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In this paper we define a model for multiresolution time series database
management systems. The main objective is to store compactly a time series
and manage consistently its temporal dimension. It is achieved by extracting
different resolutions and attributes summaries from the time series.

Our work is concerned in putting together two areas of study: time series
analysis and database management systems (DBMS). Time series analysis
offers a great deal of methodologies and algorithms to process time series data
and database field provides software expertise in managing data. Therefore
it is of primary relevance that DBMS support time series.
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1 Introduction

Modern society depends on the expert operation of many complex engineering systems
which provides products and services. Examples include electric power systems, wa-
ter distributions networks, transportation systems, manufacturing processes, intelligent
buildings, communication systems, etc. The emergence of embedded systems and sensor
networks has made possible the collection of large amounts of data for monitoring and
control of such complex systems. In most application, these data need to be processed
and synthesised efficiently to provide relevant information to engineers, researchers, ac-
cident investigators, operators, and many other users.

Nevertheless, before using the collected signals, it is of primary importance to promptly
detecting eventual sensor failures or malfunctions and possibly reconstructing the in-
correct signals in order to avoid processing misleading information which may lead to



unsafe or inefficient actions. In all these instances, acquired data is associated with a
time stamp, which implies that the correctness of those data depends not only on the
measured value but also on the time as it is collected. When observations are collected
at specific time interval, large data sets in the form of time series are generated [2].

Time series are defined as a collection of observations made chronologically [7], ac-
cordingly they are also called time sequences [8]. Time series are usually stored in a
database. Usually the managing software to store this data are relational database man-
agement systems (RDBMS). However, using a RDBMS as a time series backend suffers
some drawbacks [6, 14, 15, 17]. Time series come from a continuous nature in which they
are recorded at regular intervals, such as hourly or daily, or at irregular intervals, such
as recording when a pump is open or closed.

One problem when dealing with time series data results from the fact that these data
are often voluminous [7]. As a result, storing and accessing them can be complicated.
Moreover, it is specially critical when developing small embedded systems, whose re-
sources (capacity, energy, processing, and communications) suffer a genuine restriction
[16]. Another problem is that the procedure of processing and synthesising information
becomes complicated if data is not equi-time spaced.

This paper focuses on Data Base Management Systems (DBMS) that store and treat
data as time series. These are usually known as Time Series Data Base Management Sys-
tems (TSMS) [6]. We introduce a new data model for a multiresolution TSMS (MTSMS).
This model allows to store time series using different time resolutions and organised in
an aggregated way. The model is specifically designed to cope well with bounded storage
computers like those found in sensor systems.

This paper is organised as follows. Following this introduction, we summarise the
TSMS and the MTSMS features and we show some related work concerning these sys-
tems. Next, we formalise the MTSMS model: in section 2 we introduce nomenclature
preliminaries, mainly about measures and time series; in section 3 we define the data
structure, the main part of the model; and in section 4 we extend for the summarising
operators, which we call attribute aggregate functions. In section 5 we show a multires-
olution database example for real data. Finally in section 6 we summarise our MTSMS
model proposal and we consider some future working directions.

1.1 TSMS features

A TSMS is a special purpose DBMS aimed at storing and managing time series. The
main objective of TSMS is to put together two areas of study: time series analysis and
DBMS. Time series analysis formalises a great amount of algorithms and methodologies
that apply to time series, with a main focus on improving efficiency. DBMS theory
formalises systems that store and operate with data; currently the relation model [4] is
the referent.

In time series analysis there are some common operations that can be generalised
when managing time series.

The main attribute of time series is the time, therefore dealing with time is a common
operation, such as querying time intervals, finding time correlations, or calculating dis-
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Figure 1: Multiresolution snapshot diagram with regular sampling

tances between two time series. TSMS must respect the temporal coherence of the time
series. In the context of statistics, aggregation of time series is also common operation.
Aggregation consists in summarising a time series subset with an attribute such as the
mean, the maximum, or the mode.

