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ABSTRACT  1 
 2 
Time-Dependent Origin-Destination (OD) matrices are a key input to Dynamic Traffic Models, 3 
microscopic and mesoscopic traffic simulators are relevant examples of such models, traditionally used 4 
to assist in the design and evaluation of Traffic Management and Information Systems (ATMS/ATIS). 5 
Dynamic traffic models are also starting to be used to support real-time traffic management decisions.  6 
The typical approaches to the time-dependent OD estimation have been based either on ad hoc 7 
heuristics using mathematical programming approaches, or on Kalman-Filtering. The advent of the 8 
new Information and Communication Technologies (ICT), as for example Automatic Vehicle 9 
Location, License Plate Recognition, detection of mobile devices, Vehicle to Infrastructure (V2I) and 10 
so on, makes available new types of traffic data of higher quality and accuracy allowing for new 11 
modeling hypothesis leading to more computationally efficient algorithms. This paper extends the 12 
previous research on Kalman Filtering approaches for Freeway OD estimation using these data, to 13 
more complex topologies of urban networks were alternative path choices between origins and 14 
destinations are available. Ad hoc procedures based on Kalman Filtering have been designed and 15 
implemented successfully and the numerical results of the computational experiments are presented 16 
and discussed. 17 
 18 
Keywords: Time-Dependent Origin Destination Matrices, Estimation, Prediction, Kalman Filter, ICT, 19 
ATIS, ATMS 20 
 21 
INTRODUCTION 22 
 23 
The relevance of the estimation of Time-Dependent OD matrices 24 
 25 
Time-Dependent Origin-Destination (OD) matrices are a key input to Dynamic Traffic Models, 26 
microscopic and mesoscopic traffic simulators are relevant examples of such models. Florian et al. (1), 27 
propose a conceptual scheme on the logics of most those dynamic models based on Dynamic Traffic 28 
Assignment (DTA) or Dynamic User Equilibrium (DUE) approaches.The logic diagram highlights that 29 
all these computational schemes assume that the main input is a Time-Dependent Origin-Destination 30 
matrix, modeling the time variability of traffic demand, whose consequences on traffic behavior will be 31 
captured in the model by the time dependent path flow rates and the flow dynamics emulated by the 32 
network loading process. The main outputs will be the time dependent path flows, travel times and 33 
queue and congestion dynamics. These outputs will support the evaluation and the impact analysis of 34 
management policies. A common drawback to all these models is that if the key Time-Dependent OD 35 
input inappropriately reproduces the time variability of the demand then, independently of the quality 36 
of the modeling approaches, the outputs will not be as good as expected. Therefore a question of 37 
crucial importance, both for researchers and practitioners, is how to produce acceptably good estimates 38 
of the, so far unobservable, Time-Dependent OD matrices.  39 
 40 
This problem has usually been addressed resorting to the formulation of the problem in terms of 41 
mathematical programming approaches, especially those based on a bilevel optimization model, which 42 
upper level minimizes an objective function measuring the quality of the estimate, while at the lower 43 
level link flow estimates are the output of either, a static user equilibrium assignment, (2), (3), (4) or a 44 
heuristic based on traffic simulation (5), (6).  The objective function is usually defined in terms of a 45 
distance between observed and estimated link flow counts on a subset of links in the network and, in 46 
some cases, a complementary term measuring the distance between an a priory OD matrix and the 47 
adjusted OD matrix.  48 
 49 
Kalman Filter: a modeling approach that captures time dependencies and inherent randomness 50 
of traffic phenomena 51 
 52 
Other researchers have tried to capture the time dynamics of the traffic system formulating the problem 53 
in terms of Kalman Filtering approaches, (7). Kalman Filter can be considered as a State Space Model 54 
Approach, to estimate the dynamics of a system whose state at each instant k in time is defined by the 55 
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values of a set of unobserved state variables, represented by a vector x(k)∈ℜp (where p is the number 56 
of state variables). The system state transitions evolve in time governed by the stochastic linear 57 
difference equation: 58 
    x(k) = Φx(k-1) + w(k)      (1) 59 
 60 
where Φ is the transition matrix and w(k) represents the process noise, assumed to be white, Gaussian, 61 
with zero mean and covariance matrix Q. The system is observed at time k with measurements 62 
y(k)∈ℜq (where q is the number of observations) related to the state by the linear measurement 63 
equation: 64 
    y(k) = Ax(k) + v(k)      (2)  65 
 66 
with a measurements noise v(k) also assumed to be white, Gaussian, with zero mean and covariance 67 
matrix R. Process and measurement noises are assumed to be independent with covariance matrices Q 68 
and R which may change at every step. The discrete Kalman Filter cycles recursively between a time 69 
update, which projects the current state and covariance estimates ahead in time, from time step k-1 to 70 
time step k, to provide an a priori estimate: 71 

( ) ( )
QΦ1kΦPkP

1kx̂Φk-x̂
T +−=−
−=

      (3) 72 

 73 
and a measurement update, that adjusts the projected estimate by the available measurements at that 74 
time. The measurement update starts by computing the Kalman gain Gk, and then generates an a 75 
posteriori estimate by incorporating the measurements y(k) at that time step and calculating the a 76 
posteriori error covariance estimate: 77 

