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ABSTRACT 

A simulation-based algorithm for the Permutation Flowshop Sequencing Problem (PFSP) is presented.  
The algorithm uses Monte Carlo Simulation and a discrete version of the triangular distribution to incor-
porate a randomness criterion in the classical Nawaz, Enscore, and Ham (NEH) heuristic and starts an 
iterative process in order to obtain a set of alternative solutions to the PFSP.  Thus, a random but biased 
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We can then consider several properties per solution other than the makespan, such as balanced idle times 
among machines, number of completed jobs at a given target time, etc.  This allows the decision-maker to 
consider multiple solution characteristics apart from those defined by the aprioristic objective function.  
Therefore, our methodology provides flexibility during the sequence selection process, which may help to 
improve the scheduling process.  Several tests have been performed to discuss the effectiveness of this 
approach.  The results obtained so far are promising enough to encourage further developments and im-
provements on the algorithm and its applications in real-life scenarios.  In particular, Multi-Agent Simula-
tion is proposed as a promising technique to be explored in future works. 

1 INTRODUCTION 

The Permutation Flowshop Sequencing Problem (PFSP) is a well-known scheduling problem that can be 
described as follows: a set J  of n  independent jobs has to be processed on a set M  of m  independent 
machines.  Every job j J�  requires a given fixed processing time 0ijp �  on every machine i M� .  
Each machine can execute at most one job at a time, and it is assumed that the all jobs are processed by 

3384978-1-4244-9864-2/10/$26.00 ©2010 IEEE



Juan, Ruíz, Lourenço, Mateo and Ionescu 
 

the machines in the same order.  The classical goal is to find a sequence for processing the jobs in the 
shop so that a given criterion is optimized.  The criterion most commonly used is the minimization of the 
maximum completion time (makespan) denoted by maxC .  Figure 1 illustrates this problem for a simple 
case of 3n �  jobs and 3m �  machines. 

 

 
Figure 1:  Flowshop Sequencing Problem 

The described problem is usually denoted as Fm|prmu|Cmax and it is a combinatorial problem with !n  
possible sequences which, in general, is NP-complete (Rinnooy Kan, 1976).  Similar to what has hap-
pened with other combinatorial problems, a large number of different approaches have been developed to 
deal with the PFSP.  These approaches range from the use of pure optimization methods, such as mixed 
integer programming, for solving small-sized problems to the use of heuristics and metaheuristics that 
provide near-optimal solutions for medium and large-sized problems.  Most of these methods focus on 
minimizing makespan.  However, utility functions of decision-makers are difficult to model and, fre-
quently, criteria other than total time employed to process the list of jobs should be also considered in 
real-life scenarios.  For that reason, there is a need for more flexible methods able to provide a large set of 
alternative near-optimal solutions with different properties, so that decision-makers can choose among 
different alternative solutions according to their specific necessities and preferences. 

In Cordeau et al (2002), four attributes are stated for a good heuristic: accuracy, speed, simplicity, and 
flexibility.  On the one hand, Ruiz and Stutzle (2007) presented a simple and effective iterated greedy al-
gorithm for the permutation flowshop scheduling problem, which can be considered very accurate and ob-
tains solutions in very short time.  On the other hand, the procedures designed following a GRASP 
(Greedy Randomize Adaptative Search Procedure), see some algorithms for example in Festa and Re-
sende (2009b), can be qualified as very simple and flexible.  Our proposal will be built trying to balance 
in an efficient way the four attributes, i.e. with a simple and flexible algorithm, fast enough and with an 
important degree of accuracy.  In fact, the presented algorithm is close to GRASP as randomness is intro-
duced in the search of good solutions and simulation can be seen similar to the repetition done at each it-
eration. 

