
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

A SIMULATION-BASED APPROACH FOR SOLVING THE FLOWSHOP PROBLEM

Angel A. Juan Rubén Ruíz

Technical University of Catalonia � IEMAE Universidad Politécnica de Valencia
School of Building Construction of Barcelona Grupo Sistemas Optimización Aplicada � ITI

Barcelona, 08028, SPAIN Valencia, 46022, SPAIN

Helena R. Lourenço Manuel Mateo

Universitat Pompeu Fabra Universidad Politécnica de Cataluña
Department of Economics and Business Departamento de Organización de Empresas

Barcelona 08005, SPAIN Barcelona, 08028, SPAIN

Dragos Ionescu

Open University of Catalonia � IN3

Computer Science and Telecommunication Studies
Barcelona, 08018, SPAIN

ABSTRACT

A simulation-based algorithm for the Permutation Flowshop Sequencing Problem (PFSP) is presented.
The algorithm uses Monte Carlo Simulation and a discrete version of the triangular distribution to incor-
porate a randomness criterion in the classical Nawaz, Enscore, and Ham (NEH) heuristic and starts an
iterative process in order to obtain a set of alternative solutions to the PFSP. Thus, a random but biased
lo�������	�
����

���������������
����������	��	��������������
������������
�	��
��������
�����������
��������
We can then consider several properties per solution other than the makespan, such as balanced idle times
among machines, number of completed jobs at a given target time, etc. This allows the decision-maker to
consider multiple solution characteristics apart from those defined by the aprioristic objective function.
Therefore, our methodology provides flexibility during the sequence selection process, which may help to
improve the scheduling process. Several tests have been performed to discuss the effectiveness of this
approach. The results obtained so far are promising enough to encourage further developments and im-
provements on the algorithm and its applications in real-life scenarios. In particular, Multi-Agent Simula-
tion is proposed as a promising technique to be explored in future works.

1 INTRODUCTION

The Permutation Flowshop Sequencing Problem (PFSP) is a well-known scheduling problem that can be
described as follows: a set J of n independent jobs has to be processed on a set M of m independent
machines. Every job j J� requires a given fixed processing time 0ijp � on every machine i M� .
Each machine can execute at most one job at a time, and it is assumed that the all jobs are processed by

3384978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Juan, Ruíz, Lourenço, Mateo and Ionescu

the machines in the same order. The classical goal is to find a sequence for processing the jobs in the
shop so that a given criterion is optimized. The criterion most commonly used is the minimization of the
maximum completion time (makespan) denoted by maxC . Figure 1 illustrates this problem for a simple
case of 3n � jobs and 3m � machines.

Figure 1: Flowshop Sequencing Problem

The described problem is usually denoted as Fm|prmu|Cmax and it is a combinatorial problem with !n
possible sequences which, in general, is NP-complete (Rinnooy Kan, 1976). Similar to what has hap-
pened with other combinatorial problems, a large number of different approaches have been developed to
deal with the PFSP. These approaches range from the use of pure optimization methods, such as mixed
integer programming, for solving small-sized problems to the use of heuristics and metaheuristics that
provide near-optimal solutions for medium and large-sized problems. Most of these methods focus on
minimizing makespan. However, utility functions of decision-makers are difficult to model and, fre-
quently, criteria other than total time employed to process the list of jobs should be also considered in
real-life scenarios. For that reason, there is a need for more flexible methods able to provide a large set of
alternative near-optimal solutions with different properties, so that decision-makers can choose among
different alternative solutions according to their specific necessities and preferences.

In Cordeau et al (2002), four attributes are stated for a good heuristic: accuracy, speed, simplicity, and
flexibility. On the one hand, Ruiz and Stutzle (2007) presented a simple and effective iterated greedy al-
gorithm for the permutation flowshop scheduling problem, which can be considered very accurate and ob-
tains solutions in very short time. On the other hand, the procedures designed following a GRASP
(Greedy Randomize Adaptative Search Procedure), see some algorithms for example in Festa and Re-
sende (2009b), can be qualified as very simple and flexible. Our proposal will be built trying to balance
in an efficient way the four attributes, i.e. with a simple and flexible algorithm, fast enough and with an
important degree of accuracy. In fact, the presented algorithm is close to GRASP as randomness is intro-
duced in the search of good solutions and simulation can be seen similar to the repetition done at each it-
eration.

In some recent works, Juan et al. (2009a, 2009b, 2010) described the application of simulation tech-
niques to solve Vehicle Routing Problems (VRP). They commented on the convenience of using similar
approaches for combinatorial problems other than the Capacitated VRP (CVRP)�� ��
� ��� ���������
�
��
high���

�

�
�

����
	���������

���������������������������

�����"������	��#�������	�
��	������o-
rithms based on the combination of Monte Carlo simulation with already existing heuristics can be devel-
�������	��

�	�	��
�����	������#�������������	������	��

�	��������
�	������
���$�
�����	����������%�l-
lowing their ideas, this article presents a hybrid approach that uses MCS to randomize the NEH classical
heuristic for dealing with the PFSP. The paper also discusses how Multi-Agent Simulation (MAS) could
be used to further improve the proposed methodology.

