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ABSTRACT

In this paper a hybrid simulation-based algorithm is proposed for
the Stochastic Flow Shop Problem. The main idea of the method-
ology is to transform the stochastic problem into a deterministic
problem and then apply simulation. To achieve this goal we use
Monte Carlo simulation and a modified version of the well-known
NEH heuristic. This approach aims to provide flexibility and sim-
plicity due to the fact that it is not constrained by any previous
assumption and relies in well-tested heuristics.
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1. INTRODUCTION

The Flow Shop Problem (FSP) is a well-known scheduling prob-
lem in which a set of independent jobs have to be sequentially
executed (processed) by a set of machines. In this scenario, the
processing time of each job in each machine is a known constant
value. The classical FSP goal is to determine a sequence of jobs
minimizing the total makespan, which is the time difference be-
tween the start and finish of processing all the jobs in all the ma-
chines (Figure 1).
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Figure 1: A graphical representation of the FSP

The Stochastic Flow Shop Problem (SFSP) can be seen as a gener-
alization of the FSP. In this non-deterministic version of the Flow
Shop Problem, the processing time of each job in each machine is
not a constant value, but instead it is a random variable which fol-
lows a given probability distribution. Therefore, in this scenario
the goal uses to be minimizing the expected makespan, which is
not the same as the expected total processing time. The study of
the SFSP is within the current popularity of introducing random-
ness into combinatorial optimization problems. It allows to de-
scribe new problems in more realistic scenarios where uncertainty
is present.

It is important to remark the FSP as a relevant topic for current
research. As it happened with other combinatorial optimization
problems, a large number of different approaches and methodolo-
gies have been developed to deal with the FSP. These approaches

range from pure optimization methods (such as linear and integer
programming), which allow to solve small-sized problems, to ap-
proximate methods such as heuristics and metaheuristics, which
can find near-optimal solutions for medium- and large-sized prob-
lems. Although the usual goal is to minimize the makespan, other
goals could also be considered, e.g. to minimize the total process-
ing time. Moreover, some of these methodologies are able to pro-
vide a set of near-optimal solutions from which the decision-maker
can choose according to his/her specific utility function. The situ-
ation is quite different in the case of the SFSP: to the best of our
knowledge, there is a lack of efficient and flexible methodologies
able to provide near-optimal solutions to the stochastic version of
the FSP. Moreover, most of the existing approaches are quite the-
oretical and make use of restrictive assumptions on the probability
distributions that model job processing times.

2. BASIC NOTATION AND ASSUMPTIONS

The Stochastic Flow Shop Problem (SFSP) is a scheduling prob-
lem that can be formally described as follows: a set J of n indepen-
dent jobs have to be processed by a set M of m independent ma-
chines. Each job i € J requires a stochastic processing time, p;;, in
every machine j € M. This stochastic processing time is a random
variable following a certain distribution, e.g. log-normal, expo-
nential, weibull, etc. The goal is to find a sequence for processing
the jobs so that a given criterion is optimized. The most commonly
used criterion is the minimization of the expected completion time
or expected makespan, denoted by E [Cpnax]. In addition, it is also
assumed that:

e All jobs are processed by all machines in the same order.

e There is unlimited storage between the machines, and non-
preemption.

e Machines are always available for processing jobs, but each
machine can process only one job at a time.

e A job cannot be processed more than once for each ma-
chine.

e Job processing times are independent random variables.

At this point, it is interesting to notice that our approach does not
require to assume any particular distribution for the random vari-
ables that model processing times. In a practical situation, the
specific distributions to be employed will have to be fitted from
historical data (observations) using a statistical software. In most
existing approaches, however, it is frequently assumed that these
processing times will follow a normal or exponential distribution.
This assumption is, in our opinion, quite unrealistic and restric-
tive. For instance, it is unlikely that positive processing times can
be conveniently modeled throughout a normal distribution, since
any normal distribution includes negative values .
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3. STATE OF THE ART AND RELATED WORK

