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ABSTRACT

This paper proposes a flexible solution methodology for solving
the Vehicle Routing Problem with Stochastic Demands (VRPSD).
The logic behind this methodology is to transform the issue of
solving a given VRPSD instance into an issue of solving a small set
of Capacitated Vehicle Routing Problem (CVRP) instances. Thus,
our approach takes advantage of the fact that extremely efficient
metaheuristics for the CVRP already exists. The CVRP instances
are obtained from the original VRPSD instance by assigning dif-
ferent values to the level of safety stocks that routed vehicles must
employ to deal with unexpected demands. The methodology also
makes use of Monte Carlo Simulation (MCS) to obtain estimates
of the expected costs associated with corrective routing actions (re-
course actions) after a vehicle runs out of load before completing
its route.
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1. INTRODUCTION

The Vehicle Routing Problem with Stochastic Demands (VRPSD)
is a well-known NP-hard problem in which a set of customers with
random demands must be served by a fleet of homogeneous ve-
hicles departing from a depot, which initially holds all available
resources. There are some tangible costs associated with the dis-
tribution of these resources from the depot to the customers. In
particular, it is usual for the model to explicitly consider costs
due to moving a vehicle from one node -customer or depot- to
another. These costs are often related to the total distance traveled,
but they can also include other factors such as number of vehicles
employed, service times for each customer, etc. The classical goal
here consists of determining the optimal solution (set of routes)
that minimizes those tangible costs subject to the following con-
straints: (i) all routes begin and end at the depot; (ii) each vehicle
has a maximum load capacity, which is considered to be the same
for all vehicles; (iii) all (stochastic) customer demands must be sat-
isfied; (iv) each customer is supplied by a single vehicle; and (v) a
vehicle cannot stop twice at the same customer without incurring
in a penalty cost.

Notice that the main difference between the Capacitated Vehicle
Routing Problem (CVRP) and the VRPSD is that in the former
all customer demands are known in advance, while in the latter
the actual demand of each customer has a stochastic nature, i.e.,

its statistical distribution is known beforehand, but its exact value
is revealed only when the vehicle reaches the customer. For the
CVRP, a large set of efficient optimization methods, heuristics and
metaheuristics have been already developed ([1]). However, this
is not yet the case for the VRPSD, which is a more complex prob-
lem due to the uncertainty introduced by the random behavior of
customer demands. Therefore, as suggested by Novoa and Storer
[2], there is a real necessity for developing more efficient and flex-
ible approaches for the VRPSD. On one hand, these approaches
should be efficient in the sense that they should provide optimal
or near-optimal solutions to small and medium VRPSD instances
in reasonable times. On the other hand, they should be flexible in
the sense that no further assumptions need to be made concerning
the random variables used to model customer demands, e.g., these
variables should not be assumed to be discrete neither to follow
any particular distribution. To the best of our knowledge, most of
the existing approaches to the VRPSD do not satisfy this flexibility
requirement.

The random behavior of customer demands could cause an ex-
pected feasible solution to become infeasible if the final demand
of any route exceeds the actual vehicle capacity. This situation
is referred to as “route failure”, and when it occurs, some correc-
tive actions must be introduced to obtain a new feasible solution.
For example, after a route failure, the associated vehicle might be
forced to return to the depot in order to reload and resume the dis-
tribution at the last visited customer. Our methodology proposes
the construction of solutions with a low probability of suffering
route failures. This is basically attained by constructing routes in
which the associated expected demand will be somewhat lower
than the vehicle capacity. Particularly, the idea is to keep a certain
amount of surplus vehicle capacity (safety stock or buffer) while
designing the routes so that if the final routes’ demands exceed
their expected values up to a certain limit, they can be satisfied
without incurring a route failure.

2. BASIC NOTATION

The Stochastic Vehicle Routing Problem (SVRP) is a family of
well-known vehicle routing problems characterized by the ran-
domness of at least one of their parameters or structural variables
[3]. This uncertainty is usually modeled by means of suitable
random variables which, in most cases, are assumed to be inde-
pendent. The Vehicle Routing Problem with Stochastic Demands
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(VRPSD) is among the most popular routing problems within the
SVRP family. There are two other classical problems belonging
to that family: the Vehicle Routing Problem with Stochastic Cus-
tomers (VRPSC) which was solved by Gendreau et al. [4] using
an adapted Tabu Search, and the Vehicle Routing Problem with
Stochastic Times (VRPST), but their applications are rather lim-
ited in comparison with the VRPSD, which is described in detail
next.

