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THE EQUATIONS OF REES ALGEBRAS

OF EQUIMULTIPLE IDEALS OF DEVIATION ONE

FERRAN MUIÑOS AND FRANCESC PLANAS-VILANOVA

(Communicated by Irena Peeva)

Abstract. We describe the equations of the Rees algebra R(I) of an equi-
multiple ideal I of deviation one provided that I has a reduction generated
by a regular sequence x1, . . . , xs such that the initial forms x∗

1, . . . , x
∗
s−1 are

a regular sequence in the associated graded ring. In particular, we prove that
there is a single equation of maximum degree in a minimal generating set of
the equations of R(I), which recovers some previous known results.

1. Introduction

Let (R,m) be a Noetherian local ring and let I be an equimultiple ideal of R of
deviation μ(I)− height(I) = 1. The aim of this paper is to study the equations of
R(I) = R[It] =

⊕
n≥0 I

n, the Rees algebra of I. We will assume that x1, . . . , xs, y

is a minimal generating set of I, that J = (x1, . . . , xs) is a reduction of I generated
by an R-sequence and that the initial forms x∗

1, . . . , x
∗
s−1 in G(I) =

⊕
n≥0 I

n/In+1,

the associated graded ring of I, are a G(I)-sequence.
Recall that the reduction number of I with respect to J is the least integer r ≥ 0

such that Ir+1 = JIr, denoted by rJ(I) (notice that, with our assumptions, r ≥ 1).
Set V = R[X1, . . . , Xs, Y ] and let ϕ : V → R(I) be the polynomial presentation of
R(I) sending Xi to xit and Y to yt. Let Q =

⊕
n≥1 Qn be the kernel of ϕ, whose

elements will be referred to as the equations of R(I). For instance, for r = rJ (I),
the containment of yr+1 in JIr induces an equation Y r+1 −

∑
XiFi ∈ Qr+1, with

Fi ∈ Vr. Given an integer n ≥ 1, set Q〈n〉 ⊂ Q, the ideal generated by the
homogeneous equations of R(I) of degree at most n in X1, . . . , Xs, Y . The relation
type of I, denoted by rt(I), is the least integer N ≥ 1 such that Q = Q〈N〉. When
Q = Q〈1〉, I is said to be of linear type. Our main result is the following.

Theorem 4.1. Let (R,m) be a Noetherian local ring and let I be an ideal of R.
Let x1, . . . , xs, y be a minimal generating set of I and J = (x1, . . . , xs). Assume
that x1, . . . , xs is an R-sequence and that x∗

1, . . . , x
∗
s−1 is a G(I)-sequence. Then,

for each n ≥ 2, the map sending F ∈ Qn to F (0, . . . , 0, 1) ∈ (JIn−1 : yn) induces
an isomorphism of R-modules[

Q

Q〈n− 1〉

]
n

∼=
JIn−1 : yn

JIn−2 : yn−1
.
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In particular, if J is a reduction of I with reduction number r = rJ (I), then rt(I) =
rJ(I) + 1 and there is a form Y r+1 −

∑
XiFi ∈ Qr+1, with Fi ∈ Vr, such that

Q = (Y r+1 −
∑

XiFi) +Q〈r〉.

Note that, with these assumptions, s ≤ grade(I) ≤ height(I) ≤ l(I) ≤ μ(J) =
s, where l(·) and μ(·) stand for the analytic spread and the minimal number of
generators, respectively. Thus I is an equimultiple ideal (i.e., height(I) = l(I)) of
deviation μ(I)− height(I) = 1. Roughly speaking, the theorem says how to obtain
a minimal generating set of the equations of R(I). For the equations of degree 1:
pick a minimal generating set of the first syzygies of I, viewed as elements of Q1;
for the equations of higher degree n, 2 ≤ n ≤ r + 1, take representatives of the
inverse images of a minimal generating set of (JIn−1 : yn)/(JIn−2 : yn−1) (see
Remark 2.2 and Example 5.1).

Thus far, the study of the equations of R(I) has produced a vast literature. Part
of this work has been focused on ideals having small deviations as well as on the
interplay between the reduction number and the relation type (see, just to mention
a few of them, [12], [13], [14], [15], [23], [24], [26], [27]). The particular hypotheses
and interests in this note owe much to the works of T. Cortadellas and S. Zarzuela
in [3], W. Heinzer and M.-K. Kim in [7], S. Huckaba in [12] and [13], N.V. Trung
in [23] and [24], and W.V. Vasconcelos in [26]. In fact, Theorem 4.1 sprouted as
an attempt to understand [26, Theorem 2.3.3]. That is one of the main reasons
for considering ideals I of the form I = (J, y), J being a reduction of I generated
by a sufficiently good sequence. The reader may also consult [10], [11] for a recent
account on the equations of R(I) with similar assumptions.

Even in a simpler case, i.e. μ(I)− height(I) = 0, the equations of R(I) may be
difficult to describe. Remarkably, any ideal I of the principal class is generated by
an R-sequence x1, . . . , xs, provided that I is prime ([4]) or R is Cohen-Macaulay.
In both cases the equations are generated by the Koszul relations xiXj − xjXi,
1 ≤ i < j ≤ s. In particular, I is of linear type. However, if I is not prime
and R is not Cohen-Macaulay, this is no longer true. For instance, consider the
ideals generated by a system of parameters. C. Huneke asked in [16] whether
there is a uniform bound for the relation type of these ideals in a complete local
equidimensional Noetherian ring R. The full answer to this question was given
in [28], [19] and [1]. Concretely, in [1, Example 2.1], it was shown that if the
non-Cohen-Macaulay locus of R has dimension 2 or more, there exist families of
parametric ideals of R with unbounded relation type. This gives an idea of the
complexity of the structure of the equations of R(I).