A particular feature of time series is representation. A time series is discrete in the
set sense, that is a set of value and time pairs. Representation is the function model
approximating the time series to its continuous nature. TSMS operate on time series
respecting the representation coherence. Furthermore, the values of a time series can be
of any type.

1.2 Multiresolution motivation example

A MTSMS is a TSMS with multiresolution capabilities. In a MTSMS a schema has to
be configured, which mainly consist in defining different pairs of a time resolution and
an attribute summarising function. We show it with an example.

Figures 1 and 2 show a multiresolution summary for a regular and irregular time series,
respectively. Both figures show a snapshot in time, suppose between time 9 and 10.

At the top of the figures there is a plot of a time series with time axis in general units
of time (u.t.) and with value axis in undetermined units. The 'now’ point shows when
the snapshot has been taken, so the time before is the past and the time after is the
future, which is grey coloured. The ’init’ point shows when the database system has
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Figure 2: Multiresolution snapshot diagram with irregular sampling

started sampling, so data in time before is unknown; we indicate the starting point as
being zero u.t. and unknown time points with negative units.

At the bottom of the figures there is a digram showing the multiresolution action. The
first row shows the numerical time series’ values corresponding to the above plot; in fig. 1
the time series is sampled every one unit of time and in fig. 2 every two. The second and
the third row show a particular schema of a multiresolution database consisting in two
time resolutions for the time series: one computes the mean of the sampled values every
three u.t. and the other computes the mean every five u.t. In this example, computing
the mean acts as the attribute summarising function of which we have spoken earlier. All
data stored before zero time, this included, is unknown as sampling had not started. For
the future values we also simulate as having unknown stored values which will change
as time advances.

If we look at fig. 1 we see, drawn by arrows, that every three sampled values a mean is
stored and independently every five values another mean is stored. For the future values
we show in gray that if we advance the time one u.t. then value 10 is sampled an the
mean for time 10 can be computed resulting 8 but not yet the mean for time 12.

Fig. 2 is essentially the same but showing two possible monitoring irregularities: a
gap and a time disruption. In other words, we want to sample the time series every 2
u.t. but first for some reason it can not be done in time 4 and second the sampling clock
is disrupted and samples are done in time 7 and 9 instead of 8. The resulting stored
time schema is the same: on time resolution every 3 u.t. and the other every 5 u.t.; that
is, without time disruptions. The resulting stored values are computed from the known
sampled values, some coincide with fig. 1 whereas some differ specially in the gap. A
better function than mean would solve this, we extend this further in section 4.



MTSMS improve TSMS features in various aspects:

e Voluminous data. Monitoring systems capture a huge amount of data from sen-
sors. In order to be able to process this information, data volume must be reduced.
With the multiresolution approach only the most interesting segments of data are
stored. This segments are seen as different resolutions for the same time series and
the user configures how they are extracted and summarised by defining different
consolidation steps and functions. Multiresolution can also be useful at visualisa-
tion time as the user is able to select the best time range and time step that fits
into the screen; there is no need to process with more quantity of data than the one
that can be shown. In figure 1 there is an example of extracting two resolutions:
one every three units of time and another every five.

e Data validation. Monitoring systems capture data but can occur some drawbacks
that will affect later the process of time series analysis. Main problems are found
when monitors can not capture data, known as gaps, or capture data erroneously,
such as outlayers. The multiresolution attribute functions cope well with validat-
ing, filtering and calculating with this unknown data in order to keep a consistent
historic. In figure 2 an example of a gap can be seen.

e Data time regularising. Another monitoring side effect happens when the sampling
rate is not constant, that is when the resulting data is not equi-time spaced. This
no regularities can come from sampling jitters in periodic sampling or from no
periodic event-based sampling. The multiresolution consolidation regularises the
time interval when processes a time series, therefore each resulting time series
segment has a regular time resolution. This regularising approach could also be
used when the user wants to consult another resolution for a time series, such as
changing periodic data from a month to a year step. In figure 2 an example of
time regularising can be seen.

e Information summaries. Time series analysis typically focuses on reconstructing
the original signal. However, the user objective in a database system is to consult
some information. The multiresolution approach is a lossy compression storage
solution for data. Therefore it can be regarded as not only approximating to the
original time series function but also extracting the interesting information. The
selected information must be determined a priori assuming the context where the
future queries will be done. In figure 1 there is an example of summarising by
mean attribute.