Consider a complete network constituted by n + 1 nodes, V =
{0,1,2, . . . ,n}, where node 0 symbolizes the central depot and
V ∗ =V\{0} is the set of nodes or vertices representing the n cus-
tomers. The costs associated with traveling from node i to node j
are denoted by c(i, j) ∀i, j ∈ V , where the following assumptions
hold true: (i) c(i, j) = c( j, i) (i.e., costs are usually assumed to
be symmetric, although this assumption could be relaxed if neces-
sary); (ii) c(i, i) = 0, and (iii) c(i, j)≤ c(i,k)+ c(k, j) ∀k ∈V (i.e.,
the triangle inequality is satisfied). These costs are usually ex-
pressed in terms of traveled distances, traveling plus service time
or a combination of both. Let the maximum capacity of each ve-
hicle be V MC >> maxi∈V ∗{Di}, where Di ≥ 0 ∀i ∈ V ∗ are the
independent random variables that describe customer demands -it
is assumed that the depot has zero demand. This capacity con-
straint implies that the demand random value never will be greater
than the V MC value, which allows us an adequate performance of
our procedure. For each customer, the exact value of its demand
is not known beforehand but it is only revealed once the vehicle
visits. No further assumptions are made on these random variables
other than that they follow a well-known theoretical or empirical
probability distribution -either discrete or continuous- with exist-
ing mean denoted by E[Di]. In this context, the classical goal is
to find a feasible solution (set of routes) that minimizes the ex-
pected delivery costs while satisfying all customer demands and
vehicle capacity constraints. Even when these are the most typi-
cal restrictions, other constraints and factors are sometimes con-
sidered, e.g., maximum number of vehicles, maximum allowable
costs for a route, costs associated with each delivery, time windows
for visiting each customer, solution attractiveness or balance, en-
vironmental costs, and other externalities.

3. OUR SIMULATION-BASED APPROACH

Our approach is inspired by the following facts: (a) the VRPSD
can be seen as a generalization of the CVRP or, to be more spe-
cific, the CVRP is just a VRPSD with constant demands –random
demands with zero variance–; and (b) while the VRPSD is yet
an emerging research area, extremely efficient metaheuristics do
already exists for solving the CVRP. Thus, one key idea behind
our approach is to transform the issue of solving a given VRPSD
instance into a new issue which consists of solving several “con-
servative” CVRP instances, each characterized by a specific risk
(probability) of suffering route failures. The term conservative
refers here to the fact that only a certain percentage of the vehi-
cle total capacity will be considered as available during the rout-
ing design phase. In other words, part of the total vehicle capac-
ity will be reserved for attending possible “emergencies” caused
by under-estimated random demands during the actual distribution
(routing execution) phase. This part can be considered as a safety
stock since it reflects the level of extra stock that is maintained to
buffer against possible route failures. Next, the specific steps of
our methodology are described in detail:

1. Consider a VRPSD instance defined by a set of customers with
stochastic demands, where each demand is a random variable fol-
lowing a given statistical distribution –either theoretical or empir-
ical as long as its mean exists.

2. Set a value k for the percentage of the maximum vehicle ca-
pacity that will be used as safety stock during the routing design

stage.

3. Consider the CVRP(k) defined by: (a) the reduced total vehicle
capacity, and (b) the deterministic demands given by the expected
value of the real stochastic demands.

4. Solve the CVRP(k) by using any efficient CVRP methodol-
ogy. Notice that the solution of this CVRP(k) is also an aprioristic
solution for the original VRPSD. Moreover, it will be a feasible
VRPSD solution as long as there will be no route failure, i.e., as
long as the extra demand that might be originated during execution
time in each route does not exceed the vehicle reserve capacity or
safety stock. Notice also that the cost given by this solution can be
considered as a base or fixed cost of the VRPSD solution, i.e., the
cost of the VRPSD in case that no route failures occur. Chances
are that some route failures occur during the execution phase. If so,
corrective actions -such as returning to the depot for a reload be-
fore resuming distribution- and their corresponding variable costs
will need to be considered. Therefore, the total costs of the corre-
sponding VRPSD solution will be the sum of the CVRP(k) fixed
costs and the variable costs due to the corrective actions.

