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Abstract: In this paper we present SS-GNEH, a simulation-based algorithm for the 
Permutation Flowshop Sequencing Problem (PFSP). Given a PFSP instance, the SS-
GNEH algorithm incorporates a randomness criterion to the classical NEH heuristic 
and starts an iterative process in order to obtain a set of alternative solutions, each of 
which outperforms the NEH algorithm. Thus, a random but oriented local search of 
the space of solutions is performed, and a list of "good alternative solutions" is 
obtained. We can then consider several desired properties per solution other than 
maximum time employed, such as balanced idle times among machines, number of 
completed jobs at a given target time, etc. This allows the decision-maker to 
consider multiple solution characteristics other than just those defined by the 
aprioristic objective function. Therefore, our methodology provides flexibility 
during the sequence selection process, which may help to improve the scheduling 
process. Several tests have been performed to discuss the effectiveness of this 
approach. The results obtained so far are promising enough to encourage further 
developments on the algorithm and its applications in real-life scenarios.  

1 Introduction 
The Permutation Flowshop Sequencing Problem (PFSP) is a well-known scheduling 
problem that can be formulated as follows: a set J of n independent jobs has to be 
processed on a set M of m independent machines. Every job j∈J requires a given 
fixed processing time on every machine i∈M. This processing time can be denoted 
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as pij≥ 0. Each machine can execute at most one job at a time, and it is assumed that 
the jobs are processed by all machines in the same order they have been processed 
by the first machine. The classical goal here is to find a sequence for processing the 
jobs in the shop so that a given criterion is optimized. The criterion that is most 
commonly used is the minimization of the maximum completion time (makespan) of 
the production sequence. The described problem is usually denoted as 
Fm|prmu|Cmax, using the notation proposed by GRAHAM et al. (1979). It is a 
combinatorial problem with n! possible sequences which, in general, is NP-
complete. Similar to what has happened with other combinatorial problems, a large 
number of different approaches have been developed to deal with the PFSP. These 
approaches range from the use of pure optimization methods, such as mixed integer 
programming, for solving small-sized problems, see REDDI and 
RAMAMOORTHY (1972), to the use of heuristics and meta-heuristics that provide 
near-optimal solutions for medium and large-sized problems, NAWAZ et al. (1983) 
or CHANDRASEKHARAN and  ZIEGLER (2004).Most of these methods focus on 
minimizing makespan. However, utility functions of decision-makers are difficult to 
model and, frequently, criteria other than total time employed to process the list of 
jobs should be also considered in real-life scenarios. For that reason, there is a need 
for more flexible methods able to provide a large set of alternative near-optimal 
solutions with different properties, so that decision-makers can choose among 
different alternative solutions according to their specific necessities and preferences. 

2 Literature Review 
A large number of heuristics and metaheuristics have been proposed to solve the 
PFSP, mainly because of the difficulty encountered by exact methods to solve 
medium or large instances. As explained before, most existing approaches focus on 
the objective of minimizing makespan. NAWAZ et al. (1983) introduced the NEH 
heuristic (Nawaz, Enscore and Ham), which is commonly considered as the best 
performing heuristic for the PFSP. Basically, what the NEH heuristic proposes is to 
calculate the total processing time required for each job (i.e., the total time each jobs 
requires to be processed by the set of machines), and then to create an "efficiency 
list" of jobs sorted in a descending order according to this total processing time. At 
each step, the job at the top of the efficiency list is selected and used to construct the 
solution, that is: the "common sense" rule is to select first those jobs with the highest 
total processing time. Once selected, a job is inserted in the sorted set of jobs that are 
configuring the on-going solution. The exact position that the selected job will 
occupy in that ongoing solution is given by the minimizing makespan criterion. 
TAILLARD (1990) introduced a data structure that reduces the NEH complexity. 
Other interesting heuristics are those from SULIMAN (2000) or FRAMINAN and 
LEISTEN (2003), which also consider several extensions of NEH when facing other 
(single) objectives than makespan. Different metaheuristic approaches have been 
also proposed for the PFSP. Using Simulated Annealing an interesting work is 
OSMAN and POTTS (1989). A Tabu Search algorithm known as SPIRIT was 
proposed by WIDMER and HERTZ (1989). Other authors propose the use of 
Genetic Algorithms for solving the PFSP which were also based on the NEH 
heuristic (CHEN et al. 1995; REEVES 1995; ALDOWAISAN, ALLAHVEDI 
2003). As examples of other works which also rely on the use of the NEH heuristic 
an interesting approach is the presented in the Ant Colony Optimization algorithm of 
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(CHANDRASEKHARAN, ZIEGLER 2004). All the aforementioned work has in 
common that the algorithms proposed are easy to code and therefore the results can 
be reproduced without too much difficulty. In addition, many of the above 
algorithms can be adapted to other more realistic flowshop environments. 
Additionally, there are other highly elaborated hybrid techniques for solving the 
PFSP. However, as RUIZ and STÜTZLE (2007) point out, "they are very 
sophisticated and an arduous coding task is necessary for their implementation". In 
other words, it is unlikely that they can be used for solving realistic scenarios 
without direct support from the researchers that developed them.  

