
Integrationsaspekte der Simulation:
Technik, Organisation und Personal
Gert Zülch & Patricia Stock (Hrsg.)
Karlsruhe, KIT Scientific Publishing 2010

Using simulation to Provide Alternative Solutions
to the flowshop sequencing problem

Einsatz von Simulation zur Generierung alternativer Lösungen
 für das Flowshop Sequencing Problem

Angel Juan, Antoni Guix, Ferran Adelantado
Open University of Catalonia, Barcelona (Spain)

ajuanp@uoc.edu

Pau Fonseca i Casas
UniversitatPolitècnica de Catalunya, Barcelona (Spain)

pau@fib.upc.edu

Ruben Ruiz
ITI-Universidad Politécnica de Valencia (Spain)

Abstract: In this paper we present SS-GNEH, a simulation-based algorithm for the
Permutation Flowshop Sequencing Problem (PFSP). Given a PFSP instance, the SS-
GNEH algorithm incorporates a randomness criterion to the classical NEH heuristic
and starts an iterative process in order to obtain a set of alternative solutions, each of
which outperforms the NEH algorithm. Thus, a random but oriented local search of
the space of solutions is performed, and a list of "good alternative solutions" is
obtained. We can then consider several desired properties per solution other than
maximum time employed, such as balanced idle times among machines, number of
completed jobs at a given target time, etc. This allows the decision-maker to
consider multiple solution characteristics other than just those defined by the
aprioristic objective function. Therefore, our methodology provides flexibility
during the sequence selection process, which may help to improve the scheduling
process. Several tests have been performed to discuss the effectiveness of this
approach. The results obtained so far are promising enough to encourage further
developments on the algorithm and its applications in real-life scenarios.

1 Introduction
The Permutation Flowshop Sequencing Problem (PFSP) is a well-known scheduling
problem that can be formulated as follows: a set J of n independent jobs has to be
processed on a set M of m independent machines. Every job j∈J requires a given
fixed processing time on every machine i∈M. This processing time can be denoted

350 Juan, A. A.; Guix, A.; Adelantado, F.; Fonseca i Casas, P.; Ruiz, R.

as pij≥ 0. Each machine can execute at most one job at a time, and it is assumed that
the jobs are processed by all machines in the same order they have been processed
by the first machine. The classical goal here is to find a sequence for processing the
jobs in the shop so that a given criterion is optimized. The criterion that is most
commonly used is the minimization of the maximum completion time (makespan) of
the production sequence. The described problem is usually denoted as
Fm|prmu|Cmax, using the notation proposed by GRAHAM et al. (1979). It is a
combinatorial problem with n! possible sequences which, in general, is NP-
complete. Similar to what has happened with other combinatorial problems, a large
number of different approaches have been developed to deal with the PFSP. These
approaches range from the use of pure optimization methods, such as mixed integer
programming, for solving small-sized problems, see REDDI and
RAMAMOORTHY (1972), to the use of heuristics and meta-heuristics that provide
near-optimal solutions for medium and large-sized problems, NAWAZ et al. (1983)
or CHANDRASEKHARAN and ZIEGLER (2004).Most of these methods focus on
minimizing makespan. However, utility functions of decision-makers are difficult to
model and, frequently, criteria other than total time employed to process the list of
jobs should be also considered in real-life scenarios. For that reason, there is a need
for more flexible methods able to provide a large set of alternative near-optimal
solutions with different properties, so that decision-makers can choose among
different alternative solutions according to their specific necessities and preferences.

