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Abstract: - Time-Dependent Origin-Destination (OD) matrices are a key input to Dynamic Traffic Models. 
Microscopic and Mesoscopic traffic simulators are relevant examples of such models, traditionally used to 
assist in the design and evaluation of Traffic Management and Information Systems (ATMS/ATIS). Dynamic 
traffic models can also be used to support real-time traffic management decisions.  The typical approaches to 
time-dependent OD estimation have been based either on Kalman-Filtering or on bi-level mathematical 
programming approaches that can be considered in most cases as ad hoc heuristics. The advent of the new 
Information and Communication Technologies (ICT) makes available new types of traffic data with higher 
quality and accuracy, allowing new modeling hypotheses which lead to more computationally efficient 
algorithms. This paper presents a Kalman Filtering approach, that explicitly exploit traffic data available from 
Bluetooth sensors, and reports computational experiments for networks and corridors. 
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1 Introduction 
We draw attention in this paper to a main 
requirement of ATIS/ATMS: the estimation of time-
dependent Origin to Destination (OD) matrices from 
measurements of traffic variables. We assume that 
the usual traffic data collected by inductive loop 
detectors (i.e. volumes, occupancies and speeds) are 
complemented by accurate measurements of travel 
times and speeds between two consecutive sensors 
based on new technologies able to capture the 
electronic signature of specific on-board devices, 
such as a Bluetooth device on board a vehicle. The 
sensor captures the public parts of the Bluetooth or 
Wi-Fi signals within its coverage radius, the most 
relevant being the MAC address, whose uniqueness 
makes it possible to use a matching algorithm to log 
the device when it becomes visible to the sensor. A 
vehicle equipped with a Bluetooth device traveling 
along the freeway is logged and time-stamped at 
time t1 by the sensor at location 1. After traveling a 
certain distance it is logged and time-stamped again 
at time t2 by the sensor at location 2 downstream. 
The difference in time stamps τ = t2 – t1 measures 
the travel time of the vehicle equipped with that 
mobile device. The speed is also measured, 
assuming that the distance between both locations is 
known.  

Data captured by each sensor is sent to a central 
server by wireless telecommunications for 
processing. Raw measured data cannot be used 
without pre-processing aimed at filtering outliers 

that could bias the sample. The quality of the input 
data is crucial for the applications, therefore it is a 
subject of intense research. A variety of nonlinear 
filters have been proposed recently by Van Lint and 
Hoogendoorn [1] and Treiber et al, [2]. A refined 
version of the Kalman Filter  (Kalman [3], proposed 
in Barceló et al. [4,5]) has been used in this paper.  
 

 

2 Problem Formulation 
The space-state formulations based on Kalman 
Filtering have always been an appealing approach to 
the estimation of time dependent OD matrices. In 
this paper we propose a recursive linear Kalman-
Filter for state variable estimation that combines and 
modifies the earlier work of Chang and Wu [6], Hu 
et al [7], Choi et al, [8] and Van Der Zijpp and 
Hamerslag [9], adapting their models to take 
advantage of travel times and traffic counts 
collected by tracking Bluetooth equipped vehicles 
and conventional detection technologies.  

Chang and Wu [6] proposed a model for 
freeways that, for each OD pair that estimates time-
varying travel times, uses time dependent traffic 
measures and implicit traffic flow models to account 
for flow propagation. An Extended Kalman-filter 
approach is proposed to deal with the nonlinear 
relationship between the state variables and the 
observations. 

Hu et al. [7] proposed an Extended Kalman 
Filtering algorithm for the estimation of dynamic 
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OD matrices in which time-varying model 
parameters are included as state variables in the 
model formulation. The approach takes into account 
temporal issues of traffic dispersion. Lin and Chang 
[10] proposed an extension of Chang and Wu [6] in 
order to deal with traffic dynamics, assuming that 
travel time information is available. 

We assume flow counting detectors and ICT 
sensors located in a cordon and at each possible 
point for flow entry (centroids of the study area). 
ICT sensors are located at intersections in urban 
networks and cover access and links to/from the 
intersection. Flows and travel times are available 
from ICT sensors for any selected time interval 
length higher than 1 second. Trip travel times from 
origin entry points to sensor locations are measures 
provided by the detection layout. Therefore, they are 
no longer state variables but measurements, which 
simplify the model and makes it more reliable.  