The FSP is a NP-complete problem [1]. Many heuristics and meta-
heuristics have been proposed in order to solve the FSP due to the
impossibility of finding, in reasonable times, exact solutions for
most medium- and large-sized instances. Some of the first publi-
cations on FSP are those of Johnson [2] and Makino[3]. These au-
thors presented approaches for solving small problems, e.g. prob-
lems with only two machines and two jobs. Campbell et al. [4]
built a heuristic for the FSP with more than two machines. The
NEH algorithm is considered by most researchers as one of the
best performing heuristics for solving the FSP. It was introduced
by Nawaz et al. [5]. Later, Tailard [6] reduced the NEH com-
plexity by introducing a data structure to avoid the calculation of
the makespan. Ruiz and Stiitzle [7] proposed the Iterated Greedy
(IG) algorithm for the FSP built on a two-step methodology. In
our opinion, this is one of the best algorithms developed so far
to solve the FSP, since it combines simplicity with an outstanding
performance.

Many works have focused on the importance of considering un-
certainty in real-world problems, particularly in those related to
scheduling issues. Thus, Al-Fawzan[8]analyzes the Resource Con-
strained Project Scheduling Problem (RCPSP) by focusing on
makespan reduction and robustness. Jensen[9] also introduces the
concepts of neighborhood-based robustness and tardiness mini-
mization. Ke [10] proposes a mathematical model for achieving
a formal specification of the Project Scheduling Problem. Allaoui
[11] studied makespan minimization and robustness related to the
SESP, suggesting how to measure the robustness. Proactive and
reactive scheduling are also characterized in his work. On the one
hand, an example of reactive scheduling can be found on Honkomp
et al. [12], where performance is evaluated using several method-
ologies. On the other hand, robustness in proactive scheduling is
analyzed in Ghezail et al. [13], who propose a graphical repre-
sentation of the solution in order to evaluate obtained schedules.
As the concept of minimum makespan from FSP is not representa-
tive for the stochastic problem, Dodin [14] proposes an optimality
index to study the efficiency of the SFSP solutions. The bound-
aries of the expected makespan are also analyzed mathematically.
A theoretical analysis of performance evaluation based on marko-
vian models is performed in Gourgand et al. [15], where a method
to compute expected time for a sequence using performance eval-
uation is proposed. A study of the impact of introducing different
types of buffering among jobs is also provided in this work. On the
other hand, Integer and linear programming have been employed
together with probability distributions to represent the problem in
Janak et al. [16].

Simulation has been applied in Juan et al. [17] to solve the FSP.
In this work, the NEH algorithm is randomized using a biased
probability distribution. Thus, their approach is somewhat simi-
lar to a GRASP-like methodology. Simulation-based approaches
for the SFSP have mainly focused on performance evaluation, as in
Gougard et al. [18]. Similarly, Dodin [14] performs simulations as
a way to validate his empirical analysis on the makespan bound-
aries. Finally, Honkomp et al. [12] also make use of simulation
techniques in their approach for reactive scheduling.

In a recent work, Juan et al. [19] describe the application of simu-
lation techniques to solve the Vehicle Routing Problem with
Stochastic Demands (VRPSD). The VRPSD is a variation of the
classical Vehicle Routing Problem where customer demands are
not known in advance. These demands are random variables fol-
lowing some probability distributions. The authors propose to
transform the original stochastic problem into a set of related de-
terministic problems, which are then solved using an efficient algo-
rithm introduced in a previous work [20]. As it will be discussed in
more detail next, this paper proposes a similar approach for solv-

ing the SFSP.