In our case, i.e. μ(I)− height(I) = 1, if R is Cohen-Macaulay, one has that I is
of linear type if and only if I is locally of the principal class at all minimal primes
of I (see [9, Theorem 4.8]). But, if I is not locally of the principal class at its
minimal primes, then the relation type may be arbitrarily large. For instance, take
R = k[[a1, a2]], the power series ring in two variables a1, a2 over a field k, set x1 =

ap1, x2 = ap2 and y = a1a
p−1
2 , with p ≥ 2. Let I = (x1, x2, y). Then I has deviation

one and is (a1, a2)-primary, hence not locally of the principal class at its unique
minimal prime. One can check that rt(I) ≥ p. In fact, I fulfills the hypotheses
of Theorem 4.1, J = (x1, x2) being a reduction of I. Thus, the containment yp ∈
JIp−1 induces the only equation of degree p in a minimal generating set of equations
of R(I) and rt(I) = p (see Example 5.1).
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As said before, this note has its origins in the following result of W.V. Vasconce-
los in [26, Theorem 2.3.3]: let (R,m) be a Cohen-Macaulay local ring of dimension
d and let I be an m-primary ideal of R. Let x1, . . . , xd, y be a minimal generat-
ing set of I, where J = (x1, . . . , xd) is a reduction of R with reduction number
rJ(I) = 1. Then there is a form Y 2 −

∑
XiFi ∈ Q2, with Fi ∈ V1, such that

Q = (Y 2 −
∑

XiFi) +Q〈1〉. In particular, rt(I) = 2.
Observe that the hypotheses of [26, Theorem 2.3.3] imply that x1, . . . , xd is an R-

sequence and that the initial forms x∗
1, . . . , x

∗
d are a G(I)-sequence (see the result of

P. Valabrega and G. Valla in [25, Proposition 3.1]). By Theorem 4.1, it is enough to
suppose that x∗

1, . . . , x
∗
d−1 is a G(I)-sequence and to consider any reduction number

(see Corollary 4.5).
Also as a corollary of Theorem 4.1, we recover the result of W. Heinzer and

M.-K. Kim in [7, Theorem 5.6], where they prove that the equations of F(I) =
R(I) ⊗ R/m =

⊕
n≥0 I

n/mIn, the fiber cone of I, are generated by a unique

equation of degree rJ(I) + 1.
The paper is organised as follows: in Section 2 we recall from [20] how to express

the equations of a standard algebra in terms of the effective relations and the Koszul
homology. Section 3 is focused on the equations of the Rees algebra. In Section 4
we prove Theorem 4.1 and the aforementioned results of W. V. Vasconcelos and
W. Heinzer and M.-K. Kim. We finish by giving some examples in Section 5.

All the unexplained notation can be found in [2] and [22]. Throughout the paper,
(R,m) is a Noetherian local ring and J ⊂ I are two ideals of R.

2. The equations of a standard algebra

and the effective relations

By a standard R-algebra U we mean a graded R-algebra U =
⊕

n≥0 Un, with

U0 = R, U = R[U1] and U1 minimally generated by z1, . . . , zs ∈ U1 as an R-
module. For instance, the R-algebra R(I) =

⊕
n≥0 I

n, the R/I-algebra G(I) =⊕
n≥0 I

n/In+1 and the R/m-algebra F(I) =
⊕

n≥0 I
n/mIn are standard algebras.

Let V = R[T1, . . . , Ts] be a polynomial ring with variables T1, . . . , Ts and let
ϕ : V → U be the induced presentation of U sending Ti to zi. Let Q =

⊕
n≥1 Qn

be the kernel of ϕ, whose elements will be referred to as the equations of U . As
before, let Q〈n〉 be the ideal generated by the homogeneous equations of U of degree
at most n. The relation type of U , denoted by rt(U), is the least integer N ≥ 1, such
that Q = Q〈N〉. Observe that the relation type of I, rt(I), defined in Section 1, is
nothing else but the relation type of its Rees algebra R(I).

Although Q depends on the presentation ϕ, the quotients (Q/Q〈n − 1〉)n =
Qn/V1Qn−1, n ≥ 2, do not. Indeed, let S(U1) be the symmetric algebra of U1 and
let α : S(U1) → U be the canonical morphism induced by the identity in degree
one. Given n ≥ 2, the module of effective n-relations of U is defined to be E(U)n =
ker(αn)/U1 ker(αn−1). One can prove that, for any n ≥ 2, (Q/Q〈n−1〉)n ∼= E(U)n
(see [20, Definition 2.2]). In particular, the relation type of U can be calculated as
the least integer N ≥ 1, such that E(U)n = 0 for all n ≥ N + 1.

This description of (Q/Q〈n − 1〉)n as E(U)n = ker(αn)/U1 ker(αn−1) has the
advantage of being canonical. However, it is often useful to express (Q/Q〈n− 1〉)n
as a Koszul homology module (see [20, Corollary 2.7]). Concretely,

(Q/Q〈n− 1〉)n ∼= E(U)n ∼= H1(z ;U)n,
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for n ≥ 2, where H1(z ;U)n denotes the first homology module of the complex:

. . . → ∧2(R
s)⊗ Un−2

∂2,n−2−→ ∧1(R
s)⊗ Un−1

∂1,n−1−→ Un → 0,

where the Koszul differentials are defined as follows: if e1, . . . , es stands for the
canonical basis of Rs and u ∈ Un−2 and v ∈ Un−1, then

∂2,n−2(ei ∧ ej ⊗ u) = ej ⊗ zi · u− ei ⊗ zj · u and ∂1,n−1(ei ⊗ v) = zi · v.

As usual, Z1(z ;U) and B1(z ;U) will stand for the graded modules of 1-cycles and
1-boundaries, respectively, of the Koszul complex of z. Observe that B1(z ;U)1 = 0.

For the sake of easy reference we finish this section by stating the following two
observations.

Remark 2.1. For n ≥ 2, there is an isomorphism τn : (Q/Q〈n− 1〉)n
∼=→ H1(z ;U)n

sending the class of F ∈ Qn modulo Q〈n− 1〉 to the homology class of the s-tuple
(F1(z), . . . , Fs(z)) ∈ Z1(z ;U)n ⊂ Un−1⊕ . . .⊕Un−1, where F1, . . . , Fs are elements
in Vn−1 satisfying F = T1F1 + . . .+ TsFs. For n = 1, setting Q〈0〉 = 0 and taking
into account that B1(z ;U)1 = 0, there is an isomorphism τ1 : Q1 → Z1(z ;U)1.