A basic hypothesis is that equipped and non-
equipped vehicles follow common OD patterns. We 
assume that this holds true in what follows and that 
it requires a statistical contrast for practical 
applications. Expansion factors for everything from 
equipped vehicles to total vehicles, in a given 
interval, can be estimated by using the inverse of the 
proportion of ICT counts to total counts at centroids; 
expansion factors are assumed to be shared by all 
OD paths and pairs with a common origin centroid 
and initial interval.  

We propose a linear formulation of the Kalman 
Filtering approach that uses deviations of OD path 
flows as state variables, as suggested by Ashok and 
Ben-Akiva[11],  calculated in respect to DUE-based 
Historic OD path flows for equipped vehicles. But 
our approach differs in that we do not require an 

assignment matrix. We use instead the subset of 
the most likely OD path flows identified from a 
DUE assignment with Dynameq [12]. The DUE is 
conducted with the historic OD flows, and the 
number of paths to take into account is a design 
parameter, only the description of the most likely 
OD paths is needed. A list of paths going through 
the sensor is automatically built for each ICT sensor 
from the OD path description, ICT sensor location 
and the network topology. In this way, once an 
equipped car is detected by ICT sensor j, the travel 
time from its entry point to sensor j is available and 
it is used for updating time varying model 
parameters that affect OD paths (state variables) 
which are included in the list. 

We model the time-varying dependencies 
between measurements (sensor counts of equipped 
vehicles) and state variables (deviates of equipped 
OD path flows), adapting an idea of Lin and Chang 

[10], for estimating discrete approximations to 
travel time distributions.  The estimation of these 
distributions is made on the basis of flow models 
which induce nonlinear relationships that require 
extra state variables, leading to a non linear KF 
approach. Since our approach exploits the travel 
ICT time measurements from equipped vehicles, we 
can replace the nonlinear approximations by 
estimates from a sample of vehicles. This has 
advantages that constitute a major contribution of 
this paper because no extra state variables for 
modelling travel times and traffic dynamics are 
needed, since sampled travel times are used to 
estimate discrete travel time distribution (H bins are 
used for adaptive approximations). Additionally, 
travel times collected from ICT sensors are 
incorporated into the proposed model and it is not 
necessary that vehicles reach their destination, since 
at any intermediate sensor that they pass by the 
travel time measured from the entry point (centroid) 
to that sensor updates the discrete travel time 
approximation. No information about trajectories of 
equipped vehicles is used in this version.  

The demand matrix for the period of study is 
divided into several time-slices, accounting for 
different proportions of the total number of trips in 
the time horizon.  

The approach assumes an extended state 
variable for M+1 sequential time intervals of equal 
length ∆t, M is the maximum number of time 
intervals required for vehicles to traverse the entire 
network in a congested scenario. 

The solution provides estimations of the OD 
matrices for each time interval up to the k-th 
interval. State variables ( )kgijc∆  are deviations of OD 

path flows ( )kgijc  relative to historic OD path flows 

( )kg ijc
~  for equipped vehicles. A MatLab prototype 

algorithm has been implemented to test the 
approach (named KFX). 
 
 
2.1 Notation 
The total number of origin centroids is I, identified 
by index i, i = 1,..,I; the total number of destination 
centroids J, identified by index j, j = 1,…,J; the total 
number of ICT sensors is Q, identified by  
q=1,…Q,  where Q = I+J+P, I ICT sensors located 
at origins, J, ICT sensors at destinations and P, ICT 
sensors located in the inner network; and the total 
number of most likely used paths between origins 
and destinations is K. The notation used in this 
paper is defined in Table 1.  
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( ) )2(kkkk )v()g()F(∆z +∆=

( )kQi

~

( )kqi
~

 

: Historic total number of vehicles and 
equipped vehicles entering from 
centroid  i at time interval k 

( )kQi , 

( )kqi  

: Total number of vehicles and equipped 
vehicles entering from centroid  i at time 
interval k.  

( )kyq
~

, 
( )kyq  

: Historic and actual number of equipped 
vehicles crossing sensor q at interval k 

( )kGijc , 
( )kGijc

~
,

( )kgijc ,
( )kg ijc

~  

: Total number of current ( )kGijc  
and 

historic ( )kGijc

~
 
vehicles as well as 

current ( )kgijc  
and historic ( )kg ijc

~
 

equipped vehicles entering the network 
from centroid i at interval k  headed  
towards destination  j using path c. 

( )kg ijc∆

 

: State variables are deviates of equipped 
vehicles entering from centroid  i during 
interval k headed  towards centroid j 
using path c with respect to average 
historic flows ( ) ( ) ( )kgkgkg ijcijcijc

~−=∆  
( )kz ,

( )k~z  

: The current and average historic 
measurements during interval k, vector, 
( ) ( ) ( )( )TT

kkk qyz =  

IJ, IJK : Number of feasible OD pairs and most 
likely OD paths depending on the zoning 
system defined in the network.  