( )
( ) ( ) ( )[ ]

( ) −−=

−−+−=

−
+−−=

kPAkGIkP

kx̂AkykGkx̂(k)x̂

1
RAkAPAkPkG TT

     (4) 78 

 79 
Recursive Kalman Filter approaches to estimate time-dependent OD based on traffic counts were 80 
proposed by Nihan and Davis (8) for the case of intersections, using the OD proportions between an 81 
entry and all possible destination ramps as state variables, and the exit flows at off ramps for each time 82 
interval as observation variables. The relationship between the state variables and the observations 83 
includes a linear transformation, where the numbers of departures from entries during time interval k 84 
are explicitly considered. Sensors are assumed in all origins and destinations and provide time-varying 85 
traffic counts. OD travel times are considered negligible and non-negativity constraints on the 86 
proportions and row sums equal to 1 are imposed.  87 
 88 
Similar models were proposed by other researchers to estimate time-dependent OD in freeway 89 
corridors, networks in which path choices are irrelevant. Van Der Zijpp and Hamerslag (9) proposed a 90 
space-state model assuming for each OD pair a fixed and non negligible OD travel time distribution, 91 
and time-varying OD proportions (between one entry and all possible destination ramps) as state 92 
variables, The main section flow counts for each time interval are the observation variables,  no exit 93 
ramp counts are available and the relationship between the state variables and the observations includes 94 
a linear transformation that explicitly accounts for  the number of departures from each entry during 95 
time interval k, and a constant indicator matrix detailing OD pairs intercepted by each section detector. 96 
Suggestions for dealing with structural constraints on state variables were proposed. 97 
 98 
Chang and Wu (10) proposed a space-state model considering for each OD pair a non fixed OD travel 99 
time estimated from time-varying traffic measures and including implicitly traffic flow models in the 100 
state variables which are are time-varying OD proportions and fractions of OD trips that arrive at each 101 
off-ramp m interval after their entrance at interval k. The observation variables are main section and 102 
off-ramp counts for each interval and the relationship between the state variables and the observations 103 
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is complex and nonlinear. An Extended Kalman-filter approach is proposed. Work et al (11) propose 104 
the use of an Ensemble Kalman Filtering approach as a data assimilation algorithm for a new highway 105 
velocity model proposal based on traffic data from GPS enabled mobile devices.  106 
 107 
Hu et al (12), (13) propose an Extended Kalman Filtering algorithm for the on-line estimation dynamic 108 
OD matrices incorporating time-varying model parameters provided by simulation, or included as state 109 
variables in the model formulation. The approach takes into account temporal issues of traffic 110 
dispersion. Lin and Chang (14) proposed an extension of Chang and Wu (10) to deal with traffic 111 
dynamics assuming travel time information is available. 112 
 113 
Other researchers address the problem of the estimation of time-dependent OD matrices for urban 114 
networks, a more complex problem given the existence of alternative paths between each OD pair 115 
making that route choice becomes relevant.   In a seminal paper Ashok and Ben-Akiva (15) propose a 116 
Kalman Filter formulation in which the state variables are the deviations of the OD flows with respect 117 
to a priori historical OD matrices, the Kalman Filter is modeled as an autoregressive process that 118 
models the temporal relationships among deviations in OD flows. The measurements are the link flow 119 
counts in a subset of links in the network where detectors are located. An additional input is the 120 
assignment matrix which describes the mapping between OD flows and link flows. This assignment 121 
matrix is provided off-line by the DynaMIT supply simulator (16). The autoregressive process is 122 
characterized by a set of coefficients that capture the effect of the deviations during one time interval, 123 
on the deviations during another subsequent time interval. These coefficients are estimated off-line 124 
using a linear regression model for each time interval. The matrix form of the transition equation in 125 
terms of the autoregressive process is:  126 

( ) kw
k

rkj jĝjgj
kf1kĝ1kg +∑

−=
−=+−+     (5) 127 

gk is the vector of flows departing each OD pair at time interval k, kĝ is the corresponding historical 128 
estimate j

kf is the matrix of effects of ( )jj ĝg − on ( )kk ĝg − and r is the order of the autoregressive 129 
process, that is the number of past intervals influencing the current one, wk is the usual Gaussian white 130 
noise as in equation (1).  In a similar way the measurements equation is stated as follows: 131 

( )∑
−=

+−=−
k

p'kj kξjĝjgj
kakvkv̂     (6) 132 

Where vk is the vector of the link flows measured at time interval k, kv̂ are the link flows obtained 133 

from the assignment of the historical OD onto the network, p’ is the number of time intervals 134 

corresponding to the longest trip, j
ka is the assignment matrix of contributions of gj to vk, and ξk is, as 135 

in equation (2) a Gaussian white noise. Revised versions of this model can be found in (17) and (18) in 136 
the context of calibration of dynamic traffic models. Similar approaches can also be found in (19) and 137 
(20). 138 
 139 
Drawbacks of current approaches and how ICT traffic data provide the ground for more 140 
efficient formulations 141 
 142 
All these models for the time-dependent OD estimation share in common various modeling hypothesis: 143 
 144 

