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Abstract—EXIN CCA is an extension of the Curvilinear 
Component Analysis (CCA), which solves for the noninvariant 
CCA projection and allows representing data drawn under 
different operating conditions. It can be applied to data 
visualization, interpretation (as a kind of sensor of the underlying 
physical phenomenon) and classification for real time industrial 
applications. Here an example is given for bearing fault 
diagnostics in an electromechanical device. 
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I. INTRODUCTION 

The curvilinear component analysis (CCA, [1] [2] [3]) is a 
self-organizing neural network which performs the 
quantization of a data training set (TS) for estimating the 
corresponding nonlinear projection from the data space to a 
lower dimensional space (latent space). In the recall phase, by 
means of the same training algorithm, it outputs the projection 
of a data input. CCA is a better version of Sammon mapping 
[1], because the CCA error (stress) function uses weights 
depending on distances in latent space. There are different 
versions of CCA according to its weighting factor. The EXIN 
extension of CCA considers the CCA algorithm weighted by a 
decreasing exponential, whose corresponding error function is 
the right Bregman divergence [4]. Indeed, this function 
penalizes inconsistent long distances and its asymmetry allows 
a better unfolding of data. As a consequence, it is well suited 
for classification, in which distances between clusters have to 
be well represented. The CCA projection is not invariant. 
Indeed, it changes at each estimation, because it is only 
constrained by the preservation of distance topology: there are 
two sources of randomness, namely the initial conditions in 
the latent space and the index sequence of the fixed points in 
the stochastic gradient algorithm. This variability is a problem 
in case of classification. In [3] constraints are added in order to 
let the axis of maximum variance be horizontal : however, it is 
only a partial solution to the invariance problem, because this 
principal axis depends on the TS and corresponding working 
conditions under which it has been drawn. It will be shown 
that it cannot be used in classification problems with TS’s 
drawn under different conditions, because a unique stable 
framework is needed. 

The next section explains the invariant EXIN CCA neural 
network. As an example, an application to the classification of 

bearing defects in an electromechanical device is proposed, 
which also needs a particular hierarchical multilayer 
perceptron. 

II. THE EXIN CCA NEURAL NETWORK 

The EXIN version of CCA extends the dimensionality 
reduction by taking into account the varying environment: non 
stationarity of the unknown data distribution which may 
depend on time or other observable parameters (both called 
here working conditions and regrouped in a vector p). For 
each choice of p, a data TS is drawn and the corresponding 
CCA projection is computed: all CCA’s are collected in a 
pool. If it is required to project an input data drawn under new 
working conditions, a new recall phase is needed, which 
depends on the CCA pool. 

   Define as l m
i X the i-th data point drawn from a TS 

(named l) collected under working conditions represented by 

pl. The projection is given by l s
i Y , s ≤ m. The Euclidean 

distances between points i and j are called Dij in data space 
and Lij in latent space. In the nth dimensional parameter space, 
represented in fig. 1, each CCA of the pool is represented by 
the corresponding parameter vector. EXIN CCA requires a 
weighting factor which takes into account the new working 
conditions p w.r.t. the conditions pl of each TS of the CCA 
pool. This factor, inspired by the Nadaraya-Watson distance 
[5] for smoothening the interpolation, uses Gaussian pdf’s (see 
fig. 1) centered at the associated working conditions and is 
given by: 
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where k yields the problem-dependent number of neighbor 
CCA’s whose working conditions are close to p (in fig. 1 four 
neighbors in a square grid are considered, as in the application 
of the next section). The covariance matrix  has to take into 
account the resolution of the interpolation and depends on the 
physical phenomenon represented by p. Choosing k means 
deciding how many projections are used in the recall phase. 
However, when the working operation point is too far, the 
associated projection is given less importance by decreasing 
the weight factor. 



 
Fig. 1: Gaussians for the weight factor: case of four neighbors in a square grid. 
 