( )ku h

iq  
: Fraction of vehicles that require h time 

intervals to reach sensor q at time 
interval k that entered the system from 
centroid i (during time 

interval ( ) ( )[ ]thkthk ∆−∆−− ,1 ). 

( )ku h

ijcq  : Fraction of equipped vehicles detected 
at interval k whose trip from centroid i 
to sensor q might use OD path (i,j,c) 
lasting h time intervals of length ∆t to 
arrive from centroid i to sensor q. 

Table 1. Notation 

 
Conservation equations from entry points 

(centroids) are explicitly considered. Without ( )kQi
, a 

generic expansion factor has to be applied. 
 
2.1.1 State Equations  

Let (k)∆g be a column vector of dimension IJK 

containing the state variables ∆gijc(k)
 
for each time 

interval k for all most likely OD paths (i,j,c). The 
state variables ∆gijc(k)

 
 are assumed to be stochastic 

in nature, and OD path flow deviates at current time 
k are related to the OD path flow deviates of 

previous time intervals by an autoregressive model 
of order r <<M; the state equations  are: 

( ) ( ) ( ) ( ) )1(k1wkw1k w∆gD∆g
r

1w

++−=+ ∑
=

        

Where w(k) are zero mean with diagonal 
covariance matrix kW , and ( )wD  are  IJKxIJK  
transition matrices which describe the effects of 
previous OD path flow deviates ∆gijc(k-w+1) on 
current flows ∆gijc(k+1) for w = 1,…,r . In this paper 
we assume simple random walks to provide the 
most flexible framework for state variables, since no 
convergence problems are detected. Thus r=1 and 

matrix ( )wD  is the identity matrix.  

 
 
2.1.2 Observation Equations  

The relationship between the state variables and the 
observations involves time-varying model 
parameters (congestion–dependent, since they are 
updated from sample travel times provided by 
equipped vehicles) in a linear transformation that 
considers: 
• The number of equipped vehicles entering from 

each entry centroid during time intervals k, k-1, 

k-M, ( )kiq .  

• H<M time-varying model parameters in form of 

fraction matrices, ( )[ ]ku h

ijcq .  

The H adaptive fractions that approximate 
h

iqu and h

ijcqu   are updated from measures provided 

by ICT sensors. Direct samples of travel times allow 
the updating of discrete approximations of travel 
time distributions, making it unnecessary to 
incorporate models for traffic dynamics. This model 
simplification, due to the availability of the new 
ICT, is another major novelty in our proposed 
formulation. 

At time interval k, the values of the 
observations are determined by those of the 
state variables at time intervals k, k-1, …k-M.
  

Where (k)v  are, respectively, white Gaussian 

noises with covariance matrices kR . )F(k  maps 

the state vector )g(k∆  onto the current blocks of 

measurements at time interval k: counts of equipped 
vehicles by sensors and entries at centroids, 
accounting for time lags and congestion effects. 
Deviate counts at k mean the observed counts minus 
the historical demand ( )kg ijc

~  counts, given the 
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current traffic conditions according to time-varying 
model parameters). 
 
 

3 Simulation Tests 
3.1 Design of Computational Experiments 
The simulation experiments for testing the proposed 
approach have been conducted using dynamic OD 
matrix sliced into four 15-minute slices --each one 
accounting for 15%, 25%, 35% and 25% of the total 
number of trips-- to emulate demand variability, 
corresponding to a rise in congested conditions. This 
OD, considered the true historical OD matrix, has 
been determined through simulation by building the 
Macro Fundamental Diagram (MFD) for the 
network (Daganzo and Geroliminis [13]). 

Microscopic simulation with AIMSUN induces 
variability in the historical inputs in a realistic way 
and produces target OD flows per interval (related 
to the true historical OD matrix). Therefore, 
congestion is not a design factor in these 
experiments. This OD is sliced into four 15-minute 
slices --each one accounting for 15%, 25%, 35% 
and 25% of the total number of trips-- to emulate 
demand variability. The simulation experiments 
with Aimsun use the described OD matrix, 
emulating traffic detection, and provide the inputs to 
the KFX model in terms of flow counts for ordinary 
and BT sensors  and travel times from entry cordon i 
to q BT sensor (in general, ICT sensor). 
 