• Only link flow counts are measured 145 
• Travel times between origins and destinations and between origins and detector locations are 146 

assumed to be constant in the simpler cases, or are estimated on basis to certain models, either 147 
based on stochastic assumptions about flow propagation as in Chang and Wu (10) and Lin and 148 
Chang (14), or on explicit traffic flow models. These approaches imply that speeds are implicit 149 
state variables estimated by additional models with the corresponding increase in complexity 150 
and computational burden. Estimations add an additional error factor that is not always 151 
captured by the filter.  152 
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• In the case of networks, where alternative paths are available, the effects of the influence 153 
depend on an off line correlation analysis based on historical data, and predetermined 154 
assignment matrices that are independent of traffic congestion. This could also add a distortion 155 
effect depending on the type and quality of the assignment (i.e. DTA versus DUE) 156 

 157 
Taking into account the limitations and lack of quality of measurements provided by the traditional 158 
technologies such as loop detectors, we decided to investigate what could be achieved if measurements 159 
provided by the new ICT technologies were also available. Thinking of those ICT technologies that are 160 
currently available, with different degrees of penetration, or that will become available in short 161 
according to most of the technological forecasts (as for example Automatic Vehicle Location (AVL), 162 
License Plate Recognition (LPR), detection of Bluetooth mobile devices onboard vehicles, Electronic 163 
Toll Collection (ETC also known as TAG systems) or the forthcoming Vehicle to Infrastructure (V2I) 164 
systems). These technologies may provide two classes of data: primary data, which can be considered 165 
almost a standard, and complementary data still object of controversy. Among the complementary data 166 
candidates, depending on the technology, could be the speed, origin and destination, route, and so on. 167 
The primary data on which we can relay are: the identity of the device (not necessarily the vehicle in 168 
all cases), the position at which the device is detected and the detection time. The basic principles on 169 
how these technologies operate are depicted in Figure 1: 170 
 171 
A mobile device is captured by one of the Road Side Units (RSU) or sensors implementing the 172 
corresponding technology, i.e. Bluetooth of Wi-Fi detection, at a given position, RSU-5 in Figure 1 at 173 
time t1 and later on it is captured again downstream by other RSU, RSU-6 and RSU-10 in the example, 174 
at times t2 and t3 respectively, allowing to estimate directly the travel times between RSU locations. In 175 
the example the travel time between RU-5 and RSU6, τ5,6 = t2 - t1.  176 
 177 

 178 

Figure 1: Vehicle monitoring with ICT based sensors 179 
 180 

RSU-1 

RSU-2 

RSU-3 

RSU-4 

RSU-5 

RSU-6 

RSU-7 

RSU-8 

RSU-9 

RSU-10 

Identification of the device by  
RSU-5, RSU-6 and RSU-10 at 

successive times 
 t1 < t2 < t3  

Calculation of path travel times 
τ5,6 = t2 – t1, τ5,10 = t3 – t1  

 

Data sent to 
central server by 

GPRS, Wi-Fi… 



Barceló, Montero, Marqués, Carmona    5 

In (21) we explored the possibility of exploiting this new data for the time-dependent OD estimate in 181 
freeway corridors. We proposed a space-state formulation for dynamic OD matrix estimation in 182 
corridors, considering congestion, combining elements of the Chang and Wu (10), Hu et al. (13) and 183 
Van Der Zijpp and Hamerslag (9) proposals. A recursive linear Kalman-Filter approach for state 184 
variable estimation was implemented. Tracking of the vehicles is undertaken by processing Bluetoooth 185 
and WiFi signals whose sensors are located as described above. Traffic counts for every sensor and OD 186 
travel time from each entry ramp to the other sensors (main section and ramps) are available for any 187 
selected time interval length higher than 1 second. Travel time delays between OD pairs or between 188 
each entry and sensor locations are directly provided by the detection layout and are no longer state 189 
variables but measurements, which simplify the approach and make it more reliable. A basic 190 
hypothesis, that requires a statistical contrast for test site applications, is that equipped and non-191 
equipped vehicles are assumed to follow common OD patterns; we assume that this hypothesis holds 192 
true in the computational experiments. 193 
 194 
Although the results obtained improved those of the previous references, in uncongested as well as in 195 
congested conditions, we found some drawbacks with the initialization and the updating of the 196 
covariance matrices as a consequence of using proportions as state variables. In (22) the model was 197 
reformulated with an ad hoc version of time dependencies derived from Lin and Chang (14) and two 198 
new formulations using OD flows and OD deviates as state variables as in (17) and (18). The 199 
computations experience showed substantial improvements in the results, robustness with respect to 200 
initializations and no drawbacks wit covariance matrices. 201 
 202 
This paper explores the reformulation of the Kalman Filter approaches in (21) and (22) extending it to 203 
the case of urban networks where alternative paths are available and route choice is relevant. 204 
 205 
FORMULATION OF THE EXTENDED MODEL FOR NETWORKS 206 
 207 
As a consequence of the experience gained in (21) and (22) we propose a formulation of the Kalman 208 
Filtering approach that uses deviations of OD flows as state variables as in (17) and (18), model the 209 
time-varying dependencies between measurements and state variables adapting the Lin and Chang 210 
approach (14) but replacing estimates by sampling experiments that use the tracking of vehicles made 211 
available by the ICT technologies (In particular detection of Bluetooth mobile devices on board 212 
vehicles, the technology available in our test).   According to Ben Akiva et al (17) and Antoniou et al 213 
(18) formulations where state variables are defined as deviates of OD flows with respect to best 214 
historical values present several benefits with respect to the use OD flows as state variables:  215 
 216 
• OD flows have skewed distributions, but Kalman Filter theory is developed for normal variables 217 

and thus symmetric distributions. Deviates from historical values would have more symmetric 218 
distributions and thus fit better approximations to normality.  219 