In some recent works, Juan et al. (2009a, 2009b, 2010) described the application of simulation tech-
niques to solve Vehicle Routing Problems (VRP).  They commented on the convenience of using similar 
approaches for combinatorial problems other than the Capacitated VRP (CVRP)�� ��
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rithms based on the combination of Monte Carlo simulation with already existing heuristics can be devel-
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lowing their ideas, this article presents a hybrid approach that uses MCS to randomize the NEH classical 
heuristic for dealing with the PFSP.  The paper also discusses how Multi-Agent Simulation (MAS) could 
be used to further improve the proposed methodology. 
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2 LITERATURE REVIEW 

A large number of heuristics and metaheuristics have been proposed to solve the PFSP, mainly because of 
the difficulty encountered by exact methods to solve medium or large instances.  As explained before, 
most existing approaches focus on the objective of minimizing makespan.  Johnson (1954) proposed a 
simple heuristic to obtain optimal sequences for the PFSP with two machines.  Campbell, Dudek, and 
Smith (1970) developed the so-called CDS heuristic for solving the PFSP with more than two machines.  
Dannenbring (1977) also proposed several constructive and improvement heuristics for the general prob-
lem.  Nawaz, Enscore, and Ham (1983) introduced the NEH heuristic, which is commonly considered as 
the best performing heuristic for the PFSP.  Basically, what the NEH heuristic proposes is to calculate the 
total processing time required for each job (i.e., the total time each jobs requires to be processed by the set 
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total processing time.  At each step, the job at the top of the efficiency list is selected and used to con-
struct the sol�
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processing time.  Once selected, a job is inserted in the sorted set of jobs that are configuring the ongoing 
solution.  The exact position that the selected job will occupy in that ongoing solution is given by the mi-
nimizing makespan criterion.  Taillard (1990) introduced a data structure that reduces the NEH complexi-
ty.  The makespan of all n  possible insertions point  in this structure can be calculated by three matrices: 
e  (heads), q  (tails) and f  (heads plus processing times).  These three matrices avoid to explicitly calcu-
late the makespan.  In our approach we use this data structure, since it is rather straightforward to imple-
ment. Other interesting heuristics are those from Suliman (2000) or Framinan and Leisten (2003), which 
also consider several extensions of NEH when facing objectives other than makespan.  

Different metaheuristic approaches have been also proposed for the PFSP.  Osman and Potts (1989) 
used Simulated Annealing.  Widmer and Hertz (1989) proposed a Tabu Search algorithm known as 
SPIRIT.  Other Tabu Search algorithms, which make use of the NEH heuristic, were introduced by Tail-
lard (1990) and Reeves (1993).  Chen, Vempati, and Aljaber (1995), Reeves (1995) and Aldowaisan and 
Allahvedi (2003) proposed the use of Genetic Algorithms for solving the PFSP which were also based on 
the NEH heuristic.  As examples of other works which also rely on the use of the NEH heuristic we can 
cite the Ant Colony Optimization algorithm of Chandrasekharan and Ziegler (2004).   

All the aforementioned work has in common that the algorithms proposed are easy to code and there-
fore the results can be reproduced without too much difficulty.  In addition, many of the above algorithms 
can be adapted to other more realistic flowshop environments (Ruiz and Maroto 2005).  Additionally, 
there are other highly elaborated hybrid techniques for solving the PFSP.  However, as Ruiz and Stützle 
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support from the researchers that developed them. 

Regarding works facing a multiobjective function in the framework of the Permutation Flow Shop 
Scheduling, we can classify them into three main groups: 

1. A single unified objective function: Rajendran (1995) wanted to minimize the equal-weighted 
sum of normalized makespan, total flow time and machine idle time.  Genetic Algorithms have 
been a usual technique in this group.  Cavalieri and Gaiardelli (1998) used a non-linear aggrega-
tion function to convert makespan and total tardiness into a single value and this value was 
treated as the fitness for the Genetic Algorithm. 

2. A main criterion and another secondary criterion: Neppalli, Chen, and Gupta (1996) consider the 
objective of minimizing the total flow time subject to obtaining the optimal makespan for a two-
stage flow shop scheduling problem.  This contains the view closer to our resolution procedures.  