Figure 1. Methodological Design Of The 

Experiments  By Simulation 

 

Figure 1 depicts the methodological framework 
for the simulation experiments. The assumed OD 
matrix is the result of applying some perturbation to 
the true historical matrix. 

Target OD flows per interval are compared with 
estimated OD flows (filtered OD flows) per interval 
at OD pair level by means of U Theil’s coefficient 
and the normalized root mean square error 
(RMSEN). Weighted indicators for subsets of OD 
pairs (usually subset of OD pairs whose hourly flow 
is in 25% of higher flows) and a weighted global 

indicator for the whole set of OD pairs are also 
computed (GU, GRMSEN). 
 
3.2 Results for Amara Test Site 
Amara District is an urban network with 232 links, 
142 nodes and 85 OD pairs, with a rich structure of 
alternative paths between OD pairs, totaling 358 
most likely used paths according to the DUE with 
Dynameq [12].  

The detection layout of 48 detectors raises some 
methodological concerns. As we have specified, it 
consists of two components: the cordon component 
encircling the network with sensors at input-output 
gates (currently available in most of the urban 
pricing systems), and the detection layout at the 
interior of the encircled area.  However, when 
dealing with sensors capturing the electronic 
signature, such as the detectors of Bluetooth devices 
on board vehicles, the detector location requires a 
new approach based on a node covering formulation 
of the detection layout problem that has been 
developed and tested in Barceló et al. [14]. 
 
 
 
 

 

 

 

 
Figure 2 (100% Equipped Vehicles): Filtered OD 

Flows, Target OD Flows And Historic OD Flows 

For OD-Pair 20.765-777.  
 
Figure 2 visualizes the results for the most 

relevant OD flow when the assumed historical OD 
matrix is reliable and the OD pattern is preserved 
The initialization of the state variables ( )0ijcg∆  is 

set to 0 and path proportions for each OD pair are 
taken as constant and equal. The concordance is 
numerically quantified in terms of RMSEN and U 
for OD flows from origin 765 to all destinations in 
the network in Table 2. U Theil’s coefficients is 
0.11 and RMSEN is 0.26. The low values of 
RMSEN and U prove good behaviour of KFX for 
OD pairs with large demand (those in the 4th 
quantile of OD flows).   
 

 HISTORIC OD 

MATRIX 

MICROSCOPIC 

SIMULATOR 

KFX DYNAMIC 

OD ESTIMATOR 

EMULATED 

TRAFFIC DATA 

PERTURBATION 

OD MATRIX 

TARGET OD 

MATRIX 

ASSUMED 

HISTORIC OD  

MATRIX 

ESTIMATED OD 

MATRIX 

COMPARISON 

TARGET VS FIT 

Recent Researches in Automatic Control and Electronics

ISBN: 978-1-61804-080-0 119



OD pairs from centroid 765  to all – 

4 Time Slices 

Average 

Historic   

(veh/90s)
 

762 768 777 783 789 806 

Flow 1.00 4.83 8.98 0.18 1.13 7.73 

RMSEN 
 0.56 0.52 0.26 0.47 0.20 0.22 

7
6
5
 

U 0.34 0.31 0.11 0.27 0.10 0.09 

Table 2. OD Pairs From 765 To All – Reliable 

assumed historical OD - 100%  BT Equipped  

 
The aggregated hourly fit between estimated 

KFX versus Target OD flows shows a regression R 
squared above  95% when all 48 sensors are active, 
but the performance of the global fit decreases as 
the number of BT sensors is reduce. In  Figure 3, an 
scatterplot shows the regression fit when BT sensor 
data is emulated for half of the sensors (the most 
important according to the number of collected 
vehicles), the R2 is 90% (colors for dots are selected 
according to quantiles in OD flows).  

y = 0.9945x + 0.4108

R² = 0.8959
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Figure 3. Fit estimated KFX versus Target OD 

flows. 100% BT equipped and reliable initial OD 

matrix. Detection layout reduced to 50% 

 
OD pairs with large flows converge to correct 

values but, when sparse observations are available, 
no correction for a priori  assumed flows is possible 
and, thus, no convergence is achieved (for OD pairs 
in the 1st and 2nd quantile of OD flows, GU ranges 
from 0.28 to 0.74, indicating a bad fit). 

Although not shown in Table 2, we studied the 
effect of decreasing the penetration rates of BT 
technology in the selected OD pairs, showing an 
increase in the fit indicators (U, RMSEN) and, thus, 
a decrease in the quality of the results as equipped 
rate decreases. So, the decrease in BT penetration 
means fewer observations and larger ∆t needed for 
practical purposes. Jointly, small OD flows show 
worse behaviour, due to few observations per 
interval and, thus, design parameter ∆t should be 
increased to properly deal with the sparse reality. 