5. Using the solution obtained in the previous step, estimate the ex-
pected (average) costs due to possible failures in each route. This
can be done by using Monte Carlo simulation, i.e., random de-
mands are generated and whenever a route failure occurs (or just
before it happens), a corrective policy is applied and its associated
costs are registered. In the experimental section of this paper, ev-
ery time a route fails we consider the costs of a round-trip from
the current customer to the depot; but, since we are using simu-
lation, other alternative policies and costs could also be consid-
ered in a natural way. After iterating this process for some hun-
dred/thousand times, a random sample of observations regarding
these variable costs are obtained and an estimate for its expected
value can be calculated.

6. Depending on the total costs associated with the solutions al-
ready obtained, repeat the process from Step 1 with a new value of
k -i.e., explore different scenarios to check how different levels of
safety stock affect the expected total cost of the VRPSD solution.

7. Finally, provide a sorted list with the best VRPSD solutions
found so far as well as their corresponding properties: fixed costs,
expected variable costs, and expected total costs.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In the CVRP literature, there exists a classical set of very well-
known benchmarks commonly used to test their algorithm. How-
ever, as noticed by Bianchi et al. [5], there are no commonly used
benchmarks in the VRPSD literature and, therefore, each paper
presents a different set of randomly generated benchmarks. Thus,
we decided to employ a natural generalization of several classical
CVRP instances by using stochastic demands instead of constant
ones. So, for each instance, while we decided to keep all node
coordinates and vehicle capacities, we changed di, the determinis-
tic demands of client i (∀i ∈ {1,2, . . . ,#nodes− 1}) to stochastic
demands Di following an exponential distribution with E[Di] = di.

For each instance, a total of 16 scenarios were simultaneously ex-
ecuted using a cluster of 16 personal computers IntelrCoreTM2
Quad Q8200 at 2.33GHz and 2GB RAM. The 16 scenarios were
obtained by varying the available vehicle capacity (i.e., the com-
plementary of the safety-stocks level) from 100% to 85% during
the routing-design stage. Table 1 shows the complete results ob-
tained for all 55 classical instances we generalized and tested.

The first column in Table 1 contains the name of each instance,
which includes the number of nodes and also the number of routes
of the ‘standard’ solution, e.g. B-n78-k10 is an instance of class
B with 78 nodes and able to be solved with a 10-route solution.
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Columns 2 to 4 are related to solutions obtained by our algorithm
when a 100 % of the vehicle maximum capacity is considered dur-
ing the design stage. Notice that this strategy always provides
pseudo-optimal solutions in terms of fixed costs (Column 2), since
they can be directly compared with the CVRP best-known solu-
tion. However, since no safety stock is used, there is a chance that
these solutions can suffer from route failures. In turn, route fail-
ures might imply high expected variable costs (estimated in Col-
umn 3 by Monte Carlo simulation), thus increasing the total ex-
pected costs, which is estimated in Column 4. Here is where using
safety stocks can be of value: by not necessarily using all vehicle
maximum capacity during the design stage, some route failures
can be avoided. Hopefully, this might lead to new solutions with
slightly higher fixed costs but also with lower expected variable
costs. At the end, these alternative solutions might present lower
total expected costs, which are the ones to be minimized. On the
one hand, columns 5 to 9 show the results obtained with our al-
gorithm. Notice that fixed costs in Column 7 are always higher or
equal to those in Column 2. However, total expected costs in Col-
umn 9 are always lower or equal to those in Column 4. Notice also
that sometimes the best-found strategy (for this set of benchmarks)
is to use a 100 % of the vehicle maximum capacity (i.e. no safety
stocks at all) when designing the routes (Column 5).