• OD flow deviates from the best historical values allow incorporating more historical data in the 220 
model formulation as a priori structural information. 221 

• According to our experience in (21) and (22) for the dynamic OD flow estimation on corridors, KF 222 
iterations at the filtering stage, require an optimization step to satisfy the non negativity constraints 223 
that must be imposed to OD flow proportions , in which the step size α becomes 0 very often to 224 
prevent creating unfeasibility on state variables; non-negativity constraints on state variables 225 
become critical in the evolution of the KF estimates as far as they not always fit the normality of 226 
state variables requested by KF hypothesis. Reformulation in which the state variables are deviates 227 
from historical values fits better a scheme closer to normality.  228 

• And last, but not least, a higher performance in the prediction process seems a good value for 229 
Advanced Traffic Management Systems (ATMS). Historical data from the previous type of day 230 
will be easily available.  231 

 232 
The approach assumes a time horizon split in M+1 time intervals of equal length ∆t, with M the 233 
maximum number of time intervals required by vehicles to traverse the entire network considering a 234 
high congestion scenario, and that sensor data are available for equipped vehicles at all time intervals 1 235 
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to k for any time interval within the time horizon. The solution provides estimations of the OD 236 
matrices for each time interval up to the k-th interval. If historical OD matrices are not available then 237 
the formulation reduces to the case when the state variables are the OD flows instead of their 238 
deviations. Figure 2 depicts the assumed sensoring layout in which flow counting detectors (i.e. loop 239 
detectors) configure a cordon around the network, measuring entry flows from origins for all origins, 240 
and a cordon plus some interior sensors (as Sensor q in the Figure) for ICT sensors. 241 
 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 

 250 

 251 

          252 

 253 
 254 

Figure 2: Assumed sensor layout  255 
 256 
The total number of flow origins is I, origin centroids are identified by index i, i = 1,..,I; the total 257 
number of destination centroids  J, destinations are identified by index j, j = 1,…,J; the total number of 258 
ICT sensors is Q, ICT sensors are identified by index q, q = 1,…Q, where Q = I+J+P, I, ICT sensors 259 
located at origins, J, ICT sensors at destinations and P, ICT sensors located in the inner network; and 260 
the total number of likely used paths between origins and destinations is K. The notation used in this 261 
paper is the following:  262 
 263 

( ) ii QkQ ~~
=  : Historic number of vehicles entering the network from centroid  i at time interval k 

( ) ii qkq ~~ =  : Historic number of equipped vehicles entering the network from  centroid  i at time 
interval k 

( )kQi  
: Number of vehicles entering the network from centroid  i at time interval k   

( )kqi  
: Number of equipped vehicles entering the network from centroid  i at  time interval 

k   
( ) jj sks ~~ =  : Historic number of equipped vehicles leaving the network at centroid  j at time 

interval k 
( ) jj sks =  

:  Number of equipped vehicles leaving the network at centroid  j at time interval k 
 

( ) qq yky ~~ =  : Historic number of equipped vehicles crossing main section sensor q and at time 
interval k 

( ) qq yky =  
: Number of equipped vehicles crossing main section sensor q and at time interval k 

( )kGijc  : Number of vehicles entering the network at centroid  i during interval k with 
destination to centroid  j  using path c. 

( ) ijcijc gkg ~~ =
 

: Historic flow of equipped vehicles entering the network at centroid i at time 
interval k  that are headed  towards destination  j using path c. Paths are assumed to 
be the output of a DUE defined on paths, and the number of used paths for each 
OD pair (i,j)is limited to a maximum of max

ijK . Proportions assigned to active paths 
constitute an output of the linear KF proposal. 

( )ksj
~  

i 

j l 

m 

v 

w 

( )kQ i
~

( )kqi
~  

( )kgijc
~  

( )ktij  

Sensor q 

( )ktiq  

( )kuh
iq

Path c 



Barceló, Montero, Marqués, Carmona    7 

( )kgijc∆  : Deviate of equipped vehicles entering the network at centroid  i during interval k 
that are headed  towards centroid j (no intrazonal trips are considered) using path c 
with respect to historic flow ( ) ( ) ( )kgkgkg ijcijcijc

~−=∆ . 
( )kz~  : The historic observation variables during interval k, a column vector of dimension 

J+P+I, whose structure is  ( ) ( ) ( ) ( )( )TT kqkykskz ~~~~ =  

( )kz  
: The current observation variables during interval k, a column vector of dimension 

J+P+I, whose structure is  ( ) ( ) ( ) ( )( )TT kqkykskz = . 