3385

Juan, Ruíz, Lourenço, Mateo and Ionescu

2 LITERATURE REVIEW

A large number of heuristics and metaheuristics have been proposed to solve the PFSP, mainly because of
the difficulty encountered by exact methods to solve medium or large instances. As explained before,
most existing approaches focus on the objective of minimizing makespan. Johnson (1954) proposed a
simple heuristic to obtain optimal sequences for the PFSP with two machines. Campbell, Dudek, and
Smith (1970) developed the so-called CDS heuristic for solving the PFSP with more than two machines.
Dannenbring (1977) also proposed several constructive and improvement heuristics for the general prob-
lem. Nawaz, Enscore, and Ham (1983) introduced the NEH heuristic, which is commonly considered as
the best performing heuristic for the PFSP. Basically, what the NEH heuristic proposes is to calculate the
total processing time required for each job (i.e., the total time each jobs requires to be processed by the set
������
����&������

���
���	��
��������������������
�����'������	
��������������������	��	�����	�����
��

���
total processing time. At each step, the job at the top of the efficiency list is selected and used to con-
struct the sol�
�����

�
� ����

�� �������� ������� 	���� ���
�� �����
� ��	�
�

���� '���� *�

�

��
��
��
�
�
���
processing time. Once selected, a job is inserted in the sorted set of jobs that are configuring the ongoing
solution. The exact position that the selected job will occupy in that ongoing solution is given by the mi-
nimizing makespan criterion. Taillard (1990) introduced a data structure that reduces the NEH complexi-
ty. The makespan of all n possible insertions point in this structure can be calculated by three matrices:
e (heads), q (tails) and f (heads plus processing times). These three matrices avoid to explicitly calcu-
late the makespan. In our approach we use this data structure, since it is rather straightforward to imple-
ment. Other interesting heuristics are those from Suliman (2000) or Framinan and Leisten (2003), which
also consider several extensions of NEH when facing objectives other than makespan.

Different metaheuristic approaches have been also proposed for the PFSP. Osman and Potts (1989)
used Simulated Annealing. Widmer and Hertz (1989) proposed a Tabu Search algorithm known as
SPIRIT. Other Tabu Search algorithms, which make use of the NEH heuristic, were introduced by Tail-
lard (1990) and Reeves (1993). Chen, Vempati, and Aljaber (1995), Reeves (1995) and Aldowaisan and
Allahvedi (2003) proposed the use of Genetic Algorithms for solving the PFSP which were also based on
the NEH heuristic. As examples of other works which also rely on the use of the NEH heuristic we can
cite the Ant Colony Optimization algorithm of Chandrasekharan and Ziegler (2004).

All the aforementioned work has in common that the algorithms proposed are easy to code and there-
fore the results can be reproduced without too much difficulty. In addition, many of the above algorithms
can be adapted to other more realistic flowshop environments (Ruiz and Maroto 2005). Additionally,
there are other highly elaborated hybrid techniques for solving the PFSP. However, as Ruiz and Stützle
+/;;<&�����
���
���

����	����	�����
��
���
�����������	�������������
��=�����������	����	�

��	��������n-
tation.���>���

�	�*�	�����
��������=����

�
�

�����������������	���������	�����
������narios without direct
support from the researchers that developed them.

Regarding works facing a multiobjective function in the framework of the Permutation Flow Shop
Scheduling, we can classify them into three main groups:

1. A single unified objective function: Rajendran (1995) wanted to minimize the equal-weighted
sum of normalized makespan, total flow time and machine idle time. Genetic Algorithms have
been a usual technique in this group. Cavalieri and Gaiardelli (1998) used a non-linear aggrega-
tion function to convert makespan and total tardiness into a single value and this value was
treated as the fitness for the Genetic Algorithm.

2. A main criterion and another secondary criterion: Neppalli, Chen, and Gupta (1996) consider the
objective of minimizing the total flow time subject to obtaining the optimal makespan for a two-
stage flow shop scheduling problem. This contains the view closer to our resolution procedures.

3. The biobjective case reflected in the search of solutions in the Pareto front structure: For example,
Chiang, Cheng, and Fu (2009) faced the scheduling of the permutation flow shop with minimiza-
tion of makespan and total flow time as the objectives through a memetic algorithm (MA) which

3386

Juan, Ruíz, Lourenço, Mateo and Ionescu

searched for the set of non-dominated solutions. As th���������
� ���

������	�� ���
�	����

��
new century, there was a rapid growth of multiobjective evolutionary ����	�

���+?@QX&�.