1.3 Related work

There are some prior works concerning TSMS.

RRDtool from Oetiker [13] is a free software database management system. It is
designed to be used in monitoring systems. Because of this, it is focused to a particular
kind of data, gauges and counters, and it lacks general time series operations. RRDtool



can store multiple time resolution data. The work in this paper is partially inspired in
RRDtool.

Cougar [3] is a sensor database system. It has two structures: one for sensor properties
stored into relational tables and another for time series stored into data sequences from
sensors. Time series have specific operations and can combine relations and sequences.
Cougar target field is sensor networks, where sensor data is stored distributed in sensors.
Queries are resolved combining sensor data in a data stream orientation, which improves
processing performance. However, data streams imposes restriction on operators so this
TSMS can not be generalised to other time series types.

SciDB [15] and SciQL [17] are array database systems. These systems are intended for
science applications, in which time series play a principal role. They structure time series
into arrays in order to achieve multidimensional analysis and allow tables to store other
data. Although SciDB is based on arrays, in which it includes time series, it does not
consider time series special needs, that is not considering how continuously voluminous
data or temporal coherence are achieved. In contrast, SciQL shows how some time series
properties are achieved by the DBMS such as time series regularities, interpolation or
correlation queries. However, difference between tables and arrays seems too physical
approached and consequently can collide in representing ambiguously time series.

Bitemporal DBMS is another database field related with time. Bitemporal data is
mainly targeted at keeping historical events in the database by associating time intervals
to data. Bitemporal data and time series data are not exactly the same and so can not
be treated interchangeably [14]. However, there are some similarities between time series
and bitemporal data that can be considered. First, extending a relational database model
to manage bitemporal data shows the way to extend relational DBMS with new types
and how to model them. Second, bitemporal data modelling settles some time-related
concepts that can be extended to time series.

The recent bitemporal data research in relational DBMS model terms [5] marks a
promising foundation. It models bitemporal data as relations extended with time in-
tervals attributes and extends relational operations in order to deal with related time
aspects.

2 Preliminaries

In this section we clarify the time series’ definitions and nomenclature which we use next
when defining the MTSMS model. The main objects of a MTSMS are measures and
time series. A measure is a value measured in an instant in time and a time series is a
collection of measures.

A measure is a tuple (v,t) where v is the value of the measure and ¢ € R is the instant
in time of measurement. The values of a time series can be of any type; for simplicity
examples are presented generally with integers or real numbers but can also be strings
or structures such as arrays. Let m = (v,t) be a measure, v is written as V(m) and ¢ is
written as T'(m).

The time value defines the order between measures. Let m = (vy, ty,) and n = (vp, ty)



be two measures, then m > n if and only if ¢, > t,.
A time series is sequence of measures that are ordered in time.

Definition 1 (Time series) A time series S is a a set of measures S = {mog, ..., my}
without repeated time values Vi,j 11 < k,j < k,i # j: T(m;) # T(m;), where k+1 = |S|
1s the cardinality of the set.

The order defined by measures implies a total order in a time series. As a time series is
a finite set, if it is not empty it has a maximum and a minimum. Let S = {my, ..., my}
be a time series and n € S be a measure. The time series’ maximum is n = max(S) if
and only if Ym € S : n > m. Similarly, the time series’ minimum is n = min(S) if and
only if vm € S :n < m.

Given the order defined by time, in a time series we define the sequence interval
similarly as it is done in [10, 8]. Let S = {my,...,my} be a time series. We define the
subset S(r,t] C S as the time series S(r,t] = {m € S|r < T(m) < t}, where r and ¢
are two instants in time. We also define the subset S(r,+o00) C S as the time series
S(r,+00) ={m € S|r < T(m) < T(max(S))} and the subset S(—o0,t) C S as the time
series S(—o0,t) = {m € S|T(min(S)) < T(m) < t}.