3 Our Approach 
The approach presented in this paper aims to provide a simple probabilistic 
algorithm which will be able to improve the results provided by the NEH heuristic in 
just a few iterations. Also, this algorithm should avoid complex or time-consuming 
fine-tuning processes. As explained before, a second goal of our approach is to 
provide not only a good solution, but a set of alternative solutions. In order to meet 
those goals, we decided to combine Monte Carlo Simulation (MCS) techniques with 
the NEH heuristic. In particular, our approach introduces a special random 
behaviour within the NEH heuristic and then starts an iterative process. This random 
behaviour helps us to start a search process inside the space of feasible solutions. 
Each of these feasible solutions will consist of a list of sorted jobs. As explained 
before, the NEH heuristic is an iterative algorithm which uses a sorted list of jobs to 
construct a solution for the PFSP. At each step of this iterative process, the NEH 
chooses the job which is at the top of that list – jobs are sorted in the list according 
to the total time they require to be processed by all the machines. As a result, the 
NEH provides a "common sense" deterministic solution. Our approach, instead, 
assigns a probability of selecting each job in the jobs list. According to our design, 
this probability should be coherent with the total time that each job needs to be 
processed by all machines, i.e., jobs with higher total times will be more likely to be 
selected from the list than those with lower total times. Finally, this selection 
process should be done without introducing too many parameters in the 
methodology – otherwise, it would be necessary to perform fine-tuning processes, 
which tend to be non-trivial and time-consuming. To reach all those goals, we 
employ the geometric statistical distribution with parameter α (0 < α < 1) during the 
solution-construction process (JUAN et al. 2010): each time a new job has to be 
selected from the list, a geometric distribution is randomly selected. This 
distribution is then used to assign exponentially diminishing probabilities to each 
eligible job according to its position inside the list, which has been previously sorted 
by its corresponding total-processing-time value. That way, jobs with higher 
processing times are always more likely to be selected from the list, but the 
probabilities assigned are variable and they depend upon the concrete distribution 
selected at each step. By iterating this procedure, an oriented random search process 
is started. Notice that this general approach has many similarities with the Greedy 
Randomized Adaptive Search Procedure (GRASP; FEO, RESENDE 1995). To 
some extent, our approach could be considered as part of the large family of Hybrid 
GRASP algorithms. Figure 1 illustrates the basics of our approach, which are 
detailed next. (i) Given a PFSP instance, construct the corresponding data model and 
use the classical NEH algorithm to solve it. (ii) Choose a probability distribution 
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(e.g. a geometric or a zipf) for adding random behaviour to the algorithm. (iii) Start 
an iterative process to generate solutions using the Generalized NEH for the 
Scheduling flowshop Sequence problem (SS-GNEH) algorithm. (iv) For each 
iteration, save the resulting solution in a database only if it outperforms the one 
provided by the NEH algorithm, i.e., we will consider that a solution is a good one 
only if it outperforms the NEH solution from a makespan perspective. 

 

Figure 1: Basic schema of our approach 

Figure 2 shows the main procedure of the SS-GNEH algorithm, which drives the 
solving methodology. Roughly speaking, if the size of the jobs list in the current step 
is large enough, the parameter α can be interpreted as the probability of selecting the 
job with the highest total-processing-time value at the current step of the solution-
construction process. 