3 REVIEW OF GRASP ALGORITHMS

Since the approach presented in this paper has some similarities with GRASP metaheuristics, this family
of algorithms is briefly described next. For a recent review of this general methodology the reader is re-
ferred to Festa and Resende (2009a, 2009b). Greedy Randomized Adaptive Search Procedure (GRASP)
is a multi-start method designed to solve hard combinatorial optimization problems (Feo and Resende,
1995). The basic methodology consists in two phases: (a) a constructive phase that builds a good but not
necessarily locally optimal solution, and (b) a second phase which consists in a local search procedure.
The two phases are repeated until a stopping criterion is reached, keeping track of the best solution found
over all the search. The constructive phase builds step by step adding an element to a partial solution fol-
lowing a greedy function. The selection of the element to be added in each iteration is not deterministic
but subjected to a randomization process. In that way, the repetition of both the phases leads to different
solutions. The randomization process is usually controlled by a parameter � , that in the simplest ver-
sions of GRASP is fixed along the execution of the algorithm.

A particularly interesting GRASP is the so called Reactive GRASP (Prais and Ribeiro, 2000). In this
version of the methodology, the parameter � is not fixed along the running of the algorithm, but it is se-
lected randomly from a set of discrete values. Initially, all values have the same probability of being cho-
sen. In the iterative process we keep the value of the solutions obtained for each value of � . After a cer-
tain number of iterations the probabilities are modified. Those corresponding to values of � which have
produced good solutions are increased and, conversely, those corresponding to values producing low
quality solutions are decreased.

4 OUR SIMULATION-BASED APPROACH

The approach presented in this paper aims to provide a simple probabilistic algorithm that will improve
the results obtained with the NEH heuristic in a few iterations, and then use the refined solution to pro-
duce an answer that is very close (identical for small instances) to the best-known solution. The main
goal is to develop a parameter-free algorithm in order to avoid complex or time-consuming fine-tuning
processes. As explained before, a second goal of our approach is to provide not only a good solution, but
also a set of alternative solutions.

To meet these goals, we combine Monte Carlo Simulation (MCS) techniques with the NEH heuristic.
In particular, our approach introduces a special random behavior within the NEH heuristic and then starts
an iterative process. Basically, we initiate a search process inside the space of feasible solutions. Each
such solution will consist of a list of jobs sorted in some order. As explained before, the NEH heuristic is
an iterative algorithm which employs a list of jobs sorted by their total completion time on all the ma-
chines to construct a solution for the PFSP. At each step of this iterative process, the NEH removes the
job which is at the top of that list (with maximum completion time) and adds it to a new list at the posi-
tion that results in the best partial solution with respect to makespan. As a result, the NEH provides a
�����������������
�	�����
�������
���, by trying to schedule the most demanding jobs first. Our me-
thod, instead, assigns a probability of selecting each job in the list. According to our design, this proba-
bility should be coherent with the total time that each job needs to be processed by all the machines, i.e.,
jobs with higher total times will be more likely to be selected from the list before those with lower total
times. Finally, the selection process should be done without introducing any parameters in the methodol-
ogy �otherwise, it would be necessary to perform fine-tuning processes, which tend to be non-trivial and
time-consuming. To satisfy all these requirements, we employ a discrete version of a triangular distribu-
tion during the solution-construction process: each time a new job has to be selected from the list, a trian-
gular distribution that assigns linearly diminishing probabilities to each eligible job according its corres-
ponding total-processing-time value is employed. That way, jobs with higher processing times are always

3387

Juan, Ruíz, Lourenço, Mateo and Ionescu

more likely to be selected from the list first, but the probabilities assigned are variable and they depend
upon the concrete distribution selected at each step. By iterating this procedure, an oriented random
search process is started. We call the resulting job orderings Randomized NEH solutions. Notice that
this general approach has many similarities with the GRASP procedures described before. To some ex-
tent, our approach could be considered as part of the large family of Hybrid GRASP algorithms. Even if
the results included in this paper are based on the use of a discrete triangular distribution, other distribu-
tions such as the Log-normal or Zipf could also be considered.

After we find a base solution that is better than the one given by the NEH heuristic, we try to further
optimize it by applying a local search. The idea is to pick at random and without repetition a position
from the list and find the best place for the corresponding job. We do this n times, where n is the num-
ber of jobs, and we use Taillard accelerations at each step to speed up the execution. The local search
process is repeated as long as we keep getting better arrangements of the jobs. Note that this second stage
of our algorithm will never output a solution that is worse than the base solution. The completion time
for the configuration of jobs obtained at the end of this process is thus always less than the NEH makes-
pan. However, if we would stop our algorithm at this point, we would have a high chance of ending in
the vicinity of a local minimum that can be still far away from the optimal solution. To avoid this prob-
lem, we restart the entire process, compute a new base solution, and improve it with the local search pro-
cedure as long as the total running time is less than a certain threshold �e.g. 0.030 seconds � (number of
jobs) � (number of machines) for our implementation. In the multi-start process we keep track of the best
solution seen so far and we update it whenever necessary. By starting our search at different locations in
the solution space we also increase considerably the chances of finding configurations that are close to the
actual optimum. The main steps of our algorithm are summarized next (Figure 2):

1. Given a PFSP instance, construct the corresponding data model and use the classical NEH algo-
rithm to solve it. Assign the NEH solution to the variable holding the best solution seen so far.