4. PROPOSED METHODOLOGY

The main idea behind our simulation-based approach is to trans-
form the initial SFSP instance into a FSP instance and then to ob-
tain a set of near-optimal solutions for the deterministic problem
by using an efficient FSP algorithm. Notice that, by construction,
these FSP solutions are also feasible solutions of the original SFSP
instance. Then, simulation is used to determine which solution,
among the best-found deterministic ones, shows a lower expected
makespan when considering stochastic times. This strategy as-
sumes that a strong correlationship exists between near-optimal
solutions for the FSP and near-optimal solutions for the SFSP. Put
in other words, good solutions for the FSP are likely to represent
good solutions for the SFSP. Notice, however, that not necessarily
the best-found FSP solution will become the best-found SFSP so-
lution, since its resulting makespan might be quite sensitive to vari-
ations in the processing times. The transformation step is achieved
by simply considering the expected value of each processing time
as a constant value. Since any FSP solution will be also a feasi-
ble SFSP solution, it is possible to use Monte Carlo simulation to
obtain estimates for the expected makespan. That is, we obtain
these estimates by iteratively reproducing the stochastic behaviour
of the processing times in the sequence of jobs given by the FSP
solution. Of course, this simulation process will take as many it-
erations as necessary to obtain accurate estimates. If necessary,
variance reduction techniques could be employed in order to re-
duce the number of iterations to run. Figure 2 shows the flow chart
diagram of our approach, which is described next in detail:

1. Consider a SFSP instance defined by a set J of jobs and a
set M of machines with random processing times, p;;, for
each job i € J in each machine j € M.

2. For each random processing time p;;, consider its expected
or mean value pj; = E [pij]-

3. Let FSP* be the non-stochastic problem associated with the
processing times p;fj, Viel,jeM.

4. Using any efficient algorithm (e.g. [7, 17]), obtain a set S
of n near-optimal solutions for the FSP*.

5. Foreachs, € S, k=1,2,...n, consider the sequence of jobs
in s; and then start a Monte Carlo simulation in order to es-
timate the expected makespan associated with this sequence
of jobs. Notice that for each s;, random observations from
each p;; (i € J, j € M) are iteratively generated while main-
taining the sequence of jobs provided by s.

6. Return the sequence of jobs (solution) which provides the
lowest expected makespan.

5. CONTRIBUTION OF OUR APPROACH

The idea of solving a stochastic combinatorial optimization prob-
lem through solving one related deterministic problem and then
applying simulation is not new (see [19]). However, to the best of
our knowledge, this is the first time this approach has been used to
solve the SFSP. In fact, most of the SFSP research to date has fo-
cused on theoretical aspects of stochastic scheduling. By contrast,
the proposed method provides a relatively simple and flexible ap-
proach to the SFSP, which in our opinion offers some valuable
benefits. In particular, our approach suggests a more practical per-
spective which is able to deal with more realistic scenarios: by
integrating Monte Carlo simulation in our methodology, it is pos-
sible to naturally consider any probabilistic distribution for mod-
eling the random job processing times.
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Figure 2: Flow chart of the proposed algorithm

Thus, as far as we know, the presented methodology offers some
unique advantages over other existing SFSP approaches. To be
specific: (a) the methodology is valid for any statistical distribution
with a known mean, both theoretical -e.g. Normal, Log-normal,
Weibull, Gamma, etc.- or experimental; and (b) the methodology
reduces the complexity of solving the SFSP -where no efficient
methods are known yet- to solving the FSP, where mature and ex-
tensively tested algorithm have been developed already. All in all,
the credibility and utility of the provided solution is increased. No-
tice also that, being based on simulation, the methodology can
be easily extended to consider a different distribution for each
job-machine processing time, possible dependencies among these
times, etc. Moreover, the methodology can be applied to SFSP in-
stances of any size as far as there exists efficient FSP metaheuris-
tics able to solve those instances. In summary, the benefits pro-
vided by our methodology can be summarized in two propierties:
simplicity and flexibility.

6. CONCLUSIONS

In this paper we have presented a hybrid approach for solving
the Stochastic Flow Shop Problem. The methodology combines
Monte Carlo simulation with well tested algorithms for the Flow
Shop Problem. The basic idea of our approach is to transform the
initial stochastic problem into a related deterministic problem, then
obtain a set of alternative solutions for this latter problem using
any efficient algorithm, and finally use simulation to verify which

of these solutions offers the lowest expected makespan. This ap-
proach does not require any previous assumption and is valid for
any probability distribution.
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