Proof. Take f = ϕ : V → U and g = idV in [20, Theorem 2.4]. �

Remark 2.2. Let U be a standard R-algebra and let Q =
⊕

n≥1 Qn be the equations

of U . Suppose that Q = Q〈N〉 for some N ≥ 1. Set

C = {F1,1, . . . , F1,s1 , . . . , FN,1, . . . , FN,sN },

with Fi,j ∈ Qi. Then C is a minimal generating set of Q if and only if, for each n =
1, . . . , N , the classes of Fn,1, . . . , Fn,sn modulo Q〈n − 1〉 are a minimal generating
set of (Q/Q〈n− 1〉)n.

3. The equations of the Rees algebra via Koszul homology

As always, (R,m) is a Noetherian local ring and I is an ideal of R. The purpose of
this section is to describing the modules (Q/Q〈n− 1〉)n, where Q are the equations
of R(I). By Remark 2.1, this is equivalent to describing the graded components of
a Koszul homology module. Although the next lemma is written for R(I), similar
results can also be established for G(I) or F(I).

Lemma 3.1. Let (R,m) be a Noetherian local ring and let I be an ideal of R. Let
x1, . . . , xs, y be a minimal generating set of I and J = (x1, . . . , xs). Then, for each
integer n ≥ 2, there is a short exact sequence

0 → H1(x1t, . . . , xst ;R(I))n
ytH1(x1t, . . . , xst ;R(I))n−1

−→ H1(x1t, . . . , xst, yt ;R(I))n
σn−→ JIn−1 : yn

JIn−2 : yn−1
→ 0.

Moreover, σn sends the class of a cycle (w1t
n−1, . . . , wst

n−1, ws+1t
n−1), wi ∈ In−1,

to the class of a ∈ (JIn−1 : yn), where ws+1 = ayn−1 + b for some b ∈ JIn−2. In
particular, if J is a reduction of I, then rt(I) ≥ rj(I) + 1.

Licensed to University Politicnica de Catalunya. Prepared on Wed Feb  6 04:28:44 EST 2013 for download from IP 147.83.133.106.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



REES ALGEBRAS OF EQUIMULTIPLE IDEALS OF DEVIATION ONE 1245

Proof. Take z = x1t, . . . , xst and z = x1t, . . . , xst, yt in It ⊂ R(I) = R[It] =⊕
n≥0 I

n. Consider the induced graded long exact sequence of Koszul homology:

H1(z ;R(I))n−1

(ρ1)n−→ H1(z ;R(I))n

−→ H1(z ;R(I))n −→ H0(z ;R(I))n−1

(ρ0)n−→ H0(z ;R(I))n,

where (ρi)n is just the multiplication by ±yt. We get the following short exact
sequence:

0 → coker(ρ1)n −→ H1(z ;R(I))n
σ′
n−→ ker(ρ0)n → 0.

Clearly, coker(ρ1)n = H1(z ;R(I))n/ytH1(z ;R(I))n−1. On the other hand,

H0(z ;R(I))n−1 = In−1/JIn−2.

Thus ker(ρ0)n = In−1 ∩ (JIn−1 : y)/JIn−2. One can check that σ′
n maps the

homology class of a cycle (w1t
n−1, . . . , wst

n−1, ws+1t
n−1) ∈

⊕s+1
i=1 I

n−1tn−1 to the
class of ws+1 ∈ In−1 ∩ (JIn−1 : y) modulo JIn−2. Finally, consider the mapping
θn,

ker(ρ0)n =
In−1 ∩ (JIn−1 : y)

JIn−2

θn−→ JIn−1 : yn

JIn−2 : yn−1
,

defined as follows: for each w ∈ In−1 ∩ (JIn−1 : y), since In−1 = yn−1R + JIn−2,
take a ∈ R and b ∈ JIn−2 such that w = ayn−1 + b. Clearly, a ∈ (JIn−1 : yn).
Let w be the class of w modulo JIn−2 and let a be the class of a modulo (JIn−2 :
yn−1). Set θn(w) = a. An elementary computation shows that θn is a well-defined
isomorphism. Take σn = θn ◦ σ′

n. �

Although Lemma 3.1 has a version for n = 1, we are more interested in a kind
of analogue obtained from considering x1, . . . , xs and x1, . . . , xs, y as sequences of
elements of degree zero in I ⊂ R.

Remark 3.2. Let (R,m) be a Noetherian local ring and let I be an ideal of R. Let
x1, . . . , xs, y be a minimal generating set of I and J = (x1, . . . , xs). Then there is
an exact sequence

0 → H1(x1, . . . , xs ;R)

yH1(x1, . . . , xs ;R)
−→ H1(x1, . . . , xs, y ;R)

σ̃1−→ (J : y)

J
→ 0,

where σ̃1 sends the homology class of a cycle (w1, . . . , ws, ws+1) ∈ Rs+1 to the class
of ws+1 ∈ (J : y). In particular, if x1, . . . , xs is an R-sequence, H1(x1, . . . , xs ;R) =
0 and σ̃1 is an isomorphism.

In the next lemma we will prove that, for n ≥ 2, H1(x1t, . . . , xst ;R(I))n = 0,
provided that x1, . . . , xs is an R-sequence such that x∗

1, . . . , x
∗
s−1 is aG(I)-sequence.

Notice that we are not saying that the whole H1(x1t, . . . , xst ;R(I)) vanishes. In
fact, if s > 1, x1(x2t) ∈ x1t · R(I), whereas x1 �∈ x1t · R(I); hence x1t, . . . , xst is
not an R(I)-sequence.

Before this, recall the result of P. Valabrega and G. Valla in [25, Corollary 2.7]
which characterizes to be a G(I)-sequence. Let J ⊂ I be two ideals of a Noetherian
local ring R. Let x1, . . . , xs be a minimal generating set of J and write J0 = 0 and
Ji = (x1, . . . , xi), for i = 1, . . . , s. In particular, the initial forms x∗

1, . . . , x
∗
s in G(I)

are in I/I2. Then, x∗
1, . . . , x

∗
s is a G(I)-sequence if and only if x1, . . . , xs is an
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R-sequence and the so-called Valabrega-Valla modules V VJi
(I)n = Ji ∩ In/JiI

n−1

are zero for all i = 1, . . . , s and all n ≥ 1.

