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Abstract—The growing size and complexity of software systems, together with critical time-to-market 

needs, demand new software engineering approaches for software development. To remain competitive, 

organizations are challenged to make informed and feasible value-driven design decisions in order to 

ensure the quality of the systems. However, there is a lack of support for evaluating the economic 

impact of these decisions with regard to software reference architectures. This damages the 

communication among architects and management, which can result in poor decisions. This paper aims 

at opening a path in this direction by presenting a pragmatic preliminary economic model to perform 

cost-benefit analysis on the adoption of software reference architectures as key asset for optimizing 

architectural decision-making. The model is based on existing value-based metrics and economics-

driven models used in other areas. A preliminary validation based on a retrospective study showed the 

ability of the model to support a cost-benefit analysis presented to the management of an IT consulting 

company. This validation involved a cost-benefit analysis related to reuse and maintenance; other 

qualities will be incorporated as our research progresses. 

Index Terms—Software architecture, reference architecture, architecture evaluation, cost-benefit 

analysis, quality attributes. 

 

I. INTRODUCTION AND MOTIVATION 

Nowadays, the size and complexity of software systems, together with critical time-to-market 

needs, demand new software engineering (SE) approaches to software development. One of these 

approaches is the use of software reference architectures (RA), which are becoming widely studied 

and adopted in SE research and practice [3]. An RA encompasses the knowledge about how to 

design concrete software architectures (SA) of systems of a given application domain; therefore, it 

must address the business rules, architectural styles, best practices of software development, and the 

software elements that support development of systems [18]. 

The motivation behind RAs is to systematically reuse knowledge and software elements when 

developing concrete SA for new systems, to help with the evolution of a set of systems that stem 

from the same RA, or to ensure standardization and interoperability. However, although the adoption 

of an RA might have plenty of benefits for an organization, it also implies several challenges, among 
them the need for an initial investment [11]. 

Thus, organizations need to ensure the feasibility of adopting an RA by assessing their goals, the 

resources they can invest and the expected benefits. In spite of this need, there is a lack of research 

methods for economics-driven RA evaluation [19]. In particular, there is a shortage of economic 

models to “precisely evaluate the benefit of ‘architecture projects’ - those that aim to improve one or 

more quality attributes of a system” [6]. Thus, the adoption of RAs is usually made without 
evaluating their economic impact.  

The goal of this paper is to set a new research direction on RA evaluation attracting both: 

researchers for the need to formulate accurate models, and practitioners for the opportunity of 

making more informed decision-making about whether to make the strategic move to RA adoption. 
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Due to the aforementioned lack of research in this specific area, we have aimed at adopting and 

adapting existing results in related areas, from classical software reuse to product line engineering.  

It is worth mentioning that the paper has its origin in an ongoing action-research initiative among 

our research group and the Center of Excellence on Software Architectures (ARCHEX) of Everis, a 

multinational consulting company based in Spain. ARCHEX experienced the inability to calculate 

the return on investment (ROI) derived from RAs that they create for organizations. The model 

stemming from this collaboration is currently under formative evaluation, but the current results are 

already triggering change in some development processes in the organization (e.g., bug reporting and 

management). As part of the collaboration, we had the chance to provide an initial validation of the 

economic model. It comprises a retrospective evaluation of an RA created by Everis for the IT 
department of a public administration center in Spain. 

 

II. BACKGROUND 

Current research on RA evaluation [2][10][12] has little support to analyze the cost and benefits 

of RAs based on economics. However, there exist a few SA evaluation methods that drive the 

decision-making process during SA review and design. In this direction, Moore et al. presented 

CBAM [17], Ozkaya et al. proposed an economic valuation of architectural patterns [21], and 

Ivanovic et al. quantified the customer value that stems from quality improvements [13]. Although 

these SA methods are useful for prioritizing architectural strategies that bring higher value, they can 

be applied only in a restricted way for RAs adoption. RAs involve fundamental assumptions that 

these methods do not reflect, especially when it comes to defining potential economic benefits and 
the payback time. 

Another inspiring area is Software Product Lines (SPL). A survey by