IJ : Number of feasible OD pairs depending on the zoning system defined in the 
network. This is the maximum number of IxJ 

IJK : Number of considered OD path flows on the zoning system defined in the network 
and the level of congestion. This is the maximum number of IxJx Kmax 

( )ktij  : Average measured travel time for equipped vehicles entering at centroid  i and 
leaving at centroid  j during interval k 

( )ktiq  : Average measured travel time for equipped vehicles entering at centroid  i and 
crossing sensor q during interval k 

( )ku h
iq  

: Fraction of vehicles that require h time intervals to reach sensor q at time interval k 
that entered the system at centroid i (during time interval ( ) ( )[ ]thkthk ∆−∆−− ,1 ). 

( )kuh
ijcq  : Fraction of equipped vehicles, according time-varying model parameters (updated 

from measured travel times of equipped vehicles), that during interval k are 
detected since their trip from centroid i to sensor q using path c takes h time 
intervals, where i = 1,…,I , j = 1,…, J , Mh 1=  , Qq 1=   

 264 
The state variables are OD path flow deviates from historic OD path flows for each time interval k of 265 
length Δt; and the number of equipped vehicles entering the network at centroid i during interval k with 266 
destination centroid j using path c. The model also assumes that  267 
 268 
• For equipped vehicles, the entry point to the network and the time entering the network are known 269 

and thus ( )kqi  is also known. Internal trips are assumed to enter at the centroid representing the 270 
zone where it has been detected for the first time. Interzonal trips are considered as measurement 271 
noise. 272 

• Conservation equations from entry points are explicitly considered. 273 
• When the total number of vehicles entering the study area is available for each time interval k, 274 

( )kQi  then ( ) ( )kqkQ ii  can be considered an estimate of the expansion factor and ( )kGijc  can be 275 

directly estimated from (non-deviated) state variables ( )kgijc , assuming that the expansion factor 276 
from equipped to population is common for all OD path flows sharing the same entry point. 277 
Without ( )kQi , a generic expansion factor has to be applied to ( )kgijc  to get ( )kGijc . For realistic 278 

applications ( )kQi are available at gates, not for internal zones. 279 
 280 
Let g(k)∆ be a column vector of dimension IJK containing the state variables ∆gijc(k) for each time 281 
interval k for all feasible OD pair paths (i,j,c) ordered by OD pair. The state variables ∆gijc(k)  are 282 
assumed to be stochastic in nature and OD path flows deviates at current time k are related to the OD 283 
path flow deviates of previous time intervals by an autoregressive model of order r <<M: 284 
 285 
                     286          (7) 

 287 
Where the wijc(k)’s are assumed to be independent Gaussian white noise sequence with zero mean and 288 
covariance matrix kW , and ( )wD  are  IJKxIJK  transition matrices which describe the effects of 289 
previous OD path flow deviates ∆gijc(k-w+1) on current flows ∆gijc(k+1) for w = 1,…,r  and  all 290 

( ) ( ) ( ) ( )k1wkgw1kg
1

WD ++−∆=+∆ ∑
=

r

w
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feasible OD path flows (i,j,c). In the preliminary results in this paper we assume r=1. The structural 291 
constraints that should be satisfied by the state variables are: 292 

( ) ( )

( ) ( ) ( ) ( ) ( ) Iikqkqkgkgkq

KcJjIikgkg

ii

J

j

K

c
ijc

J

j

K

c
ijci

ijijcijc

ijij





1

111

1 11 1
=−=∆→=

===−≥∆

∑∑∑∑
= == =

~

,~
maxmax

max

  (8)

 293 

Equality constraints are explicitly considered in the observation equations through the definition of 294 
dummy sums of centroid entries where measurement errors are allowed. The observation equations are 295 
counts of vehicles entering the network, leaving the network and detected in sensors (located in access 296 
lanes to intersections) for each interval k. The relationship between the state variables and the 297 
observations involves a time-varying linear transformation that considers: 298 

• The number of equipped vehicles entering from each entry centroid during time intervals k, k-299 
1, k-M, ( )kiq .  300 

• H<M time-varying model parameters in form of fraction matrices, ( )[ ]kU h
ijcq . 301 

Structural constraints should also be satisfied for the time-varying model parameters ( )ku h
ijcq  reflecting 302 

temporal traffic dispersion, they account for congestion, 303 
( )
( ) ,,,,

,,,,
max

max

QqKcJjIiku

HhQqKcJjIiku

ij

H

h

h
ijcq

ij
h
ijcq





11111

111110

1
=====

=====≥

∑
=  (9)

 304 

Structural constraints for ( )ku h
ijcq  have not been explicitly considered in the observation equations 305 

since can be guaranteed by the updating process of time-varying model parameters from travel-time 306 
data on equipped vehicles at current time k. Since the time varying travel times have to be taken into 307 
account to be able to model congestion, then time varying delays from entries to sensor positions are 308 
considered and thus entry volumes per centroid for M+1 intervals Mkkk −− ,,1,  . State variables 309 
for intervals Mkkk −− ,,1,  are required to model interactions between time-varying OD patterns 310 
on paths, counts on sensors and distribution of travel time delays (traffic dispersion) from entry 311 
centroids to sensor positions. Measures provided by ICT sensors are direct samples of travel times that 312 
allow the updating of discrete approximations of travel time distributions, making unnecessary to 313 
incorporate models for traffic dynamics. This model simplification due to the availability of the new 314 
ICT is one of the major novelties in the proposed reformulation of Kalman Filter.  However, we must 315 
be aware that the final destination j is unknown. 316 
 317 
Model parameters to account for temporal traffic dispersion are again fractions h