2. Choose a probability distribution (e.g. a triangular) for adding random behavior to the algorithm.
3. Start an iterative process to generate Randomized NEH (RNEH) solutions. Stop once you find a

solution that outperforms the one provided by the NEH algorithm, i.e. a base solution.
4. Keep applying a local search to the base solution computed in step 3 as long as you get improve-

ments.
5. Compare the configuration obtained in step 4 with the best solution seen so far, and update the

latter if necessary.
6. Go back to step 2 and restart the process if time permits.

To increase the probability of getting a good solution we run each instance with 15 different seeds. The
results are presented in the next section.

5 EXPERIMENTAL RESULTS

The methodology described in this paper has been implemented as a Java application. Java was chosen
here since, being an object-oriented language, it facilitates the rapid development of a prototype. An Intel
Xeon at 2.0 GHz and 4 GB RAM, was used to perform all tests, which were run directly on the Eclipse
IDE for Java over Windows 7.

We tested the first 60 benchmark instances from Taillard (1993) that can be found at Taillard (2010).
For each tested instance, we also considered its associated best-known solution (BKS) as reported in Zo-
bolas, Tarantilis, and Ioannou (2009)�� � [����� \� �
�*��

�� 	����
�� ��	�

�� ��	�
�];� [�����	�^�� ���
�������
which consider cases with 20 jobs. The first 6 columns offer general information: the order of the in-
stance, the number of jobs, the number of machines, the makespan of the BKS, the makespan of the NEH
solution, and the gap between the two. The last 6 columns contain data describing the performance of our
algorithm. Note that we run each instance with 15 different seeds, so we provide in the table an average
cost (AvCost), an average time (AvTime) and an average gap with respect to the cost of the BKS for these
runs. The next two columns give information about the makespan of the best solution we find (MinCost),

3388

Juan, Ruíz, Lourenço, Mateo and Ionescu

and its associated running time (MinTime). Finally, the last column contains the gap between the cost of
our solution and that of the BKS.

Initialize

Process instance

Compute NEH solution

bestSolution = NEH
Start Timer

time < maxTime?

Compute RNEH

Is RNEH better
than NEH?

baseSolution = RNEH

Local search

newSolution

Is newSolution better
than baseSolution?

Update
baseSolution

Update
bestSolution

Output bestSolution

End

N

N

NY

Y

Y

Figure 2: Flow diagram for our algorithm

Notice the significant reduction in the average gap with respect to the best-known solution, from

3.88% (NEH) to 0.00% (our algorithm&���X�������������� ���[�����\����	�

����	�
�];�[�����	�^�����
������
our methodology is able to provide a solution that is as good as the best-known solution.

Table 2 shows results for the Taill�	�^�����
������*�

�`;�'������[
�����	���������	������	��	����
������
but again our methodology provides a noticeable reduction in the average gap (from 4.15% to 0.82%) in a
reasonable amount of computing time (5.5 seconds on the average). The times can be easily improved by
just coding the algorithm in C/C++ instead of Java (being an interpreted language, Java does not offer the
best execution-speed performance) or simply by using a more powerful computer. We are currently in

3389

Juan, Ruíz, Lourenço, Mateo and Ionescu

the process of developing an optimized C/C++ version of the code and, according to our previous expe-
riences with similar algorithms, we expect to significantly reduce the CPU times for most of these 60 in-
stances.