   The EXIN CCA right Bregman divergence [4] is given by: 
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being l(i) and p(j) the indexes of the working conditions under 
which data i and j have been drawn, respectively. The 
stochastic gradient algorithm for minimizing (2) is then: 
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    (3) 
where i j  and  (learning rate) and  are scalars. This 

formula assumes that only the projected data from the k 
nearest neighbor CCA’s are to be considered in training and 
recall. Observe that the EXIN weight acts by multiplying 
(modulating) the learning rate of the CCA gradient algorithm. 
   In order to achieve the CCA invariance, three strategies are 
applied (in case of classification, this is repeated for each 
class): 

1. The initial conditions of the points in latent space are 
chosen from the projection points of the closest 
(w.r.t. the working conditions) CCA. If the former 
points are less than the latter points, the choice is 
done by using repetition (with replacement). 

2. The initial learning rate  is lowered in order to have 
fewer variations in the projection (then, it is 
exponentially decreased). 

3. A refinement (affine) transformation is applied to all 
CCA projection points in order to refer each CCA 
projection map to a unique one, here called rated 
CCA. 

   For the estimation of the affine transformation, consider that 

for each data point p
iX  in the TS p, the rated CCA and the 

pth CCA output two different s-dimensional projected points 
rated

iY  and p
iY . In the stabilization of the CCA training, the 

entire TS p (containing m data points) is projected and then 
transformed to the rated projection, by means of 

rated p
i i Y AY b  (if matrix A is orthogonal, the 

transformation is a rotation, if not it is affine) for each i, which 

is computed by solving the over determined system of linear 
equations given in matrix form by: 
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where the data matrix contains the Kronecker product  and 

  vec
TT Tθ A b is the affine parameter vector. The 

system can be solved by ordinary least squares (OLS), even if 
the noisy structured data matrix suggests the use of the 
constrained least squares, CTLS [6], which looks for the 

minimum noise subspace. Indeed, only ms values (the m p
iY  

latent points) in the  x 1ms s m   data matrix in (4) are 

noisy. In the recall phase, instead, the parameters of the tuning 
affine transformation are estimated by interpolation (e.g., 
using a Radial Basis Function neural network, RBF [5], as in 
the example of the paper). This approach is possible because 
all CCA frameworks are coherent, and then an interpolation of 
the affine transformations is possible. The final projection, 
unlike [3], which is data dependent, is invariant, in the sense 
that it respects the reference axis of the rated CCA projection.  

III. APPLICATION TO BEARING FAULT DIAGNOSIS 

Early diagnosis of faults in induction machines is an 
extensively investigated field for cost and maintenance 
savings. In fact, induction motors are still the most important 
rotating electrical machines in industry. 
   Most electrical machines use either ball or rolling-element 
bearings which consist of outer and inner rings. Balls or 
rolling elements rotate in raceways inside the rings. Bearings 
are the major source of faults. Depending on the type and size 
of the machine, these faults vary from about 40% to about 
90% from large to small machines. Bearing defects under 
normal operational conditions often occur because of material 
fatigue. They have been categorized as distributed or local [7]. 
Distributed defects include mainly surface roughness, 
waviness and misaligned races. Localized defects include 
cracks, pits and spalls, basically. Localized bearing faults are 
classified by the fault specific location in: inner race, outer 
race and ball faults mainly, although some studies include also 
cage faults. Generalized roughness, instead, is a type of fault 
where the condition of a bearing surface has degraded 
considerably over a large area and become rough, irregular, or 
deformed. A common example is the overall surface 
roughness produced by a contamination or loss of lubricant. 
   Although different physical magnitudes such as stator 
currents or acoustic emissions have been included to develop 
bearing faults diagnosis methodologies, the vibration analysis 
is the most popular in practice [8]. Most of the bearings 
monitoring schemes are focused on bearing localized defects, 
because they allow an enough reliable frequency analysis. On 
the contrary, the generalized roughness faults, for example, 
produce unpredictable broadband effects in the machine



 

 
Fig. 2: a) Scheme of the experimental setup b) Six bearing defaults to be classified 

 
vibration spectrum and the characteristic fault frequencies do 
not appear. These faults are common in industry, while they 
are often neglected in the research literature. 
   The bearing faults produce a variation of the vibration mode 
in the machine, and statistical features from time [9] [10], as 
RMS, crest factor, standard deviation, rectified skew and 
others are useful to exhibit the system vibration condition. 
However, the fault effects in the acquired signal will be 
attenuated as the vibration is acquired further from the origin 
of the fault. But if the fault has enough presence, this will be 
detected at any point of the machine. 
   Neural networks [11] [12] have been applied to the 
identification of defect locations (e.g., on the inner or outer 
ring of the bearing). Other techniques such as autoregressive 
modeling have also been used to analyze the spectra of 
defective bearings for classification [13]. However, in general, 
feedforward neural networks are generally more accurate than 
linear autoregressive models and RBF networks to classify 
healthy and defective bearings. In [14] features are selected by 
using the principal component analysis (PCA), using the too 
simple method of choosing the attributes having the largest 
principal component (all other information is lost). The 
classification is computed by means of a multilayer perceptron 
(MLP) or a RBF. 