The time order in time series also implies the sequence concept of next and previous
measure. Let S = {myg,...,my} be a time series and [ € S and n be two measures. We
define the next measure of n in S as | = nextg(n) where [ = min(S(7'(n), +o00)). We
define the previous measure of n in S as | = prevg(n) where | = max(S(—o0,T'(n))).

Let S = {my,...,my} be a time series, t an time instant and ¢ a time duration, the
time series’ measures can be located in the time interval iy = [t,¢ 4 d] and its multiples
ij=1[t+7j0,t+(j+1)0]:5=0,1,2,.... In signal processing, these time intervals are
called sampling intervals, § is called sampling period and t is called initial time. When
the measures are equally spaced the time series is called regular.

Definition 2 (Regular time series) Let S = {my,...,my} be a time series and &
a time duration. S is a regular time series if and only if Ym € S(T(min(S),+o0) :
T(m) — T(prevg(m)) = 0.

3 The multiresolution TSMS data model

In this section we design a mathematical model for the multiresolution time series
database management systems (MTSMS). Some concepts come from an abstraction of
RRDtool operations [13].

A MTSMS manages time series. A time series is regarded as a chronological data
collection, so it needs an appropriate management by the DBMS. The MTSMS model
is an storage solution for a time series where, in short, the time series information is
spread in different time resolutions. The objects of a MTSMS are measures and time
series as defined in section 2 and each database from a MTSMS contains only one time
series.

The general schema of the MTSMS model can be seen in figure 3. A multiresolution
database is a collection of resolution discs, which temporarily accumulate the measures
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Figure 3: Architecture of MTSMS model

in a buffer where they are processed and finally stored in a disc. Mainly, the data process
is intended to change the time intervals between measures in order to compact the time
series information. In this way, the time series gets stored in different time resolutions,
which are spread in the discs.

Discs are size bounded so they only contain a fixed amount of measures. When a disc
gets full it discards a measure. In this way, the multiresolution database is bounded in
size and the time series gets stored in pieces, that is 'time subseries’.

Regarding operations, MTSMS model needs operators to change the time intervals
between measures. Mainly, these operators are attribute aggregate functions and consol-
idation actions. In this section we design the basic MTSMS model, that is four basic
data model definitions — buffer, disc, resolution disc, and multiresolution database —and
the operations to create a multiresolution database, to add measures and to consolidate
time series. Attribute aggregate functions are required but not linked to the model,so we
define them apart in section 4.

3.1 Buffer

A buffer is a container for a regular or a no-regular time series. The buffer objective
is to regularise the time series with predetermined § and attribute function. We call
consolidation to this action. In the context of buffers, the sampling period is called
consolidation step and the function is called attribute aggregate function.

Definition 3 (Buffer) A buffer is defined as the tuple (S, 7,9, f) where S is a time
series, T is the last consolidation time, § is the duration of the consolidation step and f
s an attribute aggregate function.



An empty buffer, or the initial buffer, By = (0,9, 9, f) is a buffer that has an empty
time series, an initial consolidation time ¢y and predetermined § and f. From an empty
buffer all the consolidation time instants can be calculated as tg + 79,7 € N.

We define the operator addBuffer as the addition of a new measure to buffer’s time
series, addBuffer : B = (S,7,0,f) x m = (v,t) — B’ where B" = (5',7,6, f) and
S'=8SuU{m}.

addBuffer : Buffer x Measure — Buffer

We say the buffer is ready to consolidate when a time of a measure is bigger than the
buffer’s next consolidation time. Let B = (S, 7,6, f) be a buffer and m = max(S) the
maximum measure, B is ready to consolidate if and only if T'(m) > 7 + 4.