Table 1: Results for Taillar�^�����
������\�
��];�+/;�'���&
Taillard's
Instance

Jobs

Machines BKS NEH

Solution
Gap BKS-

NEH AvCost AvTime AvGap MinCost MinTime MinGap

1 20 5 1278 1286 0.63% 1278.0 0.0050 0.00% 1278 0.0002 0.00%

2 20 5 1359 1365 0.44% 1359.0 0.1712 0.00% 1359 0.0134 0.00%

3 20 5 1081 1159 7.22% 1081.0 0.0272 0.00% 1081 0.0011 0.00%

4 20 5 1293 1325 2.47% 1293.0 0.2897 0.00% 1293 0.0343 0.00%

5 20 5 1235 1305 5.67% 1235.0 0.0366 0.00% 1235 0.0088 0.00%

6 20 5 1195 1228 2.76% 1195.0 0.0049 0.00% 1195 0.0008 0.00%

7 20 5 1234 1278 3.57% 1238.0 0.5076 0.32% 1234 2.2094 0.00%

8 20 5 1206 1223 1.41% 1206.0 0.0059 0.00% 1206 0.0008 0.00%

9 20 5 1230 1291 4.96% 1230.0 0.0119 0.00% 1230 0.0012 0.00%

10 20 5 1108 1151 3.88% 1108.0 0.0154 0.00% 1108 0.0009 0.00%

11 20 10 1582 1680 6.19% 1582.1 1.4686 0.00% 1582 0.1500 0.00%

12 20 10 1659 1729 4.22% 1659.1 1.7272 0.00% 1659 0.0756 0.00%

13 20 10 1496 1557 4.08% 1496.5 2.3979 0.03% 1496 0.1155 0.00%

14 20 10 1377 1439 4.50% 1377.3 2.3866 0.02% 1377 0.0378 0.00%

15 20 10 1419 1502 5.85% 1419.0 0.1121 0.00% 1419 0.0175 0.00%

16 20 10 1397 1453 4.01% 1397.0 0.7522 0.00% 1397 0.0325 0.00%

17 20 10 1484 1562 5.26% 1484.0 0.2539 0.00% 1484 0.0053 0.00%

18 20 10 1538 1609 4.62% 1542.6 2.2702 0.30% 1538 0.9220 0.00%

19 20 10 1593 1647 3.39% 1594.5 2.5745 0.10% 1593 0.3226 0.00%

20 20 10 1591 1653 3.90% 1591.2 1.8337 0.01% 1591 0.1282 0.00%

21 20 20 2297 2410 4.92% 2297.3 4.3805 0.01% 2297 1.8888 0.00%

22 20 20 2099 2150 2.43% 2099.0 1.4351 0.00% 2099 0.0608 0.00%

23 20 20 2326 2411 3.65% 2327.6 5.3052 0.07% 2326 0.4416 0.00%

24 20 20 2223 2262 1.75% 2223.0 0.0640 0.00% 2223 0.0134 0.00%

25 20 20 2291 2397 4.63% 2292.8 2.5181 0.08% 2291 0.0097 0.00%

26 20 20 2226 2349 5.53% 2226.8 4.7572 0.04% 2226 0.7903 0.00%

27 20 20 2273 2362 3.92% 2273.0 3.7247 0.00% 2273 0.5397 0.00%

28 20 20 2200 2249 2.23% 2200.0 4.1436 0.00% 2200 0.1868 0.00%

29 20 20 2237 2320 3.71% 2237.0 1.0461 0.00% 2237 0.0858 0.00%

30 20 20 2178 2277 4.55% 2178.9 4.6251 0.04% 2178 1.5517 0.00%

Averages 3.88% 1.6284 0.03% 0.3215 0.00%

As described before, our approach makes use of an iterative process to generate a set of random feas-

ible solutions. According to the experimental tests carried out, each iteration is completed in just a few
milliseconds by using a standard computer. By construction, odds are that the generated solution outper-
forms the one given by the NEH heuristic. This means that our approach provides, after a few iterations,
a feasible solution which outperforms the NEH heuristic as regards makespan. Moreover, as verified by
testing, several alternative solutions improving the NEH can be obtained after some more iterations
(which take significantly more CPU time), each of them having different attributes regarding criteria such
as balanced idle times among machines, number of completed jobs at a given target time, etc.

Another important point to consider here is the simplicity of the presented methodology. In effect,
our algorithm needs little instantiation and does not require any fine-tuning or set-up processes. This is

3390

Juan, Ruíz, Lourenço, Mateo and Ionescu

quite interesting in our opinion, since as it was noticed before, some of the most efficient metaheuristics
are not used in practice because of the difficulties they present when trying to implement them. On the
contrary, simple hybrid approaches like the one introduced here tend to be more flexible and, therefore,
they seem more appropriate to deal with real restrictions and dynamic work conditions.

