) is correct. 

Proof. By induction, very similar to the former proof. The only notable difference is 

that since the new IE is added as main element, some equivalence needs to be 

converted into implication. For instance, in the IBC, step [2] changes into:   

[2a]   ie mainIEs(a): sat(ie, M’)  sat(ienew, M’), since ienew is added as main IE 

[2b]   ie  mainIEs(a): sat(ie, M’), since X  Y  X 

5   Refinement Operations 

Refinement means replacing an existing model element by another that somehow 

constraints the inherited behaviour. There are three types of elements to consider: 

– IEs: any IE in the model can be refined. 

– Contribution links: the value of a contribution link can be enforced in the subactor. 

– Dependencies: an inherited dependency can be refined either by enforcing the IE 

placed as dependum or by making stronger any of the two strengths.  

As a conclusion, we need three refinement operations, presented next. Their 

correctness is demonstrated at [19] (proofs are very similar to CASE 1 above). 

CASE 3. IE refinement. A subactor a can refine an IE ie inherited from its superactor 

b with the following meaning depending on its type: 

– Goal, softgoal: the set of states attained by ie in a is a subset of those attained in b. 

– Task: the procedure to be undertaken when executing ie in a is more prescriptive 

(i.e. has less freedom) than the procedure to be undertaken when executing ie in b. 

– Resource: the entity represented by ie in a entails more information than the entity 

represented by ie in b. 

Fig. 6 presents two examples of IE refinement. On one hand it shows the refinement 

of a non-decomposed resource (Travel Information) in which information related to 

families (e.g., number and age of children) is included in the subactor. On the other 
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hand, it refines a decomposed task (Charge Travel), with the particularity that what is 

needed is not an IE but an additional dependency that expresses the dependence on 

some other actor for undertaking the task in the subactor. As usual, IEs in dotted lines 

represented IEs inherited from the superactor and not changed in the subactor. 

 
Fig. 6. Specialization operations: refining a resource (top) and a decomposed task (bottom). 

Refinement Operation 1 Intentional element refinement. 

Declaration. refineIE(M, a, ies, nref), being: 

 M = (A, DL, DP, AL), an i* model 

 a = (na, IEa, IELa), a A, the subactor where the IE refinement takes place 

 ies=(n, t) IEa, the inherited IE to be refined 

 nref, the name to be given to the refined IE 

Precondition. the new IE is enforcing the inherited one: sat((nref, t), M)  sat((n, t), M) 

Effect. refineIE(M, a, ies, nref) yields a model M’=substituteIE(M, a, ies, ieref), being    

ieref = (nref ,t) and substituteIE a function that replaces ies of a in M by ieref in M’. 

CASE 4. Contribution link refinement. Contribution link refinement means changing 

the value of a contribution link going from an IE to a softgoal, both of them appearing 

in the superactor. Of course, not all the changes must be allowed, since it is necessary 

to guarantee that the satisfaction of the refined link’s value implies the link under 

refinement’s value. This is done by using the typical order relation among 

contribution link values [20]: Unknown > Some+ > Help > Make, and Unknown > 

Some- > Break > Hurt. Note that we keep positive and negative values separated, 

meaning that we do not allow changing the “sign” of the contribution. 

Fig. 7 presents two examples of contribution link refinement. The left figure shows 

a refinement where the involved IEs are the same in both actors, just the contribution 

value changes. In the right figure, the source IE has been also refined, meaning that 

the subactor is the result of two refinement operations. 

Refinement Operation 2 Contribution link refinement. 

Declaration. refineContributionLink(M, a, iel, v), being: 

 M = (A, DL, DP, AL), an i* model 

 a = (na, IEa, IELa), a A, the subactor where the IE link refinement takes place 

 iel=(ies, iet, contrib, vl) IELa, the inherited contribution link to be refined 

 v, the value to be given to the refined contribution link 

Precondition. The new contribution value is enforcing the inherited one: v < vl.  
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Effect. refineContributionLink(M, a, iel, v) yields a model M’ defined as: 

M’ = substitute(M, a, a’), where a’=(na, IEa, (IELa\{iel})  {(ies, ies, contrib, v)}) 

 

Fig. 7. Specialization operations: refining contribution links. 