Let B = (S,7,0, f) be a buffer ready to consolidate, the consolidation from B in
the time interval ¢ = [, 7 + J] results in a measure m’ = (v, 7 + §) where m’ = f(.5,1).
Attribute aggregate function f is described next in section 4. We define the operator con-
solidate Buffer that calculates the measure of consolidation and reduces the consolidated
part of the time series from the buffer. In a simplified, the consolidateBuffer is only ap-
plied to the present consolidation interval, consolidateBuffer : B = (S, 7,6, f) — B’ xm/
where B' = (S, 7+ 4,6, f), S’ = S and m’ = f(S,[r,7 + d]). Note that the resulting
buffer’s time series can be reduced, such as S’ = S(7 + 0, 00), when the historic is no
more needed.

consolidateBuffer : Buffer — Buffer x Measure

3.2 Disc

A disc is a container with a finite capacity. Each time series stored in a disc has its
cardinal bounded. When the cardinal of the time series is to overcome the limit, some
measures need to be discarded.

Definition 4 (Disc) A disc is a tuple (S, k) where S is a time series and k € N is the
mazimum allowed cardinal of S.

An empty disc Dy = (0, k) is a disc with an empty time series and the k& maximum
cardinal that S is allowed to take.

The cardinal of the times series is kept under control by the add operator. The
operator addDisc is defined as the procedure to add a measure to the time series
stored on the disc. If the predefined capacity is exceeded, the minimum measure of
the time series is discarded, addDisc : D = (S,k) x m — D’ where D' = (5, k),
S,{Su{m} if |S] < k

(S — {min(S)}) U {m} else

addDisc : Disc x Measure — Disc

3.3 Resolution disc

A resolution disc is a disc which stores a regular time series. It is composed of a buffer,
with the time series to be regularised, and a disc, with the time series regularised.



Definition 5 (Resolution disc) A resolution disc is a tuple (B, D) where B is a buffer
and D is a disc.

An empty buffer and empty disc imply an empty resolution disc Ry = (Byp, Dp).

The operators of a resolution disc are related to the buffer and disc ones.

Operator addRD is the addition of a measure to the buffer of the resolution disc,
addRD : R = (B,D) x m +— R where R’ = (B’, D) and B’ = B addBuffer m.

addRD : Resolution Disc x Measure — Resolution Disc

Let R = (B, D) be a resolution disc, R is ready to consolidate if and only if B is ready
to consolidate.

If the resolution disc is ready to consolidate, it can be consolidated. Operator con-
solidateRD calculates a consolidation measure from the buffer and adds it to the disc,
consolidateRD : R = (B, D) + R’ where R' = (B, D’), B’ xm/ = consolidateBuffer B
and D’ = D addDisc m/'.

consolidateRD : Resolution Disc — Resolution Disc

3.4 Multiresolution Database

A multiresolution database is a set of resolution discs which share the input of measures,
that is they store the same time series. A time series is stored regularised and distributed
with different resolutions in the various resolution discs, as has been seen in figure 3.

Definition 6 (Multiresolution Database) A Multiresolution Database is a set of
resolution discs M = {Rq, ..., Rq}.

An empty multiresolution database has empty resolution discs My = {Ry,, ..., R,y

Generally, in a multiresolution database there are not two resolution discs with the
same information. That is, let R, = (Ba, Ds) and Ry = (Byp, Dp) be two resolution
discs, its buffers B, = (Sq, Tas 0a, fa) and By = (Sp, 3, 0, fp) have different consolidation
interval and attribute aggregate function o, # 6 A fo # fp.

With reference to the operators, the add and consolidate in a multiresolution database
are applied to every resolution disc it contains.

Operator addMD is defined as the addition of a measure to every resolution disc,
addMD : M ={Ry,...,Rg} x m+— M’ where M' = {VR; € M : R; addRD m}.

addMD : Multiresolution Database x Measure — Multiresolution database

Operator consolidateMD consolidates the resolution discs that are ready to consoli-
date, consolidateMD : M = {Ry,..., Ry} — M’ where M’ = {VRi eM:

consolidateRD R; if R; ready to consolidate }
R; else '

consolidateMD : Multiresolution Database — Multiresolution Database
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4 Attribute aggregate function

An attribute aggregate function is used when a buffer is consolidated in order to sum-
marise information from the time series. Let S be a time series and ¢y and t; two time
instants, an attribute aggregate function f calculates a measure that summarises an
attribute of S in the time interval ¢ = [Tp, T%]:

f : Time series x time interval — Measure

f:S:{mo,...,mk}X’i:[To,Tf]l—)m/

Different types of attribute aggregate functions may be utilised in order to summarise
a time series. As instance, we may calculate attribute statistics from a time series such as
the maximum value, the average or apply digital signal processing operations as is done
in [17]. Furthermore, attribute aggregate functions copes with data validation, which we
will discuss latter in this section.