2 Literature Review
A large number of heuristics and metaheuristics have been proposed to solve the
PFSP, mainly because of the difficulty encountered by exact methods to solve
medium or large instances. As explained before, most existing approaches focus on
the objective of minimizing makespan. NAWAZ et al. (1983) introduced the NEH
heuristic (Nawaz, Enscore and Ham), which is commonly considered as the best
performing heuristic for the PFSP. Basically, what the NEH heuristic proposes is to
calculate the total processing time required for each job (i.e., the total time each jobs
requires to be processed by the set of machines), and then to create an "efficiency
list" of jobs sorted in a descending order according to this total processing time. At
each step, the job at the top of the efficiency list is selected and used to construct the
solution, that is: the "common sense" rule is to select first those jobs with the highest
total processing time. Once selected, a job is inserted in the sorted set of jobs that are
configuring the on-going solution. The exact position that the selected job will
occupy in that ongoing solution is given by the minimizing makespan criterion.
TAILLARD (1990) introduced a data structure that reduces the NEH complexity.
Other interesting heuristics are those from SULIMAN (2000) or FRAMINAN and
LEISTEN (2003), which also consider several extensions of NEH when facing other
(single) objectives than makespan. Different metaheuristic approaches have been
also proposed for the PFSP. Using Simulated Annealing an interesting work is
OSMAN and POTTS (1989). A Tabu Search algorithm known as SPIRIT was
proposed by WIDMER and HERTZ (1989). Other authors propose the use of
Genetic Algorithms for solving the PFSP which were also based on the NEH
heuristic (CHEN et al. 1995; REEVES 1995; ALDOWAISAN, ALLAHVEDI
2003). As examples of other works which also rely on the use of the NEH heuristic
an interesting approach is the presented in the Ant Colony Optimization algorithm of

Simulation for Alternative Solutions to the Flowshop Sequencing Problem 351

(CHANDRASEKHARAN, ZIEGLER 2004). All the aforementioned work has in
common that the algorithms proposed are easy to code and therefore the results can
be reproduced without too much difficulty. In addition, many of the above
algorithms can be adapted to other more realistic flowshop environments.
Additionally, there are other highly elaborated hybrid techniques for solving the
PFSP. However, as RUIZ and STÜTZLE (2007) point out, "they are very
sophisticated and an arduous coding task is necessary for their implementation". In
other words, it is unlikely that they can be used for solving realistic scenarios
without direct support from the researchers that developed them.

3 Our Approach
The approach presented in this paper aims to provide a simple probabilistic
algorithm which will be able to improve the results provided by the NEH heuristic in
just a few iterations. Also, this algorithm should avoid complex or time-consuming
fine-tuning processes. As explained before, a second goal of our approach is to
provide not only a good solution, but a set of alternative solutions. In order to meet
those goals, we decided to combine Monte Carlo Simulation (MCS) techniques with
the NEH heuristic. In particular, our approach introduces a special random
behaviour within the NEH heuristic and then starts an iterative process. This random
behaviour helps us to start a search process inside the space of feasible solutions.
Each of these feasible solutions will consist of a list of sorted jobs. As explained
before, the NEH heuristic is an iterative algorithm which uses a sorted list of jobs to
construct a solution for the PFSP. At each step of this iterative process, the NEH
chooses the job which is at the top of that list – jobs are sorted in the list according
to the total time they require to be processed by all the machines. As a result, the
NEH provides a "common sense" deterministic solution. Our approach, instead,
assigns a probability of selecting each job in the jobs list. According to our design,
this probability should be coherent with the total time that each job needs to be
processed by all machines, i.e., jobs with higher total times will be more likely to be
selected from the list than those with lower total times. Finally, this selection
process should be done without introducing too many parameters in the
methodology – otherwise, it would be necessary to perform fine-tuning processes,
which tend to be non-trivial and time-consuming. To reach all those goals, we
employ the geometric statistical distribution with parameter α (0 < α < 1) during the
solution-construction process (JUAN et al. 2010): each time a new job has to be
selected from the list, a geometric distribution is randomly selected. This
distribution is then used to assign exponentially diminishing probabilities to each
eligible job according to its position inside the list, which has been previously sorted
by its corresponding total-processing-time value. That way, jobs with higher
processing times are always more likely to be selected from the list, but the
probabilities assigned are variable and they depend upon the concrete distribution
selected at each step. By iterating this procedure, an oriented random search process
is started. Notice that this general approach has many similarities with the Greedy
Randomized Adaptive Search Procedure (GRASP; FEO, RESENDE 1995). To
some extent, our approach could be considered as part of the large family of Hybrid
GRASP algorithms. Figure 1 illustrates the basics of our approach, which are
detailed next. (i) Given a PFSP instance, construct the corresponding data model and
use the classical NEH algorithm to solve it. (ii) Choose a probability distribution

352 Juan, A. A.; Guix, A.; Adelantado, F.; Fonseca i Casas, P.; Ruiz, R.

(e.g. a geometric or a zipf) for adding random behaviour to the algorithm. (iii) Start
an iterative process to generate solutions using the Generalized NEH for the
Scheduling flowshop Sequence problem (SS-GNEH) algorithm. (iv) For each
iteration, save the resulting solution in a database only if it outperforms the one
provided by the NEH algorithm, i.e., we will consider that a solution is a good one
only if it outperforms the NEH solution from a makespan perspective.

