
Abstract 
It is well known that some  people  can  perform  a  
task with  greater  precision  and  accuracy  than  
others: they are experts. In  the  past,  experts were  
interviewed  to  find out why they have this exper-
tise,  but  this  was  not  always completely effective 
because often experts "don't know what they 
know". In this paper we propose a model of the 
process of making decisions performed by experts 
in the final adjustment of products task. Based on 
this model, we also propose a system based on a 
machine learning module that facilitates the cap-
ture of these expert skills. We give an example to il-
lustrate the process proposed. 
 

1 Introduction 
It is well known that some  people  can  perform  a  task 
with  greater  precision  and  accuracy  than  others: they are 
experts. Industries in which product quality depends on 
specialized experts spent many resources managing and 
trying to replicate these skills. In particular, perfume, food, 
beverage, painting, and other creative industries continuous-
ly deal with problems in modeling processes based on the 
cognitive ability of these highly specialized individuals [1, 
2]. In these tasks, the intervention of human experts, includ-
ing colourists, perfumers, chefs, sommeliers, or brew mas-
ters, becomes necessary, preventing the complete process 
automation.  
 
In  the  past,  experts were  interviewed  to  find out why 
they have this expertise,  but  this  was  not  always com-
pletely effective because often experts "don't know what 
they know". In addition, experts are not always very enthu-
siastic with this collaboration.  
 
Experts are involved in several tasks in the production 
process. Two of these tasks are the formulation task and the 
adjustment or tuning task. On the one hand, the formulation 
task concerns the process of finding an appropriate set of 
ingredients, their proportions and the process steps in order 

to get a target product. Once the formulation task is com-
pleted, the product is ready to be manufactured in the pro-
duction phase. 
 
On the other hand, the adjustment or fine-tuning task is 
performed during manufacturing. This task must be per-
formed whenever the product is nearly finished and has to 
be corrected in order to achieve the target product with the 
desired precision and quality. In the adjustment process, the 
expert, based on his/her sensory experience and abilities, 
determines slight variations in the proportions of one or 
more ingredients. The intuition of the expert, usually, does 
not allow him/her to know the exact quantities to increase to 
achieve the goal or target. However, he/she is able of itera-
tively determining approximate quantities to add until the 
final target is met. Not only formulation but also adjustment 
requires a lot of highly qualified human and time resources. 
 
In this paper we propose a process model of making deci-
sions performed by experts in the adjustment task and, 
based on this model, we also introduce an innovative artifi-
cial cognitive system to support decision making in adjust-
ment processes based on human sensory abilities. The pro-
posed system, based on expert knowledge management, 
draws on a machine learning tool jointly with an actions’ 
generator module. A specifically-adapted Support Vector 
Machine (SVM) [1][2] is previously trained with ‘state-
action’ type patterns provided by experts. Then, it enables 
identifying and selecting the most adequate action among 
those provided by the generator module for a particular 
state. The coupled actions’ generation-selection process is 
iterated until the final state satisfies certain conditions, i.e. 
until the target is achieved.  
 
The remainder of this paper is organized as follows. In sec-
tion 2, an expert decision making modelling in the adjust-
ment task is presented. Section 3 is devoted to the architec-
ture of the system based on a machine learning module that 
facilitates the capture of expert skills. In section 4, a specific 
machine learning system, Support Vector Machines is pro-
posed to be part of the system. In section 5, the active learn-
ing paradigm applied in this case is explained. An artificial 
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example is shown in order to illustrate the model and the 
system. Finally, section 6 includes the conclusion and future 
research issues. 
 

2. Expert adjustment model 
The process of adjustment is formulated as a Deterministic 
Markov Decision Process (DMDP) composed mainly by a 
set of states, a set of actions and an immediate reward func-
tion that quantifies the benefit of choosing one or another 
action. In a DMDP, a policy is a function that specifies the 
action chosen in each state. The core problem of DMDP is 
finding an optimum policy, which is the policy that max-
imizes some cumulative function of rewards. Reinforcement 
Learning is a common paradigm to deal with DMDP. It 
comes into play when examples of desired behavior are not 
available and it is based on the trade-off between explora-
tion, or discover new actions, and exploitation, that is re-
lated to the preference of actions that have already been 
shown to be useful. In contrast to Reinforcement Learning 
paradigm, our proposal takes advantage of expert know-
ledge by reducing the cost of the exploration phase using a 
standard supervised machine learning to induce the reward 
function. Our proposal is similar to methods commonly 
used in Robotics and known as Learning by Demonstration 
[8]. However, robotics approaches are more aimed at solv-
ing simple tasks rather that capturing expert specialized 
skills 
 