Next, we exemplify some discrete operators. For simplicity, we present examples with
real numbers but they could also be integers, strings or more elaborated structures such
as arrays. Let S" = S(Tp, Ty]:

e maximum®: S x i +— m/ where V(m') = maxy,,es/(V(m)). It summarises S’ with
the maximum of the measure values.

e last?: S x i+ m/ where V(m') = max(S’). It summarises S’ with the maximum
measure.

e arithmetic mean?: S x i ++ m’ where V(m') = |§,| >> V(m). It summarises S’
YmeS’
with the mean of the measure values.

With reference to data validation, attribute aggregate functions can cope with this
process. When data has not been captured or has been captured erroneously, it must be
treated as unknown data.

e When data has not been captured it is unknown by nature. For example, we try
to capture data from a sensor and there is no response.

e When data is erroneously it must be marked as unknown. For example, we capture
data from a sensor but it responses in a not reasonable time or we capture data
that is clearly outside a reasonable limits.

As a consequence, attribute aggregate functions deals with these two subprocesses: treat-
ing unknown data and marking data as unknown. Following with real numbers example,
we extend the domain with a value that means 'unknown’, let this unknown value be
represented by the improper element infinity (oco).

An attribute aggregate functions treating unknown data is a one that can calculate a
result when there are unknown values in the original time series, f* : S x ¢ — m’ where
dm € S : V(m) = oo. Although from a strict point of view operating with unknown
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data makes unknown result, aggregate functions are free to calculate whatever is needed
such as time series analysis does with data reconstruction.

For example, arithmetic mean? aggregate function returns V(m/) = oo if Im € S :
V(m) = oo. We can define a new mean function, based on the original arithmetic
mean? aggregate, that naively treats unknown values by keeping the known mean; in
other words, it ignores unknown values found in the time interval: arithmetic mean®:
S x i — m/ where m/ = arithmetic mean?(S”,i) and S” = {m” € S’ : V(m") # oo}.

An attribute aggregate functions marking data as unknown is a one that can give
unknown value as the resulting measure’s value, f™* : S x i — m’ where V(m/) €
R U {oo}.

For example, we can define a maximum aggregate, based on the maximum¢? aggregate,
that returns unknown if there is a measure’s value bigger than 2: maximum®™*2: § xi —

: "
m’ where V(m/) = oo ifm">2 and m” = maximum®(S, 7).

m”  else

Summarising, in the design of the attribute aggregate function we can interpret a time
series in different ways, that is what we call the representation of a time series. Keogh
et al. [10] cite some possible representations for time series such as Fourier Transforms,
Wavelets, Symbolic Mappings or Piecewise Linear Representation (PLR). This last is
remarked as the most used owing to the most common representation is with linear
functions [9].

The variety of time series representations results in a variety of the same attribute
aggregate functions. As instance, a maximum attribute aggregate function may give
different values if we consider a linear or a constant piecewise representation.

In conclusion, a huge amount of attribute aggregate functions can be defined and no
global assumptions can be made. Therefore, the time series representation results in
attribute aggregate functions families. MTSMS must give freedom to the users to define
their own functions.

5 Example

Next we show an example database for a real time series data. It is situated in a
distributed sensor monitoring system where temperature data has been captured from
various sensors [1]. In this example we focus on data from one sensor.

Original data is shown in figure 4 for a period of one year and a half, from 29th April
2010 to 18th October 2011. The time series is plotted interpolating linearly its measures.
In this plot we can see that there is missing data and some outlying observations, and
there are 146709 stored values.