The experimental setup is based on one induction motor 
and a controlled brake. They are connected by means of an 
additional shaft in which two bearing supports are mounted. 
The driving motor is controlled by an inverter. The drive is a 
0.37 kW motor at 2780 rpm rated speed.  
   A set of six identical bearings have been used covering the 
most important bearing fault scenarios : healthy (h), inner race 
fault (i), outer race fault (o), ball fault (b), inner-outer-ball 
(iob) faults at the same time and generalized degradation in 
inner and outer races (gdio). The experimental setup and the 
bearing set are shown in fig. 2. Two monoaxial (orthogonal X 
and Y axis) piezoelectric accelerometers are attached using 
screw mounting to one of the bearing support and its data were 
collected using an acquisition card sampling at 10 kS/s, 1 
second for each measurement. In order to take into account 
different speed and torque combinations, 25 different 
stationary working conditions have been included: from 80% 

to 100% of rated speed, and from 80% to 100% of rated torque 
acquiring every variation of 5% of torque and speed. From the 
acquired vibration time signals a set of 30 (15 for each axis) 
statistical features was extracted. Feature analysis and 
discriminant analysis [5] have reduced the number of features 
to six: for each axis, RMS, variance and shape factor. 

A. The EXIN CCA approach 

The intrinsic dimension of data is 2 for the rated TS. It 
increases for the pool of 25 TS’s. Table 1 shows some intrinsic 
dimension estimators [15] for both cases: the geodesic 
minimum spanning tree (GMST [16]), the correlation 
dimension (CORR [17]), the PCA and the maximum 
likelihood (MLE [18]).  

Figure 3 shows the CCA projection (right) for the TS 
drawn under rated working conditions (100% rated speed, 
100% rated torque): the six classes correspond in pairs (in the 
sense of vicinity): h/i, o/b and iob/gdio. This is the same for 
each working condition. The corresponding dy-dx diagram 
(left) shows that most points lie on the bisector, which means 
the six dimensional manifold is quasi linear. Indeed, the 
smallest distances, which represent the class interdistances, 
that is the distances between members of the same class, are 
represented very close to the bisector: it means that each pair 
of classes lies on a linear manifold. However, the class 
interdistances, that is the distances between classes, show a 
few well separated clusters around the bisector. Each cluster 
represents the distances between pairs of clusters. Hence, it 
demonstrates the presence of distant pairs. Resuming, it can be 
deduced that, in the six dimensional data space, the three 
linear manifolds are not coplanar: the data manifold is non-
Riemannian (hence, the principal component analysis is not 
the better projection tool [15]). 

TAB I. INTRINSIC DIMENSIONALITY 

estimator rated CCA CCA pool 

GMST 1.8475 3.1259 

CORR 0.74223 1.4441 

PCA 2 2 

MLE 2.0862 2.9851 



 
Fig. 3: Rated CCA, 25 samples per class, =0.5, 10 epochs 

The projections corresponding to the 25 working conditions 
(represented by the two dimensional vector p) are computed 
by using EXIN CCA with the OLS refinement. The initial 
learning rate (which decreases exponentially in time) is equal 
to 0.5 for the rated CCA and 0.1 otherwise. The initial 
conditions in the latent space are chosen by using the latent 
points of the nearest CCA, in the sense of working conditions. 
In this application, the initial values in the latent space are 
drawn from the latent points of the CCA whose TS has been 
collected with the same torque value, but with the previous 
value of speed (i.e. 5% more). If the TS is drawn under rated 
speed, the CCA corresponding to the same value of speed, but 
with the previous value of torque (i.e. 5% more) is considered. 