Lemma 3.3. Let (R,m) be a Noetherian local ring and let J ⊂ I be two ideals of R.
Let x1, . . . , xs be a minimal generating set of J . Write J0 = 0 and Ji = (x1, . . . , xi),
for i = 1, . . . , s. Let n ≥ 2. Then the following two conditions are equivalent:

(i) H1(x1t, . . . , xit ;R(I))n = 0, for all i = 1, . . . , s;
(ii) (Ji−1I

n−1 : xi) ∩ In−1/Ji−1I
n−2 = 0, for all i = 1, . . . , s.

Suppose that, in addition, x1, . . . , xs is an R-sequence and x∗
1, . . . , x

∗
s−1 is a G(I)-

sequence. Then, for all n ≥ 2 and all i = 1, . . . , s,

H1(x1t, . . . , xit ;R(I))n = 0.

Proof. For a fixed n ≥ 2, let us prove the equivalence between (i) and (ii) by
induction on s ≥ 1. If s = 1, then

H1(x1t ;R(I))n
∼= (0 : x1) ∩ In−1 ∼= (J0I

n−1 : x1) ∩ In−1/J0I
n−2,

and the claim follows.
Now, take s > 1 and set z = x1t, . . . , xs−1t and z = x1t, . . . , xs−1t, xst. The

induced graded long exact sequence of Koszul homology gives rise to the exact
sequence

H1(z ;R(I))n −→ H1(z ;R(I))n −→ H0(z ;R(I))n−1

(ρ0)n−→ H0(z ;R(I))n,

where (ρ0)n is the multiplication by ±xst. Then

ker(ρ0)n =
((x1t, . . . , xs−1t) : xst)n−1

(x1t, . . . , xs−1t)n−1

∼=
(Js−1I

n−1 : xs) ∩ In−1

Js−1In−2
.

Therefore, one has the following exact sequence:

H1(z ;R(I))n −→ H1(z ;R(I))n −→ (Js−1I
n−1 : xs) ∩ In−1

Js−1In−2
→ 0.

By the induction hypothesis, H1(x1t, . . . , xit ;R(I))n = 0, for all i = 1, . . . , s− 1, is
equivalent to (Ji−1I

n−1 : xi)∩In−1/Ji−1I
n−2 = 0, for all i = 1, . . . , s−1. Therefore,

using the former exact sequence, one deduces that H1(x1t, . . . , xit ;R(I))n = 0, for
all i = 1, . . . , s, is equivalent to (Ji−1I

n−1 : xi) ∩ In−1/Ji−1I
n−2 = 0, for all

i = 1, . . . , s.
Suppose that x1, . . . , xs is an R-sequence and x∗

1, . . . , x
∗
s−1 is a G(I)-sequence.

Let us see that (Ji−1I
n−1 : xi) ∩ In−1/Ji−1I

n−2 = 0, for all i = 1, . . . , s and all
n ≥ 2. Using the aforementioned result of P. Valabrega and G. Valla,

V VJi
(I)n−1 = Ji ∩ In−1/JiI

n−2 = 0

for all i = 1, . . . , s − 1 and all n ≥ 2. Since x1, . . . , xs is an R-sequence, then
(Ji−1 : xi) = Ji−1 for all i = 1, . . . , s. Therefore, for all i = 1, . . . , s and all n ≥ 2,

Ji−1I
n−2 ⊆ (Ji−1I

n−1 : xi) ∩ In−1 ⊆ (Ji−1 : xi) ∩ In−1 = Ji−1 ∩ In−1 = Ji−1I
n−2.

�
One can state a different version of the second part of Lemma 3.3, which will

in turn lead to a slightly different version of the main result of this paper (see
Remark 4.3).

Recall that x1, . . . , xs is a d-sequence if (Ji : xi+1xj) = (Ji : xj) for all 0 ≤ i ≤
s − 1 and all j ≥ i + 1 (where J0 = 0, Ji = (x1, . . . , xi) and Js = J , as before).
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This condition is equivalent to (Ji : xi+1) ∩ J = Ji for all 0 ≤ i ≤ s − 1. Clearly,
R-sequences are d-sequences.

Remark 3.4. Let (R,m) be a Noetherian local ring and let I be an ideal of R. Let
x1, . . . , xs be a minimal generating set of J , where J = (x1, . . . , xs) is a reduction
of I with reduction number r = rJ (I). Assume that

(a) x1, . . . , xs is a d-sequence and
(b) V VJi

(I)r+1 = (x1, . . . , xi) ∩ Ir+1/(x1, . . . , xi)I
r = 0 for all i = 1, . . . , s− 1.

Then H1(x1t, . . . , xit ;R(I))n = 0, for all n ≥ r + 2 and all i = 1, . . . , s. Suppose
that, in addition,

(c) x1, . . . , xs is an R-sequence and
(d) V VJi

(I)r = (x1, . . . , xi) ∩ Ir/(x1, . . . , xi)I
r−1 = 0 for all i = 1, . . . , s− 1.

Then H1(x1t, . . . , xit ;R(I))r+1 = 0, for all i = 1, . . . , s.

Proof. Since J is a reduction of I with reduction number r, Ir+1 = JIr. Using (a)
and (b), for i = 1, . . . , s, we get

(Ji−1 : xi) ∩ Ir+1 = (Ji−1 : xi) ∩ J ∩ Ir+1 = Ji−1 ∩ Ir+1 = Ji−1I
r.

Therefore, for all i = 1, . . . , s, (Ji−1 : xi)∩ Ir+1 = Ji−1I
r. Now, using the result of

N.V. Trung in [24, Proposition 4.7(i)], one has (Ji−1 : xi) ∩ In = Ji−1I
n−1, for all

n ≥ r + 1 and all i = 1, . . . , s. This clearly implies that

(Ji−1I
n : xi) ∩ In = Ji−1I

n−1,

for all n ≥ r + 1 and all i = 1, . . . , s, which by Lemma 3.3, is equivalent to
H1(x1t, . . . , xit ;R(I))n = 0, for all n ≥ r + 2 and all i = 1, . . . , s.