5.1 Schema

In a multiresolution time series database (MTSDB) a time series is stored in different
resolution pieces, that is in different 'time subseries’. In this example we store the time
series with high resolution at recent times and with low resolution at older times. The

12



320 -+

310 | i
2 300 i
£ 200 i
[o}
g
S
280 1
270 - 1

way 220 204 e ‘mxgj)xar 2040 10 204 204

Time (UTC)

Figure 4: Example of a temperature time series data

180 days

600 days

600 days back now

Figure 5: Schema of different resolutions in a MTSDB

13



schema of this example is illustrated in figure 5. At the top there are four discs with
different number of measures and at the bottom there is a timeline showing the time
series chopped along time. For recent times, every 5 hours a measure is stored in the
fourth disc which has a capacity of 24 measures so that results in a 5 day piece. For
low mid times, every 2 days a measure is stored in the third disc which has a capacity
of 20 measures so that results in a 40 days piece. For high mid times, every 15 days a
measure is stored in the second disc which has a capacity of 12 measures so that results
in a 180 days piece. For old times, every 50 days a measure is stored in the first disc
which has a capacity of 12 measures so that results in a 600 days piece.

5.2 Attribute aggregate functions

In order to illustrate this example we consolidate all the resolution discs by zohe arith-
metic mean aggregate function and the highest resolution disc by zohe maximum aggre-
gate function, owing to their simplicity. Next, we show the process in designing both
aggregate functions.

In this example we show a possible family of attribute aggregate functions for time se-
ries represented by a staircase function, that is with a piecewise constant representation.
We define a new representation for time series called zero-order hold backwards (zohe)
consisting in holding each value until the preceding value, which a similar representation
is used by RRDtool [12].

Let S = {myg,...,my} be a time series, we define S(t)
backwards continuous representation along time t:

zohe a9 jts zero-order hold

Vi€ R,V € §: S(t)° = {OO i > T{max 5)
V(m) ift e (T (prevgm),T(m)]

We now define the zero-order hold backwards attribute aggregate function family as
the one interpreting the consolidation time interval left-continuous i = (7p, T¢] and the
resulting aggregated measure’s time always being T, in accordance to the zero-order
hold backwards representation being defined using left-continuous step functions. Let
S = {mo,...,my} be a time series and i = [Ty, Ty] be a time interval, the attribute
aggregate function f7°h¢ ¢ f summarises S with a measure, f2°"¢* : S = {mq, ..., my} x
i = [Ty, Tf] — m' where m’ = (v, T¢) and the resulting value v’ depends on the attribute
aggregate function calculated from the subset $2°"¢ = S(Tj, Ty]U{min(S—S(—o0, T f))}.

Let S’ = §=ohe:

e maximum®"®: S x i — m/ where V(m') = maxymes (V(m)) and T(m') = T}.

e arithmetic mean®*¢: S x i ++ m/ where V(m/) =

‘Sl,| > V(m)and T(m') = Ty.
vmes’

5.3 Results

The resulting time series in the MTSDB are shown in figure 6, where each graphic
corresponds to a resolution disc’s time series. Each graphic is titled by its resolutions
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Figure 6: Resolution discs’ time series in a MTSDB

disc’s delta and cardinal values, and each attribute aggregate function is plotted with
different colour. Each time series is plotted with zohe continuous representation. The
time axis is shown in UTC units rounded to nearest time points in order to reduce
printing space, for example the timestamp December 2010 is a rounding for a day between
1 and 31. The temperature axis is shown in Kelvin units and outlayers are marked as
discontinuities, for instance see the 2938 K maximum in the fourth plot.

In all the four plots, we can see that arithmetic mean aggregate function has filled
missing data and filtered outlayers observations. This is due to the aggregate function
coming from a zohe interpretation, that is known values are time left hold. Otherwise, we
could be stricter by using a non filling aggregate such as an unknown marking aggregate
function as stated in section 4.