Table 2: Results for Taillard^�����
������]\�
��};�+`;�'���&
Taillard's
Instance

Jobs

Machines BKS NEH

Solution
Gap BKS-

NEH AvCost AvTime AvGap MinCost MinTime MinGap

31 50 5 2724 2733 0.33% 2724.0 0.0080 0.00% 2724 0.0022 0.00%

32 50 5 2834 2843 0.32% 2835.6 1.0068 0.06% 2834 1.0319 0.00%

33 50 5 2621 2640 0.72% 2621.0 0.1180 0.00% 2621 0.0054 0.00%

34 50 5 2751 2782 1.13% 2751.0 0.6044 0.00% 2751 0.0102 0.00%

35 50 5 2863 2868 0.17% 2863.0 0.2503 0.00% 2863 0.0059 0.00%

36 50 5 2829 2850 0.74% 2829.0 0.2978 0.00% 2829 0.0270 0.00%

37 50 5 2725 2758 1.21% 2725.0 0.1352 0.00% 2725 0.0235 0.00%

38 50 5 2683 2721 1.42% 2683.0 0.0334 0.00% 2683 0.0063 0.00%

39 50 5 2552 2576 0.94% 2552.1 2.4279 0.00% 2552 0.3099 0.00%

40 50 5 2782 2790 0.29% 2782.0 0.0167 0.00% 2782 0.0026 0.00%

41 50 10 2991 3135 4.81% 3035.1 9.1256 1.47% 3028 10.2698 1.24%

42 50 10 2867 3032 5.76% 2914.6 7.7866 1.66% 2911 3.5524 1.53%

43 50 10 2839 2986 5.18% 2882.2 7.9055 1.52% 2873 2.5159 1.20%

44 50 10 3063 3198 4.41% 3069.0 2.4458 0.20% 3063 8.0892 0.00%

45 50 10 2976 3160 6.18% 3015.5 6.1041 1.33% 3001 8.2741 0.84%

46 50 10 3006 3178 5.72% 3032.9 6.5275 0.89% 3020 11.5064 0.47%

47 50 10 3093 3277 5.95% 3127.3 7.9190 1.11% 3124 0.8654 1.00%

48 50 10 3037 3123 2.83% 3044.5 5.4414 0.25% 3042 0.3796 0.16%

49 50 10 2897 3002 3.62% 2917.1 4.6210 0.69% 2907 7.1431 0.35%

50 50 10 3065 3257 6.26% 3114.1 6.4705 1.60% 3100 5.6446 1.14%

51 50 20 3850 4082 6.03% 3929.3 15.2113 2.14% 3921 21.2587 1.92%

52 50 20 3704 3921 5.86% 3773.9 13.7315 1.89% 3755 16.4208 1.38%

53 50 20 3640 3927 7.88% 3729.2 16.1167 2.45% 3719 1.7320 2.17%

54 50 20 3720 3969 6.69% 3796.2 17.7403 2.08% 3781 11.9047 1.67%

55 50 20 3610 3835 6.23% 3683.4 11.4236 2.03% 3672 6.4948 1.72%

56 50 20 3681 3914 6.33% 3753.9 16.8949 2.03% 3746 18.7676 1.82%

57 50 20 3704 3952 6.70% 3776.4 13.9928 1.95% 3743 8.3589 1.05%

58 50 20 3691 3938 6.69% 3778.6 11.4161 2.37% 3768 5.9899 2.09%

59 50 20 3743 3952 5.58% 3808.7 15.6581 1.81% 3796 12.6947 1.47%

60 50 20 3756 4079 8.60% 3825.0 12.2771 1.84% 3806 0.3988 1.33%
Averages 4.15% 7.1236 1.05% 5.4562 0.82%

6 FUTURE WORK

The algorithm presented here can be easily parallelized by splitting the random-number-generation se-
quence in different streams and using each stream in different threads or CPUs. This can be an interesting
field to explore in future works, given the current trend in multi-core processors and parallel computing.

Offering competitive solutions to complex problems in real time and without adjustments beforehand
still presents a challenge. In spite of this, it has been empirically observed that it is possible to signifi-
cantly reduce the execution time that the algorithm needs to obtain good solutions, depending on the seed
that is chosen for the pseudo-random number generator. There are new processor design paradigms based
on gaining computation capacity through the parallel execution of multiple processes and threads (multi-

3391

Juan, Ruíz, Lourenço, Mateo and Ionescu

core). Following this concept, new, affordable Graphic Processing Units (GPUs) have recently been in-
troduced on the market that offer the capacity of executing hundreds �or even thousands� of threads con-
currently.

Accordingly, our current goal is to implement a multi-threaded version of the previously described
algorithm in the language C/C++. This will allow us to execute multiple instances of the algorithm at the
same time, each with a different seed. Each of these instances can be considered as an individual agent
that is searching the solution space by using a Multi-Agent Simulation approach. In other words, the idea
is that each of these multiple agents will start to search in a different region of the solution space (by us-
ing different seeds) (Figure 3).

Figure 3: Designing a Multi-Agent Simulation approach

 Our hypothesis here is that a multi-threaded version of the algorithm can provide very competitive re-
sults to the PFSP problem for most benchmarks. At the same time, using C will facilitate translating the
code to CUDA, an extension of C that can use all of the parallel processing power of the new GPUs that
are commercially available now.

7 CONCLUSIONS

In this paper a simple probabilistic methodology for solving the Permutation Flowshop Sequencing Prob-
lem (PFSP) has been presented. This methodology, which does not require any particular fine-tuning or
configuration process, combines the classical NEH heuristic with Monte Carlo simulation using a triangu-
lar distribution.