Formally, we consider a system that is determined at a given 
moment by a state si∈ S. For each state si, a set of actions Ai 
(either finite or not) is associated. When an action a∈Ai is 
carried out, a transition takes place, so that the system 
moves from the state si to the state si+1. In the deterministic 
cases, it is verified that the final state is a function of the 
current state si and the performed action a, so si+1=F(si,a). 
Function F is named effect function. Effect function is nor-
mally not known by the expert. The truly effect of an action 
is only known when the action is actually performed. The 
expertise of the expert comes from the partial knowledge of 
other structures: the fitness quasi-order relation and the 
immediate reward.  
 
The fitness quasi-order relation allows ordering the states. 
We use the term quasi-order to emphasize that it is not 
strictly an order, it is a reflexive and transitive binary rela-
tion but not necessarily anti-symmetric. The fitness quasi-
order relation can be derived from a fitness function, i.e. a 
function from S to R that quantifies the suitability of each 
state. However, most of the cases, only the quasi-order rela-
tion is known by the expert, that is, given two states, the 
expert can order them but he/she is unable to assign an abso-
lute value to each state. Depending on the mathematical 
structure of S, it is possible to assign an objective fitness 
function. For instance, if there exists a distance d defined on 

S, and the target state si is known, the function d(.,si): S R 
is a fitness function. Of course, it is possible to consider 
more than one fitness function in the same problem, and 
also more than one fitness quasi-order relation.  
 
The immediate reward is a function from SxAR that quan-
tifies the effect of an action given a state. It might appear 
that immediate reward can be directly deduced from the 
effect function and the fitness function f, that is: 
Rw(s,a)=±(f(F(s,a))–f(s)). However, the immediate reward 
may depend on other factors such as the cost of performing 
the action, time constraints, etc.  
 
Our objective is to extract the knowledge that allows the 
expert to choose the correct action given a state, that is, a 
policy. The main drawback in this task is that the expert 
sensory knowledge is not structured. It consists in subjective 
interpretation of the current state and partial knowledge of 
the effect function, fitness function, fitness quasi-order 
relation and immediate reward. This knowledge is based on 
the expert intuition, that is, he/she knows which action is 
more suitable in each case but normally the expert cannot 
explain why.  
 

3. Architecture System 
In order to replicate expert abilities it is necessary to ob-
serve how experts work. First, when experts adjust a prod-
uct, they rarely obtain the target state using just one action; 
instead they usually perform a sequence of actions so that 
each action try to correct the state obtained from the pre-
vious action.  Second, when the experts decide to perform 
an action, they are quite sure that this action will improve 
the current state, but normally they are not so sure how 
much the state will be improved. If a set of actions is in-
volved in the decision, experts, at most, are able to roughly 
rank the actions and select the most value action. 
 
In regard to the first observation, we propose a closed-loop 
architecture in which once an action is selected, it is per-
formed and the state obtained is feed again to the system for 
deciding another action. This process is continuing until the 
target state is obtained with the desire level of precision. In 
regard to the second observation, we propose a supervised 
learning algorithm that tries to capture a simplified version 
of the immediate reward. The most simplified version is one 
that associate value 1 (good) or value -1 (bad) to each pair 
state-action.  
 



 
Fig 1 Architecture of the system,  

 
Our proposal basically consists of a closed loop architecture 
formed by an action generator used jointly with a supervised 
learning algorithm, concretely a Support Vector Machine 
(SVM), although other algorithms may also be considered. 
The suitability of SVM in this approach is based on the 
work of Platt [1], which proposes to map the SVM outputs 
to posterior probabilities and hence outputs of an SVM for 
classification algorithm are not only used to assign a label to 
a test pattern but also to map it to a graduate scale of be-
longing to one class or another. In this way, the actions 
generated by the action generator can be used as inputs for 
the trained SVM and the outputs allow us to order these 
actions for selecting the best one.  
 
The action generator is the module that contains the restric-
tion and previous knowledge of the problem to be solved. It 
proposes performing only those actions that are available 
and compatible with the current state and with the product 
to be manufactured. The efficiency of the method depends 
heavily on the design of this module. 
 

4. Learning module: Support Vector Machines 
SVM are a class of learning algorithms that combine a 
strong theoretical motivation from the Statistical Learning 
Theory, optimization techniques, and the kernel mapping 
idea [2]. The original input vector from the input space X is 
mapped by means a proper kernel function to a higher-
dimensional feature space F where the pattern discrimina-
tion is simpler, i.e. where a linear separating hyperplane 
exists. 
 