The OLS refinement follows. It has been computed by 
using the normal equations [5]. If a RBF is trained with the 25 
affine parameter vectors, which, in this application are six 
dimensional (the four components of matrix A and the two 
components of vector b), the values of the transformation for 
the interpolation case are estimated. Figure 4 shows the RBF 
outputs. The shape of the surfaces is a function of the CCA 
variability, after having considered the particular values for 
the learning rate and the initial conditions. The remaining 
variability depends on the change of class position and shape 
under different values of the operating conditions, which is 
exploited in the next step (classification).  

 
Fig. 4: RBF outputs for different operating conditions (per unit) 

 

Fig. 5: Determinant of matrix A for different operating conditions (p.u.) 

Figure 5 shows the determinant of matrix A estimated by 
using the RBF outputs for different operating conditions. This 
determinant is close to 1 (orthogonal transformation) for a 
certain range of speed and torque. In the borders of the 
domain, it decreases, always remaining positive. It means that 
the transformation is no more a rotation, but is affine: This is 
also due to the physical phenomenon which gives a distortion 
of the transformation. However, there is no reflection. 
   The global rated CCA projection, namely the output of 
EXIN CCA, is invariant to the CCA projection variability. The 
class centroids of the 25 CCA’s in the rated projection are 
visualized in fig. 6. The class pairs are well separated, but 
there is an overlapping in h/i. This figure shows how the 
working conditions influence the bearing defects. 

 
Fig. 6: EXIN CCA : class centroids of the global TS 

 
Fig. 7: EXIN CCA : class centroids of the test TS (new working 

conditions: 98% rated speed, 93% rated torque) 



   In order to assess the quality of the projection in the global 
rated CCA, the Local Continuity Meta-Criterion (LCMC [19]) 
has been used as quality measure. It measures the invariance 
of the neighborhood of data in the projection. It is in the range 
[0,1] and is higher for better projection. Using five neighbors, 
the following values have been found : 

0.87 0.78 0.83 0.82 0.81

0.80 0.83 0.83 0.81 0.83

0.82 0.83 0.82 0.81 0.80

0.86 0.88 0.84 0.83 0.82

0.82 0.89 0.84 0.78 0.78

 
 
 
 
 
 
 
   

where each component corresponds to one of the 25 working 
conditions, that is the 1,1-component yields the value of 
LCMC for 100% speed and 100% torque (rated case) and the 
5,5-component yields the value of LCMC for 80% speed and 
80%. The quality of the EXIN CCA output is high. 
   Resuming, EXIN CCA is important both for classification 
(only one classification is needed) and as a sensor of the 
physical phenomenon (the trajectories of the centroids show 
the influence of speed and torque on the bearing faults). 

For checking the generalization properties of the proposed 
setup, a test set for the recall phase (interpolation) has been 
acquired: it is composed of 120 experimental data vectors, 
measured for 98% rated speed and 93% rated torque. 
   The corresponding tuning vector θ is computed by using the 
RBF neural network. After tuning, the new data are reported to 
the rated CCA for classification (see fig. 7). The fact that the 
OLS correction basically depends on the CCA remaining 
variability and only, as a secondary effect, on the physical 
phenomenon, can be deduced by comparing figs. 6 and 7: the 
centroids of the projections of the test set are placed in the 
corresponding regions, projections of the training set. Figure 8 
shows the setup for the recall phase. The six dimensional 
feature vector is fed to the CCA neural network and the 
corresponding torque and speed parameters are fed to the RBF 
in order to find the parameters of the affine transformation 
(least squares tuning). A simple madaline, composed by two 
adalines [5], is used for transforming the CCA projection to 
the rated map. The whole classification setup is EXIN CCA. 
 

 
 

Fig. 8: Projection and classification setup 

B. The hierarchical MLP for classification 

The building block of the classification setup is a multilayer 
perceptron. It has two layers and the hidden activation 
function is the hyperbolic tangent. For the two-class problem, 
the output activation function is the logistic sigmoid. For the 
case of more classes, the softmax function is used. Training 
uses the backpropagation rule for the gradient estimation and 
the scaled conjugate gradient as minimization technique [5]. 
With this configuration, MLP outputs the a posteriori 
probability of each class, conditioned by the input. 
   A hierarchy of multilayer perceptrons (hMLP) has also been 
used (see fig. 8) in order to exploit the particular configuration 
of points in data and latent space. A first MLP classifies the 
three class pairs and enables three MLP’s, each trained on a 
pair of classes. The posterior probability for each class is then 
given by the product of the three-class MLP output with the 
corresponding two-class MLP output. For instance, define as h 
the event healthy, as hi the event pair healthy/inner race fault 
and as CCA the two dimensional input from EXIN CCA. It 
follows: 

              
output 2-classMLP output 3-classMLP

P P , Ph CCA h hi CCA hi CCA


            (5) 