Results show that our methodology is able to improve the NEH heuristic in just a few iterations.
Moreover, being a constructive approach, it can generate several alternative good solutions in a reasona-
ble time-period. The paper also discusses some ongoing research on the use of C/C++ versions of the
code to significantly reduce computation times as well as on the use of multi-agent simulation techniques
to accelerate even further the methodology when applied to very large problems.

ACKNOWLEDGEMENTS
This work has been partially supported by the Spanish Ministry of Science and Innovation (grants
TRA2010-21644-C03 and DPI2007-61371), by the Catalan Department of Universities, Research & In-

3392

Juan, Ruíz, Lourenço, Mateo and Ionescu

formation Society (grant 2009 CTP 00007) and by the HAROSA Knowledge Community of the Internet
Interdisciplinary Institute (http://dpcs.uoc.edu).

REFERENCES

Aldowaisan, T., and A. Allahvedi. 2003. New heuristics for no-wait flowshops to minimize makespan.
Computers and Operations Research 30(8):1219-1231.

Campbell, H.G., R.A. Dudek, and M.L. Smith. 1970. A heuristic algorithm for the n job, m machine se-
quencing problem. Management Science 16:B630-B637.

Cavalieri, S., and P. Gaiardelli. 1998. Hybrid Genetic Algorithms for a Multiple-objective Scheduling
Problem. Journal of Intelligent Manufacturing 9:361-367.

Chandrasekharan, R., and H. Ziegler. 2004. Ant-colony algorithms for permutation flowshop scheduling
to minimize makespan/total flowtime of jobs. European Journal of Operational Research 155(2):426-
438.

Chen, C.L., V.S. Vempati, and N. Aljaber. 1995. An application of genetic algorithms for flow shop prob-
lems. European Journal of Operational Research 80(2):389-396.

Chiang, T.-C., H.-C. Cheng, and L.-C. Fu. 2009. Multiobjective Permutation Flow Shop Scheduling Us-
ing a Memetic Algorithm with an NEH-Based Local Search. In Emerging Intelligent Computing
Technology and Applications, ed. D.-S. Huang, K.-H. Jo, H.-H. Lee, H.-J. Kang, and V. Bevilacqua,
813�825. Berlin / Heidelberg: Springer.

Cordeau, J.-F., M. Gendreau, G. Laporte, J.-Y. Potvin, and F. Semet. 2002. A guide to vehicle routing
heuristics. Journal of the Operational Research Society 53:512-522.

Dannenbring, D.G. 1977. An evaluation of flowshop sequence heuristics. Management Science 23:1174-
1182.

Feo, T. A., and M.G.C. Resende. 1995. Greedy randomized adaptive search procedures. Journal of Glob-
al Optimization 6, 109-133.

Festa, P., and M.G.C. Resende. 2009a. An annotated bibliography of GRASP�Part I: algorithms. Inter-
national Transactions in Operational Research 16:1-24.

Festa, P., and M.G.C. Resende. 2009b. An annotated bibliography of GRASP�Part II: applications. In-
ternational Transactions in Operational Research 16:131�172.

Framinan, J.M., and R. Leisten. 2003. An efficient constructive heuristic for flowtime minimisation in
permutation flow shops. OMEGA 31:311-317.

Juan, A., J. Faulin, D. Riera, D. Masip, and J. Jorba. 2009a. A Simulation-based Methodology to assist
Decision-makers in real Vehicle Routing Problems. In Proceedings of the 11th International Confe-
rence on Enterprise Information Systems, ed. J. Cordeiro and F. Joaquim, 212-217.

Juan, A., J. Faulin, R. Ruiz, B. Barrios, and S. Caballe. 2010. The SR-GCWS hybrid algorithm for solv-
ing the capacitated vehicle routing problem. Applied Soft Computing 10(1):215-224.

Juan, A., J. Faulin, R. Ruiz, B. Barrios, M. Gilibert, and X. Vilajosana. 2009b. Using oriented random
search to provide a set of alternative solutions to the capacitated vehicle routing problem. In Opera-
tions Research and Cyber-Infrastructure, 331-346. Springer.

Johnson, S.M. 1954. Optimal two- and three-stage production schedules with setup times included. Naval
Research Logistics Quarterly 1:61-68.

Nawaz, M., E.E. Enscore, and I. Ham. 1983. A heuristic algorithm for the m-machine, n-job flowshop se-
quencing problem. OMEGA 11:91-95.

Neppalli, V.R., C.L. Chen, and J.N.D. Gupta. 1996. Genetic Algorithms for the two-stage bicriteria flow-
shop problem. European Journal of Operational Research 95:356-373.

Osman, L., and C. Potts. 1989. Simulated annealing for permutation flow-shop scheduling. OMEGA
17(6):551-557.