CASE 5. Dependency refinement. A dependency can be refined only if at least one 

of the actors involved in the refined dependency is a subactor. Both the dependum and 

the strengths may be refined. In the case of the dependum, since it is an IE, the rules 

are the same to those introduced in CASE 3, although technically there is a difference: 

in CASE 3 the refined IEs were IE appearing inside an actor, whilst here the refined 

IE appears in dependencies that are external to actors. In other words, given an i* 

model M = (A, DL, DP, AL), CASE 3 is defined over A whilst CASE 5 is defined 

over DP. Concerning strengths, it is similar to CASE 4 (refinement of a value) with 

the relationship Open > Committed > Critical (being Committed the default case). 

Fig. 8 presents two examples of dependency refinement. In the bottom dependency 

(Customer Info), just the dependum is refined, it also presents the particularity that 

both dependency ends correspond to subactors. In the top dependency (Travel 

Offerings), besides the dependum, the dependee’s strength is refined too. 

 
Fig. 8. Specialization operations: refining dependums. 

Refinement Operation 3 Dependency refinement 

Declaration. refineDependency(M, d, dmref, sdrref, sderef), being: 

 M = (A, DL, DP, AL), an i* model 

 d = ((dr, sdr), (de, sde), dm), d DL, the inherited dependency under refinement 

 dmref, sdrref and sderef the dependum and strengths for the refined dependency 
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Note that d is the inherited dependency, where at least one of the depender or depen-

dee is a subactor, not to confound with the original dependency that will not change. 

Precondition.  

 The new dependum is enforcing the inherited one: sat(dmref, M)  sat(dm, M). 

 The new strengths are less or equal than the older:  sdrref  sdr  sderef  sde 

 At least one component changes: dmref  dm  sdrref  sdr  sderef  sde 

Effect. refineDependency(M, d, dmref, sdrref, sderef) yields a model M’ defined as: 

M’ = (A, DL \ {d}  {((dr, sdrref), (de, sderef), dmref)}, DP  {dmref}, AL) 

Note that d is removed since it is substituted by the new dependency. On the contrary, 

d’s dependum, dm, is not removed since the specialized dependency (the one being 

inherited) still makes use of it. 

6   Conclusions and Future Work 

In this paper we have presented a proposal for defining i* specialization in a formal 

manner at the level of SR diagrams. According to the main research question, the aim 

has been to study the consequences of a specialization relationship declared at the SD 

level. We have identified two main specialization operations, extension and refine-

ment, and for them, we have identified two and three concrete operations, respecti-

vely. Concerning the three derived subresearch questions stated at the introduction: 

– SQR1: we have studied the literature on specialization in the disciplines of 

knowledge representation, object-oriented programming and conceptual modeling, 

and we have compiled the works so far on i* specialization as well as ran a survey 

in the i* community on the expected behaviour of such a construct. This study has 

been the basis of our decision for the two specialization operations. 

– SQR2: for each of the five operations, we have defined their behaviour in terms of 

the algebraic specification of i* models. We have identified the required 

preconditions for these operations in terms of properties on their parameters.  

– SQR3: we have also proven the correctness of these operations by demonstrating 

that the satisfaction of the subactor implies the satisfaction of the superactor. We 

have defined formally the satisfaction concept and conducted the proofs by 

induction. The paper includes one of the proofs with all details, whilst the others are 

in a separated document due to space reasons. 

These operations can be combined in any arbitrary order during the modeling process: 

our proofs show that satisfaction is kept provided that the original model was correct.  

The work presented here has assumed a few simplifications on the i* language. 

Most of them are really not important although some may require further attention, 

specifically the exclusion of the is-part-of construct of our analysis (see below). 

Future work spreads along several directions. First, the Taxomania rule considers a 

third type of specialization operation, redefinition, which we have not included in the 

present work. We plan to analyse in detail under which conditions this operation 

could be applied and then define it in a similar way than extension and refinement. 

Second, we aim at providing an ontological-based semantics to i* specialization. At 

this respect, we have recently started to apply the UFO foundational ontology over i* 
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[21][22], and we plan to include specialization in this work. Third, the problem of 

loose definition of the specialization relationship is not the only point of ambiguity of 

the i* language. A similar situation can be found for the rest of actor links: is-part-

of, plays, occupies and covers. Therefore, we plan to address this problem 

following the same method as with specialization and as a further step, to explore the 

relationships of all of these actor association links with is-a. 
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