iqu , but in fact they 318 

also account for variable traffic conditions and therefore the time-varying model parameters ( )ku h
iq  319 

have to satisfy structural constraints, where H<M: 320 
( )
( ) ,1,,11

1,1,10

1
QqIiku

HhQqIiku
H

h

h
iq

h
iq





===

===≥

∑
=

   (10) 321 

As in Lin and Chang (14) we assume that the travel time Tiq from origin i to sensor q is a random 322 
variable that depends on the time evolution of traffic conditions,  with a non stationary probability 323 
density function tiq(t). This probability distribution can be approximated by Tiq(k),  the  discrete travel 324 
time distribution for vehicles reaching sensor q at time interval k that entered the network from centroid 325 
i, its density function ( ) ( )tt k

iq  can be approximated in terms of ( )ku h
iq  whose  updated from the 326 

(assumed random) sample of on-line travel time data of equipped vehicles, as shown in Figure 3. This 327 
is again one of the modeling assumptions in which hypothesis on the dynamics of traffic flows is 328 
replaced by measures of travel times provided by ICT sensors. A discretization in H<M time intervals 329 
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will be initially assumed, but it is still an open question if a (i,q) (centroid, sensor) dependent horizon is 330 
more suitable. 331 

 332 
Figure 3: Approximation to the discrete travel time density function tiq in terms of the sampled h

iqu  333 

At each time interval k, the average travel time ( )ktiq  experienced by the equipped vehicles is available   334 
and the discrete travel time distributions can be be updated.  335 
To complete the model formulation we define the auxiliary matrices: 336 
 337 
E : Matrix of row dimension I containing 0 for columns related to state variables in time 

intervals  Mkk −− ,,1  and B for time interval k .  
B : Matrix of dimension I x IJK defining equality constraints (sum to 1 in OD path proportions 

for each entry) for state variable in time interval k. 
U(k) : Matrix of dimensions (1+M)IJK x (1+M)Q consisting on diagonal matrices 

( )MkUkU −,),(   containing ( )ku h
ijcq . For )( hkU − is a matrix of dimensions IJKxQ 

containing the estimated proportion of equipped vehicles whose travel-time from entry i to 
a given sensor q takes h intervals for vehicles captured by the q sensor at time interval k. 
Average measured time – varying travel times are critical and the clue for taking into 
account congestion effects. 

A : Matrix of dimensions Q x (1+M)Q that adds up for a given sensor q (regular section or exit 
connector) traffic flows from any feasible entry centroid included in the most likely used 
paths (according to historic DTA or DUE) arriving to sensor at interval k assuming their 
travel times are ( )ktiq  

 338 
The measurement equations are defined in terms of the vector z(k) of state variable defined formerly. 339 
At time interval k, their values are determined by those of the state variables at time intervals k, k-1, 340 
…k-M, where M is the maximum number of intervals necessary to cross the network.  341 

            (11) 342 
Where vi, i = 1,2,3 are respectively white Gaussian noises with covariance matrices Ri. F(k)  maps the 343 
state vector g(k)∆  onto the current blocks of measurements at time interval k: counts of equipped 344 
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vehicles on exit points, link sensors and entry centroids, accounting for time lags and congestion 345 
effects. Tilde counts at time interval k mean the observed counts when the historical demand 346 

( ) ijcijc gkg ~~ =  (if available) is assigned to the network given the current traffic conditions  (included in 347 

the block diagonal matrix U(k) of dimensions QxM*IJK).  348 
 349 
The ad hoc version of the iterative Kalman Filter algorithm described in equation (3) and (4) becomes 350 
in this case: 351 
 352 
KF Algorithm : Let K be the total number of time intervals for estimation purposes and M 

maximum number of time intervals for larger trip 
Initialization : k=0; Build  constant matrices and vectors: A, B, C, D, E.  

Inicialize as an identity matrix by an scalar parameter properly tuned W k .  

Inicialize R k as a diagonal matrix proportional to the variance of historic 
measument variables (z(k)). 

( )[ ]0WVPk
k =  

Prediction Step : k
k

k
1k DΔΔg g=+   and   k

Tk
k

k
1k WDDPP +=+  

Kalman gain 
computation 

: Get observations of counts and update fractions in travel times bins: 
)1(),1(),1(),1( ++++ kukykskq h

ij . 

Build Δ ( )1kz + and ( )1kU + . 

Build ( )1kFF 1k +=+ . 

Compute ( )−++++++ += k
T

1k
k

1k1k
T

1k
k

1k1k RFPFFPG  
Filtering : 

Compute ( )( )k
1k1k1k1k ΔgFΔGd ++++ −+= 1kz filter for state variables and 

errors ( )( )k
1k1k1k ΔgFΔε +++ −+= 1kz .  