3. The biobjective case reflected in the search of solutions in the Pareto front structure: For example, 
Chiang, Cheng, and Fu (2009) faced the scheduling of the permutation flow shop with minimiza-
tion of makespan and total flow time as the objectives through a memetic algorithm (MA) which 
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searched for the set of non-dominated solutions.  As th���������
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new century, there was a rapid growth of multiobjective evolutionary ����	�
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3 REVIEW OF GRASP ALGORITHMS 

Since the approach presented in this paper has some similarities with GRASP metaheuristics, this family 
of algorithms is briefly described next.  For a recent review of this general methodology the reader is re-
ferred to Festa and Resende (2009a, 2009b).  Greedy Randomized Adaptive Search Procedure (GRASP) 
is a multi-start method designed to solve hard combinatorial optimization problems (Feo and Resende, 
1995).  The basic methodology consists in two phases: (a) a constructive phase that builds a good but not 
necessarily locally optimal solution, and (b) a second phase which consists in a local search procedure.  
The two phases are repeated until a stopping criterion is reached, keeping track of the best solution found 
over all the search.  The constructive phase builds step by step adding an element to a partial solution fol-
lowing a greedy function.  The selection of the element to be added in each iteration is not deterministic 
but subjected to a randomization process.  In that way, the repetition of both the phases leads to different 
solutions.  The randomization process is usually controlled by a parameter � , that in the simplest ver-
sions of GRASP is fixed along the execution of the algorithm.  

A particularly interesting GRASP is the so called Reactive GRASP (Prais and Ribeiro, 2000).  In this 
version of the methodology, the parameter �  is not fixed along the running of the algorithm, but it is se-
lected randomly from a set of discrete values.  Initially, all values have the same probability of being cho-
sen.  In the iterative process we keep the value of the solutions obtained for each value of � .  After a cer-
tain number of iterations the probabilities are modified.  Those corresponding to values of �  which have 
produced good solutions are increased and, conversely, those corresponding to values producing low 
quality solutions are decreased.  

4 OUR SIMULATION-BASED APPROACH 

The approach presented in this paper aims to provide a simple probabilistic algorithm that will improve 
the results obtained  with  the NEH heuristic in a few iterations, and then use the refined solution to pro-
duce an answer that is very close (identical for small instances) to the best-known solution.  The main 
goal is to develop a parameter-free algorithm in order to avoid complex or time-consuming fine-tuning 
processes.  As explained before, a second goal of our approach is to provide not only a good solution, but 
also a set of alternative solutions. 

To meet  these goals, we combine Monte Carlo Simulation (MCS) techniques with the NEH heuristic.  
In particular, our approach introduces a special random behavior within the NEH heuristic and then starts 
an iterative process.  Basically, we initiate a search process inside the space of feasible solutions.  Each 
such solution will consist of a list of jobs sorted in some order.  As explained before, the NEH heuristic is 
an iterative algorithm which employs a list of jobs sorted by their total completion time on all the ma-
chines to construct a solution for the PFSP.  At each step of this iterative process, the NEH  removes the 
job which is at the top of that list (with maximum completion time) and adds it to a new list at the posi-
tion that results in the best partial solution with respect to makespan.  As a result, the NEH provides a 
�����������������
�	�����
�������
���, by trying to schedule the most demanding jobs first.  Our me-
thod, instead, assigns a probability of selecting each job in the list.  According to our design, this proba-
bility should be coherent with the total time that each job needs to be processed by all the machines, i.e., 
jobs with higher total times will be more likely to be selected from the list before those with lower total 
times.  Finally, the selection process should be done without introducing any parameters in the methodol-
ogy �otherwise, it would be necessary to perform fine-tuning processes, which tend to be non-trivial and 
time-consuming.  To satisfy all these requirements, we employ a discrete version of a triangular distribu-
tion during the solution-construction process: each time a new job has to be selected from the list, a trian-
gular distribution that assigns linearly diminishing probabilities to each eligible job according its corres-
ponding total-processing-time value is employed.  That way, jobs with higher processing times are always 
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more likely to be selected from the list first, but the probabilities assigned are variable and they depend 
upon the concrete distribution selected at each step.  By iterating this procedure, an oriented random 
search process is started.  We call the resulting job orderings Randomized NEH solutions.  Notice that 
this general approach has many similarities with the GRASP procedures described before.  To some ex-
tent, our approach could be considered as part of the large family of Hybrid GRASP algorithms.  Even if 
the results included in this paper are based on the use of a discrete triangular distribution, other distribu-
tions such as the Log-normal or Zipf could also be considered. 