Now suppose that (c) and (d) hold. Then, for all i = 1, . . . , s,

Ji−1I
r−1 ⊆ (Ji−1I

r : xi) ∩ Ir ⊆ (Ji−1 : xi) ∩ Ir = Ji−1 ∩ Ir = Ji−1I
r−1.

Therefore, for all i = 1, . . . , s, (Ji−1I
r : xi) ∩ Ir = Ji−1I

r−1. By Lemma 3.3,
H1(x1t, . . . , xit ;R(I))r+1 = 0, for all i = 1, . . . , s. �

4. Main result

We now have all the ingredients to prove the main result of the paper. As always,
set V = R[X1, . . . , Xs, Y ] and let Q be the kernel of the polynomial presentation
ϕ : V → R(I) sending Xi to xit and Y to yt.

Theorem 4.1. Let (R,m) be a Noetherian local ring and let I be an ideal of R.
Let x1, . . . , xs, y be a minimal generating set of I and J = (x1, . . . , xs). Assume
that x1, . . . , xs is an R-sequence and that x∗

1, . . . , x
∗
s−1 is a G(I)-sequence. Then,

for each n ≥ 2, the map sending F ∈ Qn to F (0, . . . , 0, 1) ∈ (JIn−1 : yn) induces
an isomorphism of R-modules[

Q

Q〈n− 1〉

]
n

∼=
JIn−1 : yn

JIn−2 : yn−1
.

In particular, if J is a reduction of I with reduction number r = rJ (I), then rt(I) =
rJ(I) + 1 and there is a form Y r+1 −

∑
XiFi ∈ Qr+1, with Fi ∈ Vr, such that

Q = (Y r+1 −
∑

XiFi) +Q〈r〉.
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Proof. By Lemma 3.1, with z = x1t, . . . , xst and z = x1t, . . . , xst, yt,

0 → H1(z ;R(I))n
ytH1(z ;R(I))n−1

−→ H1(z ;R(I))n
σn−→ JIn−1 : yn

JIn−2 : yn−1
→ 0

is an exact sequence for all n ≥ 2. By Lemma 3.3, H1(z ;R(I))n = 0 for all

n ≥ 2. Therefore H1(z ;R(I))n
σn∼= (JIn−1 : yn)/(JIn−2 : yn−1), for n ≥ 2. With

Remark 2.1, we conclude:

[
Q

Q〈n− 1〉

]
n

τn∼= H1(z ;R(I))n
σn∼=

JIn−1 : yn

JIn−2 : yn−1
,

for all n ≥ 2. Given F ∈ Qn, write F =
∑s

i=1 XiFi + Y G, with Fi, G ∈
Vn−1. Then the morphism τn sends the class of F to the homology class of
(F1(z), . . . , Fs(z), G(z)). But G(z) = G(x1, . . . , xs, y)t

n−1 and G(x1, . . . , xs, y) =
G(0, . . . , 0, 1)yn−1 + b, for some b ∈ JIn−2. By Lemma 3.1, σn sends the homology
class of (F1(z), . . . , Fs(z), G(z)) to the class of G(0, . . . , 0, 1) modulo (JIn−2 : yn−1)
and notice that G(0, . . . , 0, 1) = F (0, . . . , 0, 1).

If J is a reduction of I with reduction number r, (JIn−1 : yn) = R for all
n ≥ r + 1. Therefore (Q/Q〈n − 1〉)n = 0 for all n > r + 1 and (Q/Q〈r〉)r+1

∼=
R/(JIr−1 : yr) �= 0, since yr �∈ JIr−1. Therefore rt(I) = r+1. Finally, notice that
the containment yr+1 ∈ JIr induces an equation of the form Y r+1−

∑
i XiFi, with

Fi ∈ Vr, which is sent by σn ◦ τn to the class of 1 in R/(JIr−1 : yr). �

Remark 4.2. In Theorem 4.1, we use the hypotheses “x1, . . . , xs is an R-sequence
and x∗

1, . . . , x
∗
s−1 is a G(I)-sequence” to assure H1(x1t, . . . , xst ;R(I))n = 0, for all

n ≥ 2, by means of Lemma 3.3. Therefore, in Theorem 4.1, one can substitute,
if needed, the hypotheses “x1, . . . , xs is an R-sequence and x∗

1, . . . , x
∗
s−1 is a G(I)-

sequence” by the weaker hypotheses “(Ji−1I
n−1 : xi) ∩ In−1/Ji−1I

n−2 = 0, for all
i = 1, . . . , s and all n ≥ 2”. See Example 5.2 as an application of this comment.

With the weaker hypotheses pinpointed in Remark 3.4, we get the next version
of Theorem 4.1.

Remark 4.3. Let (R,m) be a Noetherian local ring and let I be an ideal of R. Let
x1, . . . , xs, y be a minimal generating set of I, where J = (x1, . . . , xs) is a reduction
of I with reduction number r = rJ (I). Assume that

(a) x1, . . . , xs is a d-sequence and
(b) V VJi

(I)r+1 = (x1, . . . , xi) ∩ Ir+1/(x1, . . . , xi)I
r = 0 for all i = 1, . . . , s− 1.

Then rt(I) = rJ (I) + 1. Suppose that, in addition,

(c) x1, . . . , xs is an R-sequence and
(d) V VJi

(I)r = (x1, . . . , xi) ∩ Ir/(x1, . . . , xi)I
r−1 = 0 for all i = 1, . . . , s− 1.

Then there is a form Y r+1 −
∑

XiFi ∈ Qr+1, with Fi ∈ Vr, such that Q =
(Y r+1 −

∑
XiFi) +Q〈r〉.