Search maximum step length α  such that ( )kgdΔΔ 1k
k
k

1k
1k

~
1 −≥+= ++

+
+ αgg   

and 
( ) k

1k1k1k
1k
1k PFGIP +++
+
+ −=  

Iteration : k=k+1 
if k=K EXIT otherwise GOTO Prediction Step 

Exit : Output results 
 353 
The symbol ()- refers to to computation of the pseudoinverse of a square matrix. 354 
 355 
COMPUTATIONAL EXPERIMENTS 356 
 357 
In the preliminary computational experiments conducted to test the KF algorithms we have focused our 358 
attention in the quality of the results and not in the computational efficiency. A prototype has been 359 
implemented in MATLAB and tested computationally. From a practitioner’s point of view, assuming 360 
that the MATLAB code is available, the input data to apply the method to a network of interest is the 361 
following: 362 
 363 

• Network topology: nodes and directed links. The graph of the road network can be obtained 364 
exporting the network model, if available, from most of the professional software for 365 
Geographic Information Systems or for Transport Planning analysis 366 

• Indicator for nodes that are considered centroids, entry and/or exit points of the network. This 367 
is information directly available when the network model comes from professional Transport 368 
Planning software. 369 

0Δgk
k =
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• List of OD pairs. For each origin centroid a pointer to the vector containing the list of 370 
destination centroids. A data structure that can be easily generated when the previous 371 
information is available. 372 

• For each OD pair, the considered paths as a list of pointers defining the sequence of links that 373 
define each path. The natural order of state variables is defined for (origin centroid, destination 374 
centroid, OD path id). This is the procedural step that requires the resort to specific traffic 375 
assignment software. In our case we have performed a DUE assignment with Dynameq (23) to 376 
generate the set of most likely used paths from which we have generated the corresponding 377 
data structures. 378 

• For each sensor (access/leaving centroid or link sensor) the list of origin centroids and the list 379 
of OD paths affected by the measure should be easily available. This means, in other words, 380 
matching the OD-paths structures to the detection layout. 381 

 382 
The detection layout raises some methodological concerns. As we have specified it consists of two 383 
components: the cordon component encircling the network with sensoring at input-output gates (as for 384 
instance is currently available is most of the urban pricing systems), and the detection layout at the 385 
interior of the encircled area, as graphically illustrated in figure 2. From the point of view of the 386 
estimation of time-dependent OD matrices the optimal sensor location is a problem strongly related to 387 
the observability of the network, namely when a space state approach is used to solve the problem, as it 388 
is the case of the Kalman Filter approach. The observability of a system from a state space 389 
representation means that for any possible sequence of state and control vectors the current system 390 
state can be determined using only the outputs. In other words, that the behavior of the system can be 391 
determined from the system outputs. Gentilli and Mirchandani (24) propose generic formulations of the 392 
problem in terms of various types of traffic detectors, solutions for the case when the detectors are 393 
located at links and measure traffic volumes can be found in (25) and (26). We have slightly modified 394 
the algorithm for the set covering formulation of the problem in (26) to find an approximate solution 395 
that captures the 100% of the traffic demand, ensuring in this way the complete observability of the 396 
system. 397 
 398 
After the pilot project in Freeways with Bluetooth sensors reported in (21) and (22) a pilot project has 399 
been proposed in a urban network of limited size in the Business Central District of the city of 400 
Barcelona, as part of a Research & Development project funded by the Spanish Ministry of Research 401 
and Innovation. A simulation experiment has been conducted prior to deploying the technology for the 402 
pilot project. The selected site has been the network of the Amara District in the city of San Sebastian 403 
in Spain. The network has 232 links, 142 nodes and 85 OD pairs and a rich structure of alternative 404 
paths between OD totalizing 358 paths according to the DUE with Dynameq. Figure 4(a) displays a 405 
snapshot of the microsimulation model used to emulate the RSU and the Centroids. Figure 4(b) 406 
displays, highlighted as red dots, the detection layout of the 48th RSU according with the proposed 407 
specifications. Once a vehicle is generated in the simulation model, it is randomly identified as an 408 
equipped vehicle depending on the proportion of penetration of the technology, 30% in our case, 409 
according to the available information on the penetration of the technology in the Metropolitan Region 410 
of Barcelona. The simulation emulates the logging and time stamping of this random sample of 411 
equipped vehicles. 412 
 413 
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  414 
           Figure 4:  4(a) Microsimulation Model                                   4(b) Detection layout 415 
 416 
COMPUTATIONAL RESULTS AND PRELIMINARY CONCLUSIONS 417 
 418 
The length of the time interval has been set to 90 seconds and the simulation period to 1 hour, that is 40 419 
intervals. The extended state vector is set to M=10 according to the maximum time used to complete an 420 
OD trip. The dimension of the extended state vector is 358x(10+1).  421 
 422 
In the preparation of the input special attention has been paid to the specification of the data structures 423 
defining the lists of emerging links from each node, OD pairs sharing the same origin centroid, OD 424 
path identifiers for each OD pair (which will depend on the DUE results), and the lists of OD paths and 425 
OD pairs intercepted by each sensor q detecting vehicles arriving from origin centroid i. As mentioned 426 
earlier, from a practical point of view this an important cumbersome task, to make it useful to 427 
practitioners it would be necessary to develop an application automatically building these data 428 
structures form the network topology, the detection layout and the path structure from a DUE. A task 429 
that we think is affordable since this information can be automatically extracted from most of the 430 
available software, i.e. Dynameq. 431 
 432 
A design factor in computational experiments is the number H of bins used to update the discrete 433 
approximations of travel time distributions from entry i to sensor q. This affects the data structures and 434 
the updating algorithm. A discretization in H=3 bins appears to be satisfactory, according to our 435 
previous experience, for most of the tests. 436 
 437 
The parameters of the KF approach, as constants affecting variance-covariance matrices of sensor 438 
measures and state variables have been tuned.  The behavior consistency according to the previous 439 
experience has been checked. Conservation of entry flow from origin centroids has been explicitly 440 
considered as a measure equation with near zero variance leading to a pseudo inverse computation in 441 
Kalman gain step. A diagonal variance-covariance matrix has been initially tested, but a multinomial 442 
variance-covariance performs better. 443 
 444 
The preliminary tests have been conducted implementing the filter code in Matlab, but the computing 445 
performance shows that, for a networks of the size of Amara, it is almost at the limits of what Matlab 446 
can support and, therefore, new versions implemented with more appropriate programming tools will 447 
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be developed in the future to efficiently deal with larger networks.  Computational tests have been 448 
conducted with different initializations for state variables and historic data: 449 
 450 
• An initial OD pattern stable for the simulation horizon (OD proportions from origin to destination 451 