Each hyperplane in feature space is determined by the ex-
pression: w·x+b=0 where x∈F. Do not matter if F is an 
infinite dimensional space since, in practice, the discrimi-
nant function is written in terms of the original patterns 
from input space X, the kernel function and the Lagrange 
multipliers obtained by solving the dual optimization prob-
lem: ∑ =+⋅ 0),( bxxk iiα , where xi, x∈X.  
 
The SVM algorithm search for the separating hyperplane 
maximizing the margin, that is, maximizing the minimum 
distance between the hyperplane and the training patterns. 
Training patterns closest to the hyperplane are known as 
support vector and it depends only of them. 

 
For a vector x∈F it is satisfied that: w·x=±d·||w||, where d is 
the distance of x to the hyperplane and the sign determines 
the vector’x side of the hyperplane, i.e. the class of the vec-
tor x.  Therefore, it is clear from the last expression that the 
output of the SVM algorithm allows to know how far x is 
from the hyperplane in F or from the non-linear discrimi-
nate surface in X. Therefore, each hyperplane in F induces 
an order relation into the input space X that permits to select 
from among several inputs which is in the farthest from the 
hyperplane in the feature space. If the two classes are relat-
ing with a positive and a negative characteristic, the distance 
from the hyperplane determines a graduation of this charac-
teristic. 
 

5. Active learning on action learning 
The learning phase of action learning is not very different to 
other classification problems. However, in this case, the 
patterns are pairs state-action and normally they are hard to 
label. The active learning process proposed starts by select-
ing a few patterns at random and from these to find a clas-
sifier by means a SVM algorithm. The trained model allows 
to obtain with little cost the decision value for any unlabeled 
pattern state-action. The next step is to select a new pattern 
to be labeled from the SVM decision. 
 
The process steps are: 

• step 1: Seed the search with representative patterns 
of patterns selected randomly. 
 

• step 2: Train an SVM on all labeled examples. 
 

• step 3: Use the trained SVM to obtain the decision 
values of a large amount of unlabeled instances 
(pairs state-action) and selecting one (or more) to 
query with the lower decision values (those closest 
to the separating hyperplane in feature space). 

 
• step 4: With the help of an automatic o human 

”‘oracle”’, label the instances obtained from step 3. 
 

• step 5: Repeat step 2 to 4 until a desired number of 
training patterns. 

 
 

6. An artificial example: The learning phase 
 
In this section, we propose an artificial example in order to 
understand the concepts defined above. Let us suppose that 
the space of states S is the real line and the space of action A 
is also the real line, so given a state s and an action a, the 



effect of performing the action a, given s is F(s,a)=s+a. 
Function F is the function that we called effect function.  
 
We consider a fitness function f which assigns each state s∈ 
S = R a value related to the suitability of s in a specific task. 
The function used in this example is: 
 

f(x)=x2+x+20·sin(x) 
 

that is represented in figure 2. This function has a global 
minimum at x≈-1.47 but has other local minima. 
 
In this section, we compare the active action learning me-
thodology with the passive one on the learning phase via the 
artificial experiment.  
 
Obviously, we have an infinite pool of unlabeled pairs state-
action (R2) and we need to select a subset to assign a class 
for training the SVM. In this artificial experiment we com-
pare the performance of the training phase in two cases: 
selecting the training pattern at random (passive learning) or 
selecting a few pattern at random (we have selected 10 pat-
terns) and use them to iterative selecting a new pattern and 
increasing the training set. 
 
The above procedure was repeated thirty times and the re-
sults were averaged. Figure 3 and 4 show an example of 200 
patterns selected using active and passive methodology. 
 
It can be seen that active learning only select a few patterns 
far the discriminate surface. 
 

 
Fig 2 Function f used in the example and 2D state-action space 

associated to f,  
 
 

 
 

Fig 3 Action states space and selected patterns using an active 
learning paradigm  

 

 
Fig 3 Action states space and selected patterns using a pasive 

learning paradigm  

 

Conclusion and Future Works 
In some industrial processes, the final adjustment task has 
always been considered as inevitably manual. This task is 
performed by experts whose intuitive knowledge is used in 
order to improve the final product. For addressing this chal-
lenge, previous works proposed a methodology named ac-
tion learning that uses a classification learner for classifying 
action given a state. This paper tries to improve the most 
difficult phase of the action learning process, the learning 
process. It has been proved that taken an active learning 
methodology this learning phase is significantly improved. 
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