   At first, a classification is done by directly using all the six 
dimensional vectors (i.e. all the TS’s) without projection. The 
results are given in tab. 2. Despite the good TS classification, 
the test set classification is poor. It means that a good 
generalization has not been achieved. 
   Secondly, PCA is used in order to check the validity of the 
linear projection. By using the hMLP, the classification ratio 
for the test set is 86.7% and the corresponding confusion 
matrix is given by: 

20 0 0 0 0 0

0 20 0 0 0 0

0 0 16 4 0 0

0 0 2 18 0 0

0 0 0 0 10 10

0 0 0 0 0 20

 
 
 
 
 
 
 
  
 

 

where the rows represent the true classes and the columns 
represent the predicted classes They are both ordered as h, i, o, 
b, iob and gdio. 
   Thirdly, the output of EXIC CCA is classified by a single 
MLP. The decision regions for the test set are shown, together 
with the EXIN CCA projected data, in fig. 9 and the 
classification ratios in tab. 2. A very good improvement has 
been achieved, thanks to the EXIN CCA projection and 
tuning. 

TAB II. CLASSIFICATION RATIOS 

% 
6-dim input, 

hMLP 
2-dim input 

MLP 
2-dim input 

hMLP 
training set 95 97.8 98.3 

test set 72 95.8 95 



 
Fig. 9: Decision regions for the single MLP 

 
The importance of EXIN CCA is confirmed by the last 
experiment, where the EXIN CCA projection is fed to the 
hMLP. Here, the training classification ratio is 98.3% (3-class: 
100%, h/i: 99.3%, o/b: 98.9%, iob/gdio: 96.7). The 
classification ratio for the test set is 95%. The decision regions 
are shown in fig. 5. It can be seen that all points corresponding 
to healthy machine are correctly classified. Indeed, the 
confusion matrix for the latter case is given by: 

20 0 0 0 0 0

0 20 0 0 0 0

0 0 19 1 0 0

0 0 0 20 0 0

0 0 0 0 15 5

0 0 0 0 0 20

 
 
 
 
 
 
 
  
 

 

Table 2 shows that the obtained results are of the same order 
as in the case of a unique MLP (only a slight improvement in 
the training set classification). Hence, it can be deduced that 
the most important tool for the neural approach is EXIN CCA.  

IV. CONCLUSIONS AND FUTURE WORK 

   This paper explains the EXIN CCA neural network, a 
variant of CCA. It is a stabilizer of the CCA projection, that is 
it yields an invariant nonlinear projection. It achieves this 
result by operating on the initial conditions and the learning 
rate. It refines the result by applying an affine transformation 
to a unique invariant map. This transformation is computed by 
means of the ordinary least squares technique, which is, 
however, suboptimal for the data matrix in (4) is noisy. Future 
work will deal with the use of the constrained total least 
squares which takes into account the structure of the data 
matrix. EXIN CCA also uses a weighting factor multiplying 
the learning rate in order to take into account the neighbor 
working conditions for the recall/interpolation phase. An open 
problem remains the analysis of extrapolation, i.e. working 
conditions outside the range. 

   From the bearing fault diagnosis point of view, the use of 
temporal information has given very high classification ratios 
by using a neural approach. Future work will deal with time 
frequency integration and with the use of stator currents 
instead of vibration signals. 
   The research proposed in this paper will be also used in 
other classification problems, mainly the classification of 
faults in electrical machines, where the goal is to improve the 
results obtained by CCA in [20]. 
   Thanks to the potential of the EXIN CCA + hMLP setup, 
there is also the possibility of using this technique as a sensor 
of the physical phenomenon, in the sense that the accurate 
invariant projections, the posterior probabilities and the 
corresponding decision regions yield a deep insight of the 
problem at hand. This possibility allows, for instance, to 
improve the feature selection, as a feedback from the 
classification to the system to be analyzed. 
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