Prais, M., and C.C. Ribeiro. 2000. Reactive GRASP: An application to a matrix decomposition problem
in TDMA traffic assignment. INFORMS Journal on Computing 12:164-176.

3393

Juan, Ruíz, Lourenço, Mateo and Ionescu

Rajendran, C. 1995. Heuristics for Scheduling in Flowshop with Multiple Objectives. European Journal
of Operational Research 83:540�555.

Reeves, C.R. 1993. Improving the efficiency of tabu search for machine scheduling problems. Journal of
the Operational Research Society 44(4):375-382.

Reeves, C.R. 1995. A genetic algorithm for flowshop sequencing. Computers and Operations Research
22(1):5-13.

Rinnooy Kan, A.H.G. 1976. Machine Scheduling Problems: Classification, Complexity and Computa-
tions. Springer.

Ruiz, R., and C. Maroto. 2005. A comprehensive review and evaluation of permutation flowshop heuris-
tics. European Journal of Operational Research 165:479-494.

Ruiz, R., and T. Stützle. 2007. A simple and effective iterated greedy algorithm for the permutation flow-
shop scheduling problem. European Journal of Operational Research 177:2033-2049.

Suliman, S. 2000. A two-phase heuristic approach to the permutation flow-shop scheduling problem. In-
ternational Journal of Production Economics 65 (1-3):143-152.

Taillard, E. 1990. Some efficient heuristic methods for the flow shop sequencing problem. European
Journal of Operational Research 47:65-74.

Taillard, E. 1993. Benchmarks for basic scheduling problems. European Journal of Operations Research
64:278-285.

Taillard, E. 2010. Scheduling Instances. Available via <http://mistic.heig-
vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html>
[accessed April 14, 2010].

Widmer, M., and A. Hertz. 1989. A new heuristic method for the flow shop sequencing problem. Euro-
pean Journal of Operational Research 41(2):186-193.

Zobolas, C., C. Tarantilis, and G. Ioannou. 2009. Minimizing makespan in permutation flow shop sche-
duling problems using a hybrid metaheuristic algorithm. Computers & Operations Research 36:1249-
1267.

AUTHOR BIOGRAPHIES

ANGEL A. JUAN is an Associate Professor of Simulation and Data Analysis in the Computer Science
Department at the Open University of Catalonia, Spain. He is also a Lecturer at the Technical University
of Catalonia, Spain. He holds a Ph.D. in Industrial Engineering, an M.S. in Information Technologies,
and a M.S. in Applied Mathematics. His research interests include computer simulation, educational data
analysis and mathematical e-learning. He is an editorial board member of the Int. J. of Data Analysis
Techniques and Strategies and the Int. J. of Information Systems & Social Change. He is also a member
of the INFORMS society. His webpage and e-mail address are
<http://ajuanp.wordpress.com> and <ajuanp@gmail.com>.

RUBEN RUIZ is an Associate Professor of Heuristics and Algorithms in the Dep. of Statistics and Op-
erations Research at the Universidad Politécnica de Valencia, Spain. He holds a Ph.D. and an M.S. in
Computer Science. His research interests include combinatorial optimization and its applications to real-
life scenarios. He is editor of the European Journal of Industrial Engineering. His webpage and e-mail
address are <http://soa.iti.es/rruiz> and <rruiz@eio.upv.es>.

HELENA R. LOURENÇO is an Associate Professor of Operations Research and Logistics at the De-
partment of Economics and Business at the Universitat Pompeu Fabra, Spain. She holds a Ph.D. and an
M.S. in Operations Research. Her research interests include Operations Research, Operations Manage-
ment, Logistics, Metaheuristics, Combinatorial Optimization and Scheduling. Her webpage and e-mail
address are, respectively: <http://www.econ.upf.edu/~ramalhin/welcome.htm> and
<helena.ramalhinho@upf.edu>.

3394

Juan, Ruíz, Lourenço, Mateo and Ionescu

MANUEL MATEO is an Associate Professor in the Department of Management at Universitat Po-
litécnica de Catalunya (UPC), Spain. He holds a Ph.D. and a M.S. in Industrial Engineering. His courses
are related to Industrial Engineering and some of them describe problems of Operations Research. His
research field is focused on scheduling: hoist scheduling problem, flow-shop, problems in the supply
chain, etc. He is the author or co-author of some papers and brochures. He is Lecturer at the Universitat
Oberta de Catalunya (UOC), as well as a member of ADINGOR and SEIO societies. His e-mail address
is <manel.mateo@upc.edu>.

DRAGOS IONESCU is a student of Electrical Engineering and Computer Science at the Massachusetts
Institute of Technology. At MIT, he has hold lab assistant positions for courses related to software engi-
neering and transmission systems. Recently, he has been working as a junior research assistant at the
Open University of Catalonia (Spain), as part of the IN3-HAROSA Knowledge Community. His e-mail
address is <dionescu@mit.edu>.

3395