 

Figure 2: SS-GNEH main procedure 
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Choosing a relatively low α-value (e.g. α = 0.05) implies considering a large number 
of jobs from the list as potentially eligible. On the contrary, choosing a relatively 
high α-value (e.g. α = 0.25) implies reducing the list of potential eligible jobs to just 
a few of them. Once a value for α is chosen, the first job must be selected. This same 
value of α can be used for all future steps. In that case, the selection of the α-value 
might require some minor fine-tuning process. However, based on the tests we have 
performed, we prefer to consider this α-value as a random variable whose behaviour 
is determined by a well-known continuous distribution, e.g.: a uniform distribution 
in the interval (0.05, 0.25). This way, we do not only avoid a fine-tuning process, 
but we also have the possibility to combine different values of this parameter at 
different job-selection steps of the same solution-construction process. 

4 Experimental Results 
The methodology described has been implemented as a Java application that runs 
directly on the Eclipse IDE for Java. A standard personal computer, Intel® Core™2 
Duo CPU at 2.4 GHz and 2 GB RAM, was used to perform all tests. We tested the 
first 60 benchmark instances from TAILLARD (1993). We performed 15 executions 
for each instance. These instances can be found at http://mistic.heig-
vd.ch/taillard/default.htm. For each tested instance, we also considered its associated 
best-known solution (BKS) as reported in ZOBOLAS et al. (2009). Table 1 shows 
the results for the first 30 Taillard’s instances, which consider 20 jobs cases. Notice 
the significant reduction in the average gap with respect to the best-know solution 
(BKS), from 3.86 % (NEH) to 0.01 % (SS-GNEH). Table 1 shows that for the first 
30 Taillard’s instances our methodology is able to provide either the optimal 
solution or an alternative one (gap < 0.01 %). Regarding the reported CPU times, 
the average time for solving these instances is about 1 second. These times can be 
easily improved by just coding the algorithm in C/C++ instead of Java. Table 2 
shows results for the Taillard’s instances with 50 jobs. These are larger instances but 
again our methodology provides a significant reduction in the average gap (from 
4.15 % to 1.44 %) in a reasonable amount of computing time. According to the 
experimental tests carried out, each iteration is completed in just a few milliseconds. 
By construction, odds are than the generated solution outperforms the one given by 
the NEH heuristic. This means that our approach provides, after a few iterations, a 
feasible solution which outperforms the NEH heuristic as regards makespan. 
Moreover, as verified by testing, several alternative solutions improving the NEH 
can be obtained after some more iterations (which take more CPU time), each of 
them having different attributes regarding criteria such as balanced idle times among 
machines, number of completed jobs at a given target time, etc. 

5 Conclusions 
In this paper a simple probabilistic methodology for solving the Permutation 
Flowshop Sequencing Problem (PFSP) has been presented. This methodology, 
which does not require any particular fine-tuning or configuration process, combines 
the classical NEH heuristic with simulation using a geometric distribution. An 
important point to consider is the simplicity of the presented methodology. In effect, 
our algorithm needs little instantiation and does not require any fine-tuning or set-up 
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processes. This is quite interesting, since as it was noticed before, some of the most 
efficient meta-heuristics are not used in practice because of the difficulties they 
present when trying to implementing them. On the contrary, simple hybrid 
approaches like the one introduced here tend to be more flexible and, therefore, they 
seem more appropriate to deal with real restrictions and dynamic work conditions. 
Results show that our methodology is able to improve the NEH heuristic in just a 
few iterations. Moreover, being a constructive approach, it can generate several 
alternative good solutions in a reasonable time-period. 

 

Taillard's 
Instance 

# 
Jobs 

# 
Machines 

NEH 
Solution 

Best-Known 
Solution (BKS)

Gap 
BKS-
NEH 

SS-
GNEH 

Solution

Gap 
BKS-SS-
GNEH 

Running 
Time 

(mm:ss) 