Proof. This follows from Lemma 3.1 and the proof of Theorem 4.1, but using Re-
mark 3.4 instead of Lemma 3.3. �
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Discussion 4.4. The hypotheses of Remark 4.3 are connected with the work of
S. Huckaba in [13, Theorem 1.4] and N.V. Trung in [24, Theorem 6.4] (see also [3,
Theorem 3.2], [12], [5, Theorem 5.3], [23]). In [13, Theorems 1.4, 1.5], S. Huckaba
proved that if I is an ideal with l(I) = height(I)+1 ≥ 2 and such that any minimal
reduction J of I can be generated by a d-sequence x1, . . . , xs with x∗

1, . . . , x
∗
s−1 being

a G(I)-sequence (s = l(I)), then rt(I) ≤ rJ (I) + 1. If in addition μ(I) = l(I) + 1,
then the equality rt(I) = rJ (I)+1 holds. In particular, r = rJ(I) is independent of
J . In fact, N.V. Trung improved this last result in [24, Theorem 6.4] by showing that
r coincides with the Castelnuovo-Mumford regularity of R(I). To prove rt(I) ≥
rJ(I) + 1, S. Huckaba showed that the equality Ir+1 = JIr induces an equation of
R(I) of maximum degree. In Theorem 4.1 and with a different approach, we have
completed the description of the whole ideal of equations of R(I).

As a corollary of Theorem 4.1, one can prove the result of W.V. Vasconcelos in
[26, Theorem 2.3.3] for any reduction number not necessarily equal to 1.

Corollary 4.5. Let (R,m) be a Cohen-Macaulay local ring of dimension d. Let
I be an m-primary ideal of R minimally generated by x1, . . . , xd, y, where J =
(x1, . . . , xd) is a reduction of R with reduction number r = rJ (I). Suppose that
x∗
1, . . . , x

∗
d−1 is a G(I)-sequence. Then there is a form Y r+1 −

∑
XiFi ∈ Qr+1,

with Fi ∈ Vr, such that Q = (Y r+1 −
∑

XiFi) +Q〈r〉. In particular, rt(I) = r+ 1.

Proof. Since R is Cohen-Macaulay and I is m-primary, x1, . . . , xd is an R-sequence
and the results follow from Theorem 4.1. �

Before stating the next result, recall that for an ideal L of R and any standard
R-algebra U , the relation type of U ⊗ R/L is rt(U ⊗ R/L) ≤ rt(U) (see e.g. [20,
Example 3.2]). Hence rt(F(I)) ≤ rt(G(I)) ≤ rt(I). In fact, for any n ≥ 2 and writ-
ing E(I)n for E(R(I))n (see Section 2 to recall the definition of effective relations),
there is an exact sequence E(I)n+1 → E(I)n → E(G(I))n → 0. In particular,
rt(I) = rt(G(I)) and E(I)N ∼= E(G(I))N for N = rt(I) ([20, Proposition 3.3];
see also [8, p. 268]). In our context, rt(F(I)) is also equal to rt(I), which is not a
general fact (see the Conjecture of G. Valla in [9, §2] and a counterexample in [21,
Example 4.4]; see also [8, p. 268 and Corollary 2.6]).

As another corollary of Theorem 4.1, we recover the following result of W. Heinzer
and M.-K. Kim in [7, Theorem 5.6].

Corollary 4.6. Let (R,m) be a Noetherian local ring with infinite residue field
k = R/m and let I be an ideal of R. Let x1, . . . , xs, y be a minimal generating set
of I, where J = (x1, . . . , xs) is a reduction of I with reduction number r = rJ (I).
Assume that x1, . . . , xs is an R-sequence and that x∗

1, . . . , x
∗
s−1 is a G(I)-sequence.

Then there is a form Y r+1 −
∑

XiFi, with Fi ∈ k[X1, . . . , Xs, Y ] forms of degree r
and F(I) ∼= k[X1, . . . , Xs, Y ]/(Y r+1 −

∑
XiFi). In particular, rt(F(I)) = rJ (I) +

1 = rt(I).

Proof. By Theorem 4.1, rt(F(I)) ≤ rt(I) = r+1. By [7, Lemma 5.2], E(F(I))n = 0
for all 2 ≤ n ≤ r and E(F(I))r+1 �= 0. Thus F(I) has only equations of degree
r + 1 and rt(F(I)) = r + 1. By Theorem 4.1, E(I)r+1 is cyclic and generated by
the equation of R(I) induced by the containment yr+1 ∈ JIr. Therefore the same
happens with E(F(I))r+1 (see [5, Proposition 3.2] or [8, p. 268]). �
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5. Some examples

Our purpose is to take advantage of Theorem 4.1 to obtain a minimal generating
set of the equations ofR(I). The ascending chain of colon ideals {(JIn−1 : yn)}n≥1,
which need not be rigid but which stabilize in R, can be calculated in any computer
algebra system, giving a possibly alternative procedure to finding the equations of
R(I).

The following ideal I, for a specific p ≥ 1, is often used as an example of an
ideal of relation type at least p. However, we are not aware of any reference with
a detailed description of a minimal generating set of the equations of R(I), for a
general p ≥ 1. As was said above, Theorem 4.1 will be crucial to our purposes.

Example 5.1. Let (R,m) be a Noetherian local ring. Let a1, a2 be an R-sequence

and p ≥ 2. Set x1 = ap1, x2 = ap2 and y = a1a
p−1
2 . Let I be the ideal generated

by x1, x2, y. Set V = R[X1, X2, Y ] and let ϕ : V → R(I) be the presentation of
R(I) sending Xi to xit and Y to yt. Then a minimal generating set of the ideal
Q = ker(ϕ) is obtained from:

• a unique equation Fn(X1, X2, Y ) = ap−n
1 Y n−ap−n

2 X1X
n−1
2 ∈ Qn of degree

n, for each n, 2 ≤ n ≤ p;
• two equations F1(X1, X2;Y ) = ap−1

1 Y − ap−1
2 X1 and G1(X1, X2, Y ) =

a2Y − a1X2 ∈ Q1 of degree 1.

Proof. We start by proving the hypotheses in Theorem 4.1. Clearly x1, x2 is an R-
sequence and J = (x1, x2) is a reduction of I since Ip = JIp−1. By [18, Corollary 3],
a monomial m on a1, a2 belongs to an ideal generated by monomials m1, . . . ,mr on
a1, a2 if and only if m is a multiple of some mi. It follows that yp−1 �∈ JIp−2 and
Ip−1 �⊆ JIp−2. Thus rJ (I) = p− 1.