centroids of OD pairs) as the true OD pattern (used in the simulation), with input flows from origin 452 
centroids for each interval increased/decreased in percentages for an hour 15, 25, 30 and 30% and 453 
distribution of OD path flows according to: 454 

 455 
1. Proportional distribution of OD trips to OD available paths. 456 
2. Allocation of OD trips to only 1 of the available OD paths for each OD pair. 457 

 458 
• An initial OD pattern stable for the simulation horizon (OD proportions from origin to destination 459 

centroids of OD pairs) as a non informative OD pattern (not used in the simulation) with input 460 
flows from origin centroids for each interval increased/decreased in percentages for an hour 15, 25, 461 
30 and 30% and distribution of OD path flows according to: 462 
1. Proportional distribution of OD trips in OD available paths. 463 
2. Allocation of OD trips to only 1 of the available OD paths for each OD pair. 464 

 465 
Figure 5 summarizes the values of the RMSE for OD flows centroid 768 to all at the end of the process 466 
for the computational experiment with variable OD flows in 4 time slices. Empirical discrete travel 467 
time distributions approximated with H=3 are considered. In order to check the robustness of the new 468 
approach we have assumed the worst case initialisation with equiprobabilities in the OD pattern from 469 
every entry centroid to all destinations and in the OD path selection for all OD pairs .  470 
  471 

Els 2 gràfics per 4 slices….., 472 

   OD pairs from origin centroid 768 to all – Fix OD Pattern – 4 Sliced OD flows 
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Slice 1: 15 
min 

10 2 29 0 4 1 3 0 61 32 3 2 

Slice 2: 15 
min 

17 3 48 0 7 1 6 0 102 53 5 3 

Slice 3: 15 
min 

21 4 58 0 8 2 7 0 122 64 6 3 

Slice 4: 15 
min 

21 4 58 0 8 2 7 0 122 64 6 3 

 473 
Figure 5: OD Pairs from centroid 768 to all (in table). In graphics, filtered OD flows (left) and (right) 474 
Target OD flows (continuous line) and historic OD flows (discontinuous line) for OD pairs 768-765 475 
(blue), 768-783 (green) and 768-789 (red). Y Scale are OD flows per interval (90seg). X axis is the 476 

iteration number.  477 
 478 
 479 
Computational experiments show that tuning of KF parameters is directly related to the historic OD 480 
flows considered: each initialization requires a specific tuning of the parameters but this not always 481 
guarantees the convergence.   This is related to the structure of the variance-covariance matrices 482 
capturing the relations amongst OD path flows. To overcome these convergence problems more 483 
elaborated relationships have to be developed.   484 
 485 
A complementary set of experiments accounts for the effect of historic flows in the convergence to the 486 
true values of OD flows in similar conditions. Convergence to target OD flows (in black) is improved 487 
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depending the considered historic entry flows and tuning of the parameters has to be considered for 488 
practical purposes (Figure 6).  489 
 490 

 491 
Figure 6: Effect of historic data in the convergence for 1 Slice entry flows and constant OD pattern 492 

without congestion (time horizon 1h). Discrete travel time distributions in H=3 bins. 493 
 494 

Els 2 gràfics per 1 slice, no sé si podem augmenter en 1 gràfics el paper, sinó suggereixo suprimir 495 
l’actual Figure 6 i deixar la 7 (que passaria a numerar-se com a 6). 496 
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 OD pairs from origin centroid 768 to all – Fix OD Pattern – 1 Sliced  constant OD flows 
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 498 
Figure 7: OD Pairs from centroid 768 to all. Convergence for 1 Slice entry flows and constant OD 499 

pattern without congestion (time horizon 1h). Discrete travel time distributions in H=3 bins. In 500 
graphics, filtered OD flows (left) and (right) Target OD flows (continuous line) and historic OD flows 501 
(discontinuous line) for OD pairs 768-765 (blue), 768-783 (green) and 768-789 (red). Y Scale are OD 502 

flows per interval (90seg). X axis is the iteration number. 503 
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