Figure 1: Basic schema of our approach

Figure 2 shows the main procedure of the SS-GNEH algorithm, which drives the
solving methodology. Roughly speaking, if the size of the jobs list in the current step
is large enough, the parameter α can be interpreted as the probability of selecting the
job with the highest total-processing-time value at the current step of the solution-
construction process.

Figure 2: SS-GNEH main procedure

Simulation for Alternative Solutions to the Flowshop Sequencing Problem 353

Choosing a relatively low α-value (e.g. α = 0.05) implies considering a large number
of jobs from the list as potentially eligible. On the contrary, choosing a relatively
high α-value (e.g. α = 0.25) implies reducing the list of potential eligible jobs to just
a few of them. Once a value for α is chosen, the first job must be selected. This same
value of α can be used for all future steps. In that case, the selection of the α-value
might require some minor fine-tuning process. However, based on the tests we have
performed, we prefer to consider this α-value as a random variable whose behaviour
is determined by a well-known continuous distribution, e.g.: a uniform distribution
in the interval (0.05, 0.25). This way, we do not only avoid a fine-tuning process,
but we also have the possibility to combine different values of this parameter at
different job-selection steps of the same solution-construction process.

4 Experimental Results
The methodology described has been implemented as a Java application that runs
directly on the Eclipse IDE for Java. A standard personal computer, Intel® Core™2
Duo CPU at 2.4 GHz and 2 GB RAM, was used to perform all tests. We tested the
first 60 benchmark instances from TAILLARD (1993). We performed 15 executions
for each instance. These instances can be found at http://mistic.heig-
vd.ch/taillard/default.htm. For each tested instance, we also considered its associated
best-known solution (BKS) as reported in ZOBOLAS et al. (2009). Table 1 shows
the results for the first 30 Taillard’s instances, which consider 20 jobs cases. Notice
the significant reduction in the average gap with respect to the best-know solution
(BKS), from 3.86 % (NEH) to 0.01 % (SS-GNEH). Table 1 shows that for the first
30 Taillard’s instances our methodology is able to provide either the optimal
solution or an alternative one (gap < 0.01 %). Regarding the reported CPU times,
the average time for solving these instances is about 1 second. These times can be
easily improved by just coding the algorithm in C/C++ instead of Java. Table 2
shows results for the Taillard’s instances with 50 jobs. These are larger instances but
again our methodology provides a significant reduction in the average gap (from
4.15 % to 1.44 %) in a reasonable amount of computing time. According to the
experimental tests carried out, each iteration is completed in just a few milliseconds.
By construction, odds are than the generated solution outperforms the one given by
the NEH heuristic. This means that our approach provides, after a few iterations, a
feasible solution which outperforms the NEH heuristic as regards makespan.
Moreover, as verified by testing, several alternative solutions improving the NEH
can be obtained after some more iterations (which take more CPU time), each of
them having different attributes regarding criteria such as balanced idle times among
machines, number of completed jobs at a given target time, etc.

5 Conclusions
In this paper a simple probabilistic methodology for solving the Permutation
Flowshop Sequencing Problem (PFSP) has been presented. This methodology,
which does not require any particular fine-tuning or configuration process, combines
the classical NEH heuristic with simulation using a geometric distribution. An
important point to consider is the simplicity of the presented methodology. In effect,
our algorithm needs little instantiation and does not require any fine-tuning or set-up

354 Juan, A. A.; Guix, A.; Adelantado, F.; Fonseca i Casas, P.; Ruiz, R.

processes. This is quite interesting, since as it was noticed before, some of the most
efficient meta-heuristics are not used in practice because of the difficulties they
present when trying to implementing them. On the contrary, simple hybrid
approaches like the one introduced here tend to be more flexible and, therefore, they
seem more appropriate to deal with real restrictions and dynamic work conditions.
Results show that our methodology is able to improve the NEH heuristic in just a
few iterations. Moreover, being a constructive approach, it can generate several
alternative good solutions in a reasonable time-period.