Claim. x∗
1 is a G(I)-sequence. By [25, Corollary 2.7], it suffices to prove

V V(x1)(I)n = x1R ∩ In/x1I
n−1 = 0

for all n ≥ 1. Fix n ≥ 1. By [18, Proposition 1],

x1R ∩ In = (Li,j,k | i, j, k positive integers such that i+ j + k = n),

where Li,j,k = lcm(ap1, a
ip
1 ajp2 (a1a

p−1
2 )k). Let us prove that Li,j,k is in x1I

n−1.

Indeed, if i ≥ 1, then Li,j,k = aip1 ajp2 (a1a
p−1
2 )k = ap1[a

(i−1)p
1 ajp2 (a1a

p−1
2 )k] ∈

x1I
n−1 and we have finished. Hence we can suppose i = 0 and j + k = n. If

k = 0, then j = n and L0,j,0 = ap1a
jp
2 ∈ x1I

n−1. Suppose 0 < k ≤ p. Then

L0,j,k = ap1a
jp+k(p−1)
2 = ap1(a

p
2)

j+k−1ap−k
2 ∈ x1I

n−1. Finally, if k > p, then

L0,j,k = ajp2 (a1a
p−1
2 )k = ap1[a

k−p
1 a

jp+k(p−1)
2 ] = ap1[a

k−p
1 a

(k−p)(p−1)
2 a

jp+p(p−1)
2 ] =

ap1(a
p
2)

j+p−1(a1a
p−1
2 )k−p ∈ x1I

n−1.
Note that if p > 2, then x∗

2 is not a G(I)-sequence because

(ap+2
1 ap−2

2 )x2 = ap1(a1a
p−1
2 )2 = x1y

2 ∈ I3,

where (ap+2
1 ap−2

2 ) ∈ I \ I2.
Therefore, we can apply Theorem 4.1 and deduce that, for all n ≥ 2,[

Q

Q〈n− 1〉

]
n

∼=
JIn−1 : yn

JIn−2 : yn−1
.

In particular, since (JIp−2 : yp−1) � (JIp−1 : yp) = R, then rt(I) = rJ (I) + 1.
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Claim. (JIn−1 : yn) = (ap−n
1 , a2) for 2 ≤ n ≤ p − 1. First note that, for all 2 ≤

n ≤ p− 1, a2 ∈ (JIn−1 : yn) since a2y
n = an1a

n(p−1)+1
2 = a1a

p
2(a

n−1
1 a

(n−1)(p−1)
2 ) =

a1a
p
2(a1a

p−1
2 )n−1 ∈ JIn−1. Since (JIn−1 : yn) is generated by monomials on a1, a2,

and a2 ∈ (JIn−1 : yn), there is only one possible remaining generator: a power

of a1. Since ap−n
1 yn = ap−n

1 an1a
n(p−1)
2 = ap1a

n(p−1)
2 = ap−n

2 ap1(a
p
2)

n−1 ∈ JIn−1,

then ap−n
1 ∈ (JIn−1 : yn). However, and again using [18, Corollary 3], one has

ap−n−1
1 /∈ (JIn−1 : yn).

Hence (Q/Q〈p − 1〉)p ∼= (JIp−1 : yp)/(JIp−2 : yp−1) = R/(a1, a2) and, for
2 ≤ n ≤ p− 1,

[
Q

Q〈n− 1〉

]
n

∼=
JIn−1 : yn

JIn−2 : yn−1
=

(ap−n
1 , a2)

(ap−n+1
1 , a2)

∼=
(ap−n

1 )

(ap−n+1
1 , ap−n

1 a2)
.

In other words, for each 2 ≤ n ≤ p, (Q/Q〈n− 1〉)n is generated by a single element

that corresponds to the class of ap−n
1 (1 if n = p). To find this element, consider

the identity ap−n
1 yn = ap−n

2 ap1(a
p
2)

n−1, which induces the equation Fn(X1, X2, Y ) =

ap−n
1 Y n − ap−n

2 X1X
n−1
2 ∈ Qn. Since the isomorphism of Theorem 4.1 sends the

class of Fn to the class of Fn(0, 0, 1) = ap−n
1 , we are done. By Remark 2.2, Fn is in

a minimal generating set of Q, for 2 ≤ n ≤ p.
To finish, let us find the equations of degree one. Though this is trivial, we

sketch the proof here to show the similarity with the greater degrees. As before,
one shows that J = (ap−1

1 , a2). Using Remark 3.2,

H1(x1, x2, y ;R)
σ̃1∼=

(J : y)

J
=

(ap−1
1 , a2)

(ap1, a
p
2)

.

Identify Q1 with Z1(x1, x2, y ;R) and B1 = 〈x1Y − yX1, x2Y − yX2, x1X2 − x2X1〉
with B1(x1, x2, y ;R). Then Q1/B1 is minimally generated by the classes of the

two equations corresponding to the classes of ap−1
1 and a2. The identities ap−1

1 y =

ap−1
2 ap1 and a2y = a1a

p
2 induce the desired equations F1(X1, X2, Y ) = ap−1

1 Y −
ap−1
2 X1 and G1(X1, X2, Y ) = a2Y − a1X2 ∈ Q1, since by σ̃1 their classes are sent

to the classes of F1(0, 0, 1) = ap−1
1 and G1(0, 0, 1) = a2. Clearly, B1 ⊂ 〈F1, G1〉 and

F1, G1 constitute a minimal generating set of Q1. �

In the next example, although the initial forms x∗
1, x

∗
2 are zero-divisors in G(I),

where I = (x1, x2, y), one may still apply Theorem 4.1, because the conditions of
Lemma 3.3 “(Ji−1I

n−1 : xi)∩In−1/Ji−1I
n−2 = 0, for all i = 1, . . . , s, for all n ≥ 2”,

still hold (see Remark 4.2).