For practical purposes, the effect of the 
reliability of the assumed historical matrix on the 
convergence of KFX estimates to the target OD 
matrix is critical. When fixing 100% equipped (not 
realistic), the historical matrix reliability does not 
seriously affect the global results (U and RMSEN 
global indicators): even under the most perturbed 
historical OD matrix tests, RMSEN stays around 
0.3, when considering the 25% of the most 
important OD pairs, and  it is reduced to 0.16 for 
pair 20 (the largest one).  In terms of serial matching 
for the overall 4th quantile OD flows, the effect of an 
unreliable input matrix is minor: GU never increases 
to 0.20 but, for the most important pair 20, U values 
range from 0.07 to 0.17 (excellent coefficients). The 
behavior shows that OD pairs with large flows 
converge to correct values but, when sparse 
observations are available, no correction for a priori  
assumed flows is possible. The elapsed  time for 
each experiment is around 1.5 min in Intel Core2 
Duo T9550@2,66GHz with 4 GB RAM, under 
Windows XP. 
 
 
3.3 Results for Ronda de Dalt Test Site 
An urban freeway in Barcelona has been selected as 
a second test site --a 11.5-km-long section of the 
Ronda de Dalt-- between the Trinitat and the 
Diagonal Exchange Nodes. The site has 11 entry 
ramps and 12 exit ramps (including main section 
flows) on the section being studied, which flows in 
the direction of Llobregat (to the south of the city). 
Traditional and BT sensors are modeled for entry 
and exit ramps and main sections.  

Time horizon is defined as 100 min and a 150-
sec subinterval length is considered. There are 74 
OD pairs and OD path flows since a unique path is 
associated to each OD pair 
 

Indicators for 4th Quantile OD flows in 

parenthesis 

20% 30% 100% 

Perturbation 

Level to 

Historic OD 

U RMSEN U RMSEN U RMSEN

0-none 0.22 
(0.11)

0.39 
(0.24) 

0.20 
(0.10)

0.33 
(0.22) 

0.17 
(0.09)

0.25 
(0.18) 

1 0.24 
(0.12)

0.43 
(0.29) 

0.22 
(0.11)

0.37 
(0.26) 

0.19 
(0.10)

0.29 
(0.23) 

2 0.25 
(0.11)

0.43 
(0.28) 

0.23 
(0.10)

0.36 
(0.25) 

0.20 
(0.09)

0.28 
(0.22) 

3 0.27 
(0.11)

0.44 
(0.27) 

0.25 
(0.10)

0.37 
(0.24) 

0.22 
(0.09)

0.30 
(0.21) 

all 0.40 
(0.14)

1.40 
(0.34) 

0.39 
(0.14)

1.29 
(0.31) 

0.38 
(0.13)

1.17 
(0.27) 

Table 3. Ronda de Dalt simulation results according 

to BT rates and OD Reliability 
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Results included in this paper affect the quality 

of the assumed historic OD flows used for 
computing deviates as state variables and the 
percentage of BT equipped vehicles) with levels 
20%, 30%, 50% and 100% (see Table 3). Results 
are consistent with those obtained in the Amara Test 
site. 
 
 

4 Conclusions 
The computational experiments show that the 
proposed linear Kalman-Filtering approach provides 
good estimates of target values in the simulation 
tests in network and freeway sites. BT data 
simplifies the dynamic estimation of OD matrices 
by a KF approach because it is a linear filter and 
reduces the computational burden when compared 
to well-known formulations in the literature that use 
Extended Kalman Filter. 

 The strategy of collecting the DUE most likely 
used paths according to Dynamic User Equilibrium 
models --and, thus, defining KFX state variables-- 
seems promising, since time-dependent path 
proportion shares and assignment matrices are not 
employed in the formulation.  

The horizon of study has to be divided in time 
intervals of length ∆t, usually 1.5 to 5 minutes, 
depending on the network size (and travel times 
involved), OD flows and BT penetration rates.  

OD pairs with large volumes are not seriously 
affected neither by the quality of the assumed 
historical matrix nor by BT penetration rates under 
50% (around 30% in the real sites) and thus the 
approach exhibits good convergence properties that 
are needed for applications in urban networks, 
corridors and freeways.  

A new site in Barcelona’s CBD district is being 
prepared to field test the approach in a forthcoming 
pilot project. 
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