5. CONCLUDING REMARKS

We have presented a hybrid approach to solving the Vehicle Rout-
ing Problem with Stochastic Demands (VRPSD). The approach
combines Monte Carlo simulation with well-tested metaheuristics
for the Capacitated Vehicle Routing Problem (CVRP). One of the
basic ideas of our methodology is to consider a vehicle capacity
lower than the actual maximum vehicle capacity when designing
VRPSD solutions. This way, this capacity surplus or safety stocks
can be used when necessary to cover route failures without hav-
ing to assume the usually high costs involved in vehicle restock
trips. Another important idea is to transform the VRPSD instance
to a limited set of CVRP instances -each of them defined by a
given safety-stocks level-, to which efficient solving methods can
be applied. Our approach provides the decision-maker with a set
of alternative solutions, each of them characterized by their total
estimated costs, leaving to him/her the responsibility of selecting
the specific solution to be implemented according to his/her utility
function. Although other previous works have proposed to bene-

fit from the relationship between the VRPSD and the CVRP, they
usually require hard assumptions that are not always satisfied in
realistic scenarios. On the contrary, our approach relaxes most of
these assumptions and, therefore, it allows for considering more
realistic customer demand scenarios. Thus, for example, our ap-
proach can be used to solve CVRPSD instances with hundreds of
nodes in a reasonable time and, even more important, it is valid for
virtually any statistical distribution –the one that best fits historical
data on customer demands.
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Using 100% of the Capacity Using a Percentage P of the Capacity
Instance Fixed Variable Total (1) P Routes Fixed Variable Total (2) Time (s) Gap (1) - (2)

A-n32-k5 787.08 179.49 966.57 100% 5 787.08 179.49 966.57 1 0.00%
A-n33-k5 662.11 159.77 821.88 97% 5 676.10 135.80 811.90 1 1.21%
A-n33-k6 742.69 162.45 905.14 100% 6 742.69 162.45 905.14 1 0.00%
A-n37-k5 672.47 134.43 806.89 97% 5 692.53 109.47 802.00 1 0.61%
A-n38-k5 733.95 157.48 891.43 93% 6 761.25 117.97 879.22 1 1.37%
A-n39-k6 835.25 178.10 1,013.35 94% 6 842.92 150.35 993.27 1 1.98%
A-n45-k6 944.88 254.68 1,199.55 94% 7 979.31 197.70 1,177.01 1 1.88%
A-n45-k7 1,154.39 325.68 1,480.07 100% 7 1,154.39 325.68 1,480.07 2 0.00%
A-n55-k9 1,074.96 304.33 1,379.28 100% 9 1,074.96 304.33 1,379.28 1 0.00%
A-n60-k9 1,362.19 395.42 1,757.61 100% 9 1,362.19 395.42 1,757.61 2 0.00%
A-n61-k9 1,040.31 288.01 1,328.32 95% 10 1,073.86 241.57 1,315.43 1 0.97%
A-n63-k9 1,632.19 518.31 2,150.50 100% 9 1,632.19 518.31 2,150.50 4 0.00%
A-n65-k9 1,184.95 341.43 1,526.37 99% 10 1,213.73 304.73 1,518.46 1 0.52%
A-n80-k10 1,773.79 548.84 2,322.63 100% 10 1,773.79 548.84 2,322.63 7 0.00%
B-n31-k5 676.09 169.46 845.54 95% 5 680.98 158.07 839.05 1 0.77%
B-n35-k5 958.89 267.77 1,226.66 99% 5 978.51 239.61 1,218.12 3 0.70%
B-n39-k5 553.20 142.48 695.68 100% 5 553.20 142.48 695.68 1 0.00%
B-n41-k6 834.92 248.30 1,083.22 96% 7 856.76 224.13 1,080.89 1 0.22%
B-n45-k5 754.23 146.48 900.71 100% 5 754.23 146.48 900.71 1 0.00%
B-n50-k7 744.23 202.85 947.07 93% 7 754.26 186.11 940.37 1 0.71%
B-n52-k7 754.38 204.83 959.21 92% 7 771.02 164.87 935.88 1 2.43%
B-n56-k7 716.42 211.94 928.36 88% 8 757.68 140.32 898.00 1 3.27%
B-n57-k9 1,602.28 559.89 2,162.17 96% 9 1,623.27 515.53 2,138.80 1 1.08%
B-n64-k9 868.40 277.39 1,145.79 100% 9 868.40 277.39 1,145.79 10 0.00%

B-n67-k10 1,039.46 316.59 1,356.05 100% 10 1,039.46 316.59 1,356.05 1 0.00%
B-n68-k9 1,283.16 442.17 1,725.33 97% 9 1,303.09 388.54 1,691.63 8 1.95%

B-n78-k10 1,245.82 367.24 1,613.06 98% 10 1,252.38 357.03 1,609.41 9 0.23%

Table 1: Results for instances A and B using exponentially distributed demands with E[Di] = di
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