1 20 5 1286 1278 0.63% 1278 0.00% 00:00 

2 20 5 1365 1359 0.44% 1359 0.00% 00:00 

3 20 5 1159 1081 7.22% 1081 0.00% 00:00 

4 20 5 1325 1293 2.47% 1293 0.00% 00:00 

5 20 5 1305 1235 5.67% 1235 0.00% 00:00 

6 20 5 1228 1195 2.76% 1195 0.00% 00:00 

7 20 5 1278 1239 3.15% 1239 0.00% 00:00 

8 20 5 1223 1206 1.41% 1206 0.00% 00:00 

9 20 5 1291 1230 4.96% 1230 0.00% 00:00 

10 20 5 1151 1108 3.88% 1108 0.00% 00:00 

11 20 10 1680 1582 6.19% 1582 0.00% 00:00 

12 20 10 1729 1659 4.22% 1659 0.00% 00:06 

13 20 10 1557 1496 4.08% 1496 0.00% 00:02 

14 20 10 1439 1377 4.50% 1377 0.00% 00:05 

15 20 10 1502 1419 5.85% 1419 0.00% 00:00 

16 20 10 1453 1397 4.01% 1397 0.00% 00:03 

17 20 10 1562 1484 5.26% 1484 0.00% 00:00 

18 20 10 1609 1538 4.62% 1538 0.00% 00:09 

19 20 10 1647 1593 3.39% 1593 0.00% 00:02 

20 20 10 1653 1591 3.90% 1591 0.00% 00:01 

21 20 20 2410 2297 4.92% 2297 0.00% 00:08 

22 20 20 2150 2099 2.43% 2099 0.00% 00:02 

23 20 20 2411 2326 3.65% 2328 0.09% 00:05 

24 20 20 2262 2223 1.75% 2223 0.00% 00:00 

25 20 20 2397 2291 4.63% 2296 0.22% 00:04 

26 20 20 2349 2226 5.53% 2226 0.00% 00:01 

27 20 20 2362 2273 3.92% 2273 0.00% 00:05 

28 20 20 2249 2200 2.23% 2202 0.09% 00:04 

29 20 20 2320 2237 3.71% 2237 0.00% 00:00 

30 20 20 2277 2178 4.55% 2178 0.00% 00:05 

Averages     3.86%  0.01% 00:01 

Table 1: Results for Taillard’s instances 1 to 30 (20 jobs) 
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Taillard's 
Instance 

# 
Jobs 

# 
Machines 

NEH 
Solution 

Best-Known 
Solution 
(BKS) 

Gap 
BKS-
NEH 

SS-
GNEH 

Solution

Gap 
BKS-SS-
GNEH 

Running 
Time 

(mm:ss) 

31 50 5 2733 2724 0.33% 2724 0.00% 00:00 

32 50 5 2843 2834 0.32% 2838 0.14% 00:00 

33 50 5 2640 2621 0.72% 2621 0.00% 00:00 

34 50 5 2782 2751 1.13% 2751 0.00% 00:00 

35 50 5 2868 2863 0.17% 2863 0.00% 00:00 

36 50 5 2850 2829 0.74% 2829 0.00% 00:01 

37 50 5 2758 2725 1.21% 2725 0.00% 00:00 

38 50 5 2721 2683 1.42% 2683 0.00% 00:00 

39 50 5 2576 2552 0.94% 2552 0.00% 00:00 

40 50 5 2790 2782 0.29% 2782 0.00% 00:00 

41 50 10 3135 2991 4.81% 3055 2.14% 00:07 

42 50 10 3032 2867 5.76% 2931 2.23% 00:02 

43 50 10 2986 2839 5.18% 2905 2.32% 00:09 

44 50 10 3198 3063 4.41% 3071 0.26% 00:01 

45 50 10 3160 2976 6.18% 3034 1.95% 00:00 

46 50 10 3178 3006 5.72% 3053 1.56% 00:04 

47 50 10 3277 3093 5.95% 3142 1.58% 00:02 

48 50 10 3123 3037 2.83% 3061 0.79% 00:09 

49 50 10 3002 2897 3.62% 2934 1.28% 00:05 

50 50 10 3257 3065 6.26% 3128 2.06% 00:06 

51 50 20 4082 3850 6.03% 3958 2.81% 00:05 

52 50 20 3921 3704 5.86% 3799 2.56% 00:06 

53 50 20 3927 3640 7.88% 3755 3.16% 00:00 

54 50 20 3969 3720 6.69% 3814 2.53% 00:03 

55 50 20 3835 3610 6.23% 3711 2.80% 00:10 

56 50 20 3914 3681 6.23% 3771 2.44% 00:03 

57 50 20 3952 3704 6.70% 3800 2.59% 00:05 

58 50 20 3938 3691 6.69% 3791 2.71% 00:08 

59 50 20 3952 3743 5.58% 3838 2.54% 00:05 

60 50 20 4079 3756 8.60% 3861 2.80% 00:06 

Averages     4.15%  1.44% 00:03 

Table 2: Results for Taillard’s instances 31 to 60 (50 jobs) 
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