After we find a base solution that is better than the one given by the NEH heuristic, we  try to further 
optimize it by applying a local search.  The idea is to pick at random and without repetition a position 
from the list and find the best place for the corresponding job.  We do this n  times, where n  is the num-
ber of jobs, and we use Taillard accelerations at each step to speed up the execution.  The local search 
process is repeated as long as we keep getting better arrangements of the jobs.  Note that this second stage 
of our algorithm will never output a solution that is worse than the base solution.  The completion time 
for the configuration of jobs obtained at the end of this process is thus always less than the NEH makes-
pan.  However, if we would stop our algorithm at this point, we would have a high chance of ending in 
the vicinity of a local minimum that can be still far away from the optimal solution.  To avoid this prob-
lem, we restart the entire process, compute a new base solution, and improve it with the local search pro-
cedure as long as the total running time is less than a certain threshold �e.g. 0.030 seconds �  (number of 
jobs) �  (number of machines) for our implementation.  In the multi-start process we keep track of the best 
solution seen so far and we update it whenever necessary.  By starting our search at different locations in 
the solution space we also increase considerably the chances of finding configurations that are close to the 
actual optimum.  The main  steps of our algorithm are summarized next (Figure 2): 

1. Given a PFSP instance, construct the corresponding data model and use the classical NEH algo-
rithm to solve it.  Assign the NEH solution to the variable holding the best solution seen so far.  

2. Choose a probability distribution (e.g. a triangular) for adding random behavior to the algorithm. 
3. Start an iterative process to generate Randomized NEH (RNEH) solutions.  Stop once you find a 

solution that outperforms the one provided by the NEH algorithm, i.e. a base solution. 
4. Keep applying a local search to the base solution computed in step 3 as long as you get improve-

ments.  
5. Compare the configuration obtained in step 4 with the best solution seen so far, and update the 

latter if necessary. 
6. Go back to step 2 and restart the process if time permits. 

To increase the probability of getting a good solution we run each instance with 15 different seeds.  The 
results are presented in the next section. 

5 EXPERIMENTAL RESULTS 

The methodology described in this paper has been implemented as a Java application.  Java was chosen 
here since, being an object-oriented language, it facilitates the rapid development of a prototype.  An Intel 
Xeon at 2.0 GHz and 4 GB RAM, was used to perform all tests, which were run directly on the Eclipse 
IDE for Java over Windows 7. 

We tested the first 60 benchmark instances from Taillard (1993) that can be found at Taillard (2010).  
For each tested instance, we also considered its associated best-known solution (BKS) as reported in Zo-
bolas, Tarantilis, and Ioannou (2009)�� � [����� \� �
�*�� 

�� 	����
�� ��	� 

�� ��	�
� ];� [�����	�^�� ���
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which consider cases with 20 jobs.  The first 6 columns offer general information: the order of the in-
stance, the number of jobs, the  number of machines, the makespan of the BKS, the makespan of the NEH 
solution, and the gap between the two.  The last 6 columns contain data describing the performance of our 
algorithm.  Note that we run each instance with 15 different seeds, so we provide in the table an average 
cost (AvCost), an average time (AvTime) and an average gap with respect to the cost of the BKS for these 
runs.  The next two columns give information about the makespan of the best solution we find (MinCost), 
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and its associated running time (MinTime). Finally, the last column contains the gap between the cost of 
our solution and that of the BKS. 

 
Initialize

Process instance

Compute NEH solution

bestSolution = NEH
Start Timer

time < maxTime?

Compute RNEH

Is RNEH better 
than NEH?

baseSolution = RNEH

Local search

newSolution

Is newSolution better 
than baseSolution?