Taillard's
Instance

Jobs

Machines

NEH
Solution

Best-Known
Solution (BKS)

Gap
BKS-
NEH

SS-
GNEH

Solution

Gap
BKS-SS-
GNEH

Running
Time

(mm:ss)

1 20 5 1286 1278 0.63% 1278 0.00% 00:00

2 20 5 1365 1359 0.44% 1359 0.00% 00:00

3 20 5 1159 1081 7.22% 1081 0.00% 00:00

4 20 5 1325 1293 2.47% 1293 0.00% 00:00

5 20 5 1305 1235 5.67% 1235 0.00% 00:00

6 20 5 1228 1195 2.76% 1195 0.00% 00:00

7 20 5 1278 1239 3.15% 1239 0.00% 00:00

8 20 5 1223 1206 1.41% 1206 0.00% 00:00

9 20 5 1291 1230 4.96% 1230 0.00% 00:00

10 20 5 1151 1108 3.88% 1108 0.00% 00:00

11 20 10 1680 1582 6.19% 1582 0.00% 00:00

12 20 10 1729 1659 4.22% 1659 0.00% 00:06

13 20 10 1557 1496 4.08% 1496 0.00% 00:02

14 20 10 1439 1377 4.50% 1377 0.00% 00:05

15 20 10 1502 1419 5.85% 1419 0.00% 00:00

16 20 10 1453 1397 4.01% 1397 0.00% 00:03

17 20 10 1562 1484 5.26% 1484 0.00% 00:00

18 20 10 1609 1538 4.62% 1538 0.00% 00:09

19 20 10 1647 1593 3.39% 1593 0.00% 00:02

20 20 10 1653 1591 3.90% 1591 0.00% 00:01

21 20 20 2410 2297 4.92% 2297 0.00% 00:08

22 20 20 2150 2099 2.43% 2099 0.00% 00:02

23 20 20 2411 2326 3.65% 2328 0.09% 00:05

24 20 20 2262 2223 1.75% 2223 0.00% 00:00

25 20 20 2397 2291 4.63% 2296 0.22% 00:04

26 20 20 2349 2226 5.53% 2226 0.00% 00:01

27 20 20 2362 2273 3.92% 2273 0.00% 00:05

28 20 20 2249 2200 2.23% 2202 0.09% 00:04

29 20 20 2320 2237 3.71% 2237 0.00% 00:00

30 20 20 2277 2178 4.55% 2178 0.00% 00:05

Averages 3.86% 0.01% 00:01

Table 1: Results for Taillard’s instances 1 to 30 (20 jobs)

Simulation for Alternative Solutions to the Flowshop Sequencing Problem 355

Taillard's
Instance

Jobs

Machines

NEH
Solution

Best-Known
Solution
(BKS)

Gap
BKS-
NEH

SS-
GNEH

Solution

Gap
BKS-SS-
GNEH

Running
Time

(mm:ss)

31 50 5 2733 2724 0.33% 2724 0.00% 00:00

32 50 5 2843 2834 0.32% 2838 0.14% 00:00

33 50 5 2640 2621 0.72% 2621 0.00% 00:00

34 50 5 2782 2751 1.13% 2751 0.00% 00:00

35 50 5 2868 2863 0.17% 2863 0.00% 00:00

36 50 5 2850 2829 0.74% 2829 0.00% 00:01

37 50 5 2758 2725 1.21% 2725 0.00% 00:00

38 50 5 2721 2683 1.42% 2683 0.00% 00:00

39 50 5 2576 2552 0.94% 2552 0.00% 00:00

40 50 5 2790 2782 0.29% 2782 0.00% 00:00

41 50 10 3135 2991 4.81% 3055 2.14% 00:07

42 50 10 3032 2867 5.76% 2931 2.23% 00:02

43 50 10 2986 2839 5.18% 2905 2.32% 00:09

44 50 10 3198 3063 4.41% 3071 0.26% 00:01

45 50 10 3160 2976 6.18% 3034 1.95% 00:00

46 50 10 3178 3006 5.72% 3053 1.56% 00:04

47 50 10 3277 3093 5.95% 3142 1.58% 00:02

48 50 10 3123 3037 2.83% 3061 0.79% 00:09

49 50 10 3002 2897 3.62% 2934 1.28% 00:05

50 50 10 3257 3065 6.26% 3128 2.06% 00:06

51 50 20 4082 3850 6.03% 3958 2.81% 00:05

52 50 20 3921 3704 5.86% 3799 2.56% 00:06

53 50 20 3927 3640 7.88% 3755 3.16% 00:00

54 50 20 3969 3720 6.69% 3814 2.53% 00:03

55 50 20 3835 3610 6.23% 3711 2.80% 00:10

56 50 20 3914 3681 6.23% 3771 2.44% 00:03

57 50 20 3952 3704 6.70% 3800 2.59% 00:05

58 50 20 3938 3691 6.69% 3791 2.71% 00:08

59 50 20 3952 3743 5.58% 3838 2.54% 00:05

60 50 20 4079 3756 8.60% 3861 2.80% 00:06

Averages 4.15% 1.44% 00:03

Table 2: Results for Taillard’s instances 31 to 60 (50 jobs)