Example 5.2. Let (R,m) be a Noetherian local ring. Let a1, a2 be an R-sequence

and let p ≥ 5 be an odd integer. Set x1 = ap1, x2 = ap2 and y = a21a
p−2
2 . Let I

be the ideal generated by x1, x2, y and set J = (x1, x2). Then J is a reduction of
I with reduction number rJ(I) = p − 1 and (x1I

n−1 : x2) ∩ In−1/x1I
n−2 = 0, for

all n ≥ 2. However, the initial forms x∗
1, x

∗
2 are zero-divisors in G(I). Applying

Remark 4.2, one obtains the minimal generating set of the equations of R(I):

• an equation Fn(X1, X2, Y ) = Y p −X2
1X

p−2
2 of degree p;

• an equation Fn(X1, X2, Y ) = a2Y
n − a1X1X

n−1
2 of degree n = (p+ 1)/2;
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• an equation Fn(X1, X2, Y ) = ap−2n
1 Y n − ap−2n

2 X1X
n−1
2 of degree n, for

each n, 2 ≤ n ≤ (p− 1)/2;

• two equations F1(X1, X2;Y ) = ap−2
1 Y − ap−2

2 X1 and G1(X1, X2, Y ) =
a22Y − a21X2 of degree 1.

We leave the details to the reader.

The next example shows that the weaker hypotheses in Remark 4.3 are not
enough to assure that there is only one equation of R(I) of maximum degree.

Example 5.3. Let k be a field and R = k[X,Y ](X,Y )/(XY, Y 2)(X,Y ). Let x and y
be the classes of X and Y in R. Let m = (x, y) be the maximal ideal of R. Then
the relation type of m is 2 and there are two equations of degree 2 in a minimal
generating set of equations of R(m).

Proof. Set J = (x). Since y2 = 0 ∈ Jm and y �∈ J , then m2 = Jm and J is a
reduction of m with reduction number 1. Moreover, since (0 : x) = (0 : x2), x
is a d-sequence. By Remark 4.3, rt(m) ≤ rJ (m) + 1 = 2. Set V = k[S, T ] and
let ψ : V → G(m) be the presentation of G(m) sending S to x + m2 and T to
y + m2. For n ≥ 2, mn = (xn). Thus m2/m3 is a k-vector space of dimension 1.
Therefore ker(ψ2) ⊂ V2 must have dimension 2. In fact, ker(ψ2) = 〈ST, T 2〉. Since
ker(ψ1) = 0, then E(G(m))2 is minimally generated by two elements. We finish by
using that E(m)2 ∼= E(G(m))2 ([20, Proposition 3.3]). �

The next example shows that if the deviation μ(I)− height(I) fails to be equal
to 1, then there might be several equations of R(I) of maximum degree.

Example 5.4. Let (R,m) be a two-dimensional regular local ring, p ≥ 2. Then
rt(mp) = 2 and there are

(
p
2

)
equations of degree 2 in a minimal generating set of

equations of R(mp).

Proof. Let x, y be a regular system of parameters of R, V = R[X,Y ] and let
ϕ : V → R(m) be the presentation of R(m) sending X to xt and Y to yt. Since x, y
is an R-sequence, ker(ϕ) = 〈xY − yX〉. Set V (p) = R[Xp, Xp−1Y, . . . , XY p−1, Y p]
and let ϕ(p) : V (p) → R(mp) be the p-th Veronese transform of ϕ. Note that
ker(ϕ(p)n) = ker(ϕpn) = 〈xY − yX〉Vpn−1.

Set W = R[T0, T1, . . . , Tp] and let ψ : W → V (p) be the polynomial presentation
of V (p) sending Ti to Xp−iY i. It is known (see e.g. [17, Proposition 2.5]) that the
kernel of ψ is the determinantal ideal generated by the 2× 2 minors of the matrix
M, where M is (

T0 T1 . . . Tp−1

T1 T2 . . . Tp

)
.

In particular, ker(ψ) = ker(ψ)〈2〉.
Consider Φ = ϕ(p) ◦ψ : R[T0, T1, . . . , Tp] → R(mp), the polynomial presentation

of R(mp) sending Ti to xiyp−i and let Q = ker(Φ) be the ideal of equations of
R(mp). Let us see that Qn = ker(ψn) + Wn−1Q1, for all n ≥ 2. Indeed, given
F ∈ Qn, since ker(ϕ(p)n) = 〈xY −yX〉Vpn−1, one can find Fi ∈ Wn−1 and Gi ∈ Q1

such that ψn(F ) = ψn(
∑

FiGi). Therefore, (F −
∑

FiGi) ∈ ker(ψn) and F ∈
ker(ψn) +Wn−1Q1.

Since ker(ψ) = ker(ψ)〈2〉, then Qn = ker(ψn) + Wn−1Q1 = Wn−2 ker(ψ2) +
Wn−1Q1 ⊆ Wn−2Q2 ⊆ Qn, for all n ≥ 2. Therefore Q = Q〈2〉, rt(mn) = 2 and
μ(Q2/W1Q1) ≤

(
p
2

)
.
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Let us prove that Q2/W1Q1 is minimally generated by
(
p
2

)
elements, which are

precisely the classes of the 2×2 minors ofM. Since Q1 ⊂ mW1, thenW1Q1 ⊂ mW2.
Setting L = ker(ψ2), M = W2 and N = V (p)2, we have

Q2

W1Q1
⊗ k ∼=

Q2

mQ2 +W1Q1
=

ker(ψ2) +W1Q1

m ker(ψ2) +W1Q1

∼=
L

mL+ (L ∩W1Q1)
.

On the other hand, there is a natural epimorphism

L

mL+ (L ∩W1Q1)
→ L

L ∩mM
,

where L/(L ∩mM) ∼= (L+mM)/mM = ker(ψ2 ⊗ 1k). Hence,

μ

(
Q2

W1Q1

)
≥ dim

L

(L ∩mM)
= dimker(ψ2 ⊗ 1k),

which clearly is
(
p
2

)
. Therefore μ((Q/Q〈1〉)2) =

(
p
2

)
and, by Remark 2.2, there are(

p
2

)
equations of degree 2 in a minimal generating set of equations of R(mp).
Note that J = (xp

1, x
p
2) is a reduction of mp with reduction number rJ (m

p) = 1,
that xp

1, x
p
2 is an R-sequence and that (xp

1)
∗ is a G(mp)-sequence. �
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Diagonal 647, ETSEIB, 08028 Barcelona, Spain

E-mail address: ferranmuinos@gmail.com
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