Update 
baseSolution

Update 
bestSolution

Output bestSolution

End

N

N

NY

Y

Y

 
Figure 2:  Flow diagram for our algorithm 

 
Notice the significant reduction in the average gap with respect to the best-known solution, from 

3.88% (NEH) to 0.00% (our algorithm&���X�������������� ���[�����\����	�

����	�
�];�[�����	�^�����
������
our methodology is able to provide a solution that is as good as the best-known solution. 

Table 2 shows results for the Taill�	�^�����
������*�

�`;�'������[
�����	���������	������	��	����
������
but again our methodology provides a noticeable reduction in the average gap (from 4.15% to 0.82%) in a 
reasonable amount of computing time (5.5 seconds on the average).  The times can be easily improved by 
just coding the algorithm in C/C++ instead of Java (being an interpreted language, Java does not offer the 
best execution-speed performance) or simply by using a more powerful computer.  We are currently in 
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the process of developing an optimized C/C++ version of the code and, according to our previous expe-
riences with similar algorithms, we expect to significantly reduce the CPU times for most of these 60 in-
stances. 

Table 1: Results for Taillar�^�����
������\�
��];�+/;�'���& 
Taillard's 
Instance 

# 
Jobs 

#  
Machines BKS NEH 

Solution 
Gap BKS-

NEH AvCost AvTime AvGap MinCost MinTime MinGap 

1 20 5 1278 1286 0.63% 1278.0 0.0050 0.00% 1278 0.0002 0.00% 

2 20 5 1359 1365 0.44% 1359.0 0.1712 0.00% 1359 0.0134 0.00% 

3 20 5 1081 1159 7.22% 1081.0 0.0272 0.00% 1081 0.0011 0.00% 

4 20 5 1293 1325 2.47% 1293.0 0.2897 0.00% 1293 0.0343 0.00% 

5 20 5 1235 1305 5.67% 1235.0 0.0366 0.00% 1235 0.0088 0.00% 

6 20 5 1195 1228 2.76% 1195.0 0.0049 0.00% 1195 0.0008 0.00% 

7 20 5 1234 1278 3.57% 1238.0 0.5076 0.32% 1234 2.2094 0.00% 

8 20 5 1206 1223 1.41% 1206.0 0.0059 0.00% 1206 0.0008 0.00% 

9 20 5 1230 1291 4.96% 1230.0 0.0119 0.00% 1230 0.0012 0.00% 

10 20 5 1108 1151 3.88% 1108.0 0.0154 0.00% 1108 0.0009 0.00% 

11 20 10 1582 1680 6.19% 1582.1 1.4686 0.00% 1582 0.1500 0.00% 

12 20 10 1659 1729 4.22% 1659.1 1.7272 0.00% 1659 0.0756 0.00% 

13 20 10 1496 1557 4.08% 1496.5 2.3979 0.03% 1496 0.1155 0.00% 

14 20 10 1377 1439 4.50% 1377.3 2.3866 0.02% 1377 0.0378 0.00% 

15 20 10 1419 1502 5.85% 1419.0 0.1121 0.00% 1419 0.0175 0.00% 

16 20 10 1397 1453 4.01% 1397.0 0.7522 0.00% 1397 0.0325 0.00% 

17 20 10 1484 1562 5.26% 1484.0 0.2539 0.00% 1484 0.0053 0.00% 