Moreover, in the MTSDB the number of stored values has been reduced to 92, which
is the sum of disc’s cardinalities. However, now there is only high resolution for recent
data. Note that 18th October 2011 corresponds to the 'now ’ point showed in figure 5
and May 2010 corresponds to the oldest data known.
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Figure 7: Resolution discs’ time series in a bigger MTSDB

We can easily have a bigger MTSDB by doubling the capacity of resolution discs.
Then we have 184 stored values and the resulting time series are shown in figure 7. Now
we can preserve more historic but no more resolution. Although plots seem smoother,
this is only a visualisation issue owing to the fact we are showing more points in the
same width. Fourth plot is the same in both figures as there is no more known historic.

With the multiresolution database filled now we may want to ask queries, in which
we are currently working in order to develop a model for multiresolution operators. For
example, one query could be to unite the resolution discs in order to see the complete
graphic. The union of the four time subseries is shown in figure 8. In the intervals
where time subseries overlap, the one with the highest resolution is chosen. Therefore
we obtain a piecewise function where each piece has a different resolution. Each time
series is plotted interpolating linearly its measures, note that this linearly visualisation
seems right time displaced as time series comes from a zohe aggregation. Comparing
this figure with the original figure 4, as we have applied mean aggregation it resem-
bles an incremental low-pass filter and the maximum aggregation resembles an envelope
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Figure 8: All time series united from the MTSDB

function.

Concluding, we have shown that with these attribute aggregate functions we want
not an approximation to the original function but an extraction of some interesting
information.

6 Conclusions and future work

In this paper we have shown a MTSMS model, including the requirements for these spe-
cial systems and how they can be applied to an example time series. The main objective
is to store compactly a time series and manage consistently its temporal dimension.

Our MTSMS model proposes to store a time series split into time subseries, which we
call resolution discs. Each resolution disc has a different resolution and is compacted with
an attribute aggregate function. Therefore, in a multiresolution database the configura-
tion parameters are the quantity of resolution discs and the three parameters associated
with each: the consolidation step, the attribute aggregate function and the capacity.

The data model shown is the first step to develop a complete model for a MTSMS
but in future the operations will be defined. In this context, there is a need for a model
collecting generic properties for the TSMS, as it can be the time series union operation
or the time interval operations. Then, the multiresolution model would be build upon
the generic TSMS model.

In an example we have shown a possible application of a MTSMS. The resulting
database has the information we have extracted with the attribute aggregate function.
We show that in this example we want not an approximation to the original function
but an extraction of some interesting information. Then the database is ready to answer
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time series questions keeping in mind that it holds this information summary.

It may not only be interesting to keep more resolution at more recent times. Multires-
olution could be selectable, that is high resolution is kept for periods of time considered
interesting. For this purpose, the model of multiresolution needs to be changed ac-
cordingly. Furthermore, an interesting feature for MTSMS is to be able to configure
resolution discs on top of the others, that is setting the one’s disc as the buffer for an-
other. The multiresolution model presented shows the simple case where each resolution
disc is independent from the others.

Time series have meta information associated [6]: last value measured, value units,
classification tags, location, etc. RDBMS are quite good at managing this kind of infor-
mation. Therefore it would be great if RDBMS and TSMS could interrelate.

Sensor networks is a promising field for TSMS. Sensor networks focus on monitoring
great amount of sensors with limited resources which must be used efficiently [16]. One
approach is to store data distributed in sensors and resolve each query accordingly [3].
From this point of view, it is useful to treat time series as data streams, which means
continuously arriving data in time order, and operate with them incrementally as data
arrives. With reference to MTSMS, most recent data could be stored distributed in
sensors and least resolution summarised data stored in central nodes. Then queries
should be resolved distributed: if adequate resolution is available then it is calculated,
else query is sent to sensor. With reference to data streams in MTSMS, it seems that
buffers should be reviewed to incorporate streaming capabilities and aggregate functions
should be restricted only to those being able to calculate incrementally.

Concluding, in this paper we show that using TSMS facilitates substantially time
series management. The current field interest makes us optimistic to expect soon an
adequate time series management in DBMS.
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