References
ALDOWAISAN, T.; ALLAHVEDI, A.: New heuristics for no-wait flowshops to

minimize makespan. In: Computers and Operations Research, Oxford et al.,
30(2003)8, pp. 1219-1231.

CHANDRASEKHARAN, R.; ZIEGLER, H.: Ant-colony algorithms for
permutation flowshop scheduling to minimize makespan/total flowtime of
jobs. In: European Journal of Operational Research, Amsterdam et al.,
155(2004)2, pp. 426-438.

356 Juan, A. A.; Guix, A.; Adelantado, F.; Fonseca i Casas, P.; Ruiz, R.

CHEN, C. L.; VEMPATI, V. S.; ALJABER, N.: An application of genetic
algorithms for flow shop problems. In: European Journal of Operational
Research, Amsterdam et al., 80(1995)2, pp. 389-396.

FEO, T. A.; RESENDE, M.: Greedy randomized adaptive search procedures.
Journal of Global Optimization, Dordrecht et al., 6(1995)2, pp. 109-133.

FRAMINAN, J. M.; LEISTEN, R.: An efficient constructive heuristic for flowtime
minimisation in permutation flow shops. In: OMEGA, Amsterdam et al.,
31(2003)4, pp. 311-317.

GRAHAM, R. L.; LAWLER, E. L.; LENSTRA, J. K.; RINNOOY KAN, A. G. H.:
Optimization and approximation in deterministic sequencing and scheduling:
A survey. In: Annals of Discrete Mathematics, (1979), pp. 287-326

JUAN, A.; FAULIN, J.; RUIZ, R.; BARRIOS, B.; CABALLE, S.: The SR-GCWS
hybrid algorithm for solving the capacitated vehicle routing problem. In:
Applied Soft Computing, Amsterdam et al., 10(2010)1, pp. 215-224.

NAWAZ, M.; ENSCORE, E. E.; HAM, I.: A heuristic algorithm for the m-machine,
n-job flowshop sequencing problem. In: OMEGA, Amsterdam et al.,
11(1983)1, pp. 91-95.

OSMAN, L.; POTTS, C.: Simulated annealing for permutation flow-shop
scheduling. In: OMEGA, Amsterdam et al., 17(1989)6, pp. 551-557.

REEVES, C. R.: A genetic algorithm for flowshop sequencing. In: Computers and
Operations Research, Oxford et al., 22(1995)1, pp. 5-13.

REDDI, S. S.; RAMAMOORTHY, C. V.: On flowshop sequencing problem with
nowaitin process. In: Operational Research Quarterly, (1972)23, pp. 323-331

RUIZ, R.; STÜTZLE, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. In: European Journal of
Operational Research, Amsterdam et al., 177(2007)3, pp. 2033-2049.

SULIMAN, S.: A two-phase heuristic approach to the permutation flow-shop
scheduling problem. In: International Journal of Production Economics,
Amsterdam et al., 65(2000)1-3, pp. 143-152.

TAILLARD, E.: Some efficient heuristic methods for the flow shop sequencing
problem. In: European Journal of Operational Research, Amsterdam et al.,
47(1990)1, 65-74.

TAILLARD, E.: Benchmarks for basic scheduling problems. In: European Journal
of Operations Research, Amsterdam et al., 64(1993)2, pp. 278-285.

WIDMER, M.; HERTZ, A.: A new heuristic method for the flow shop sequencing
problem. In: European Journal of Operational Research, Amsterdam et al.,
41(1989)2, pp. 186-193.

ZOBOLAS, C.; TARANTILIS, C.; IOANNOU, G.: Minimizing makespan in
permutation flow shop scheduling problems using a hybrid metaheuristic
algorithm. In: Computers and Operations Research, Oxford et al., 36(2009)4,
1249-1267.