18 20 10 1538 1609 4.62% 1542.6 2.2702 0.30% 1538 0.9220 0.00% 

19 20 10 1593 1647 3.39% 1594.5 2.5745 0.10% 1593 0.3226 0.00% 

20 20 10 1591 1653 3.90% 1591.2 1.8337 0.01% 1591 0.1282 0.00% 

21 20 20 2297 2410 4.92% 2297.3 4.3805 0.01% 2297 1.8888 0.00% 

22 20 20 2099 2150 2.43% 2099.0 1.4351 0.00% 2099 0.0608 0.00% 

23 20 20 2326 2411 3.65% 2327.6 5.3052 0.07% 2326 0.4416 0.00% 

24 20 20 2223 2262 1.75% 2223.0 0.0640 0.00% 2223 0.0134 0.00% 

25 20 20 2291 2397 4.63% 2292.8 2.5181 0.08% 2291 0.0097 0.00% 

26 20 20 2226 2349 5.53% 2226.8 4.7572 0.04% 2226 0.7903 0.00% 

27 20 20 2273 2362 3.92% 2273.0 3.7247 0.00% 2273 0.5397 0.00% 

28 20 20 2200 2249 2.23% 2200.0 4.1436 0.00% 2200 0.1868 0.00% 

29 20 20 2237 2320 3.71% 2237.0 1.0461 0.00% 2237 0.0858 0.00% 

30 20 20 2178 2277 4.55% 2178.9 4.6251 0.04% 2178 1.5517 0.00% 

Averages     3.88%  1.6284 0.03%  0.3215 0.00% 

 
As described before, our approach makes use of an iterative process to generate a set of random feas-

ible solutions.  According to the experimental tests carried out, each iteration is completed in just a few 
milliseconds by using a standard computer.  By construction, odds are that the generated solution outper-
forms the one given by the NEH heuristic.  This means that our approach provides, after a few iterations, 
a feasible solution which outperforms the NEH heuristic as regards makespan.  Moreover, as verified by 
testing, several alternative solutions improving the NEH can be obtained after some more iterations 
(which take significantly more CPU time), each of them having different attributes regarding criteria such 
as balanced idle times among machines, number of completed jobs at a given target time, etc.  

Another important point to consider here is the simplicity of the presented methodology.  In effect, 
our algorithm needs little instantiation and does not require any fine-tuning or set-up processes.  This is 
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quite interesting in our opinion, since as it was noticed before, some of the most efficient metaheuristics 
are not used in practice because of the difficulties they present when trying to implement them.  On the 
contrary, simple hybrid approaches like the one introduced here tend to be more flexible and, therefore, 
they seem more appropriate to deal with real restrictions and dynamic work conditions. 

Table 2: Results for Taillard^�����
������]\�
��};�+`;�'���& 
Taillard's 
Instance 

# 
Jobs 

#  
Machines BKS NEH 

Solution 
Gap BKS-

NEH AvCost AvTime AvGap MinCost MinTime MinGap 

31 50 5 2724 2733 0.33% 2724.0 0.0080 0.00% 2724 0.0022 0.00% 

32 50 5 2834 2843 0.32% 2835.6 1.0068 0.06% 2834 1.0319 0.00% 

33 50 5 2621 2640 0.72% 2621.0 0.1180 0.00% 2621 0.0054 0.00% 

34 50 5 2751 2782 1.13% 2751.0 0.6044 0.00% 2751 0.0102 0.00% 

35 50 5 2863 2868 0.17% 2863.0 0.2503 0.00% 2863 0.0059 0.00% 

36 50 5 2829 2850 0.74% 2829.0 0.2978 0.00% 2829 0.0270 0.00% 

37 50 5 2725 2758 1.21% 2725.0 0.1352 0.00% 2725 0.0235 0.00% 

38 50 5 2683 2721 1.42% 2683.0 0.0334 0.00% 2683 0.0063 0.00% 

39 50 5 2552 2576 0.94% 2552.1 2.4279 0.00% 2552 0.3099 0.00% 

40 50 5 2782 2790 0.29% 2782.0 0.0167 0.00% 2782 0.0026 0.00% 

41 50 10 2991 3135 4.81% 3035.1 9.1256 1.47% 3028 10.2698 1.24% 

42 50 10 2867 3032 5.76% 2914.6 7.7866 1.66% 2911 3.5524 1.53% 

43 50 10 2839 2986 5.18% 2882.2 7.9055 1.52% 2873 2.5159 1.20% 

44 50 10 3063 3198 4.41% 3069.0 2.4458 0.20% 3063 8.0892 0.00% 

45 50 10 2976 3160 6.18% 3015.5 6.1041 1.33% 3001 8.2741 0.84% 

46 50 10 3006 3178 5.72% 3032.9 6.5275 0.89% 3020 11.5064 0.47% 

47 50 10 3093 3277 5.95% 3127.3 7.9190 1.11% 3124 0.8654 1.00% 

48 50 10 3037 3123 2.83% 3044.5 5.4414 0.25% 3042 0.3796 0.16% 

49 50 10 2897 3002 3.62% 2917.1 4.6210 0.69% 2907 7.1431 0.35% 

50 50 10 3065 3257 6.26% 3114.1 6.4705 1.60% 3100 5.6446 1.14% 

51 50 20 3850 4082 6.03% 3929.3 15.2113 2.14% 3921 21.2587 1.92% 

52 50 20 3704 3921 5.86% 3773.9 13.7315 1.89% 3755 16.4208 1.38% 

53 50 20 3640 3927 7.88% 3729.2 16.1167 2.45% 3719 1.7320 2.17% 

54 50 20 3720 3969 6.69% 3796.2 17.7403 2.08% 3781 11.9047 1.67% 

55 50 20 3610 3835 6.23% 3683.4 11.4236 2.03% 3672 6.4948 1.72% 

56 50 20 3681 3914 6.33% 3753.9 16.8949 2.03% 3746 18.7676 1.82% 

57 50 20 3704 3952 6.70% 3776.4 13.9928 1.95% 3743 8.3589 1.05% 

58 50 20 3691 3938 6.69% 3778.6 11.4161 2.37% 3768 5.9899 2.09% 

59 50 20 3743 3952 5.58% 3808.7 15.6581 1.81% 3796 12.6947 1.47% 

60 50 20 3756 4079 8.60% 3825.0 12.2771 1.84% 3806 0.3988 1.33% 
Averages     4.15%  7.1236 1.05%  5.4562 0.82% 

6 FUTURE WORK 

The algorithm presented here can be easily parallelized by splitting the random-number-generation se-
quence in different streams and using each stream in different threads or CPUs.  This can be an interesting 
field to explore in future works, given the current trend in multi-core processors and parallel computing. 

Offering competitive solutions to complex problems in real time and without adjustments beforehand 
still presents a challenge.  In spite of this, it has been empirically observed that it is possible to signifi-
cantly reduce the execution time that the algorithm needs to obtain good solutions, depending on the seed 
that is chosen for the pseudo-random number generator.  There are new processor design paradigms based 
on gaining computation capacity through the parallel execution of multiple processes and threads (multi-
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core).  Following this concept, new, affordable Graphic Processing Units (GPUs) have recently been in-
troduced on the market that offer the capacity of executing hundreds �or even thousands� of threads con-
currently.   

Accordingly, our current goal is to implement a multi-threaded version of the previously described 
algorithm in the language C/C++.  This will allow us to execute multiple instances of the algorithm at the 
same time, each with a different seed.  Each of these instances can be considered as an individual agent 
that is searching the solution space by using a Multi-Agent Simulation approach.  In other words, the idea 
is that each of these multiple agents will start to search in a different region of the solution space (by us-
ing different seeds) (Figure 3). 
 

 
Figure 3:  Designing a Multi-Agent Simulation approach 

 Our hypothesis here is that a multi-threaded version of the algorithm can provide very competitive re-
sults to the PFSP problem for most benchmarks.  At the same time, using C will facilitate translating the 
code to CUDA, an extension of C that can use all of the parallel processing power of the new GPUs that 
are commercially available now. 

7 CONCLUSIONS 

In this paper a simple probabilistic methodology for solving the Permutation Flowshop Sequencing Prob-
lem (PFSP) has been presented.  This methodology, which does not require any particular fine-tuning or 
configuration process, combines the classical NEH heuristic with Monte Carlo simulation using a triangu-
lar distribution.   

Results show that our methodology is able to improve the NEH heuristic in just a few iterations.  
Moreover, being a constructive approach, it can generate several alternative good solutions in a reasona-
ble time-period.  The paper also discusses some ongoing research on the use of C/C++ versions of the 
code to significantly reduce computation times as well as on the use of multi-agent simulation techniques 
to accelerate even further the methodology when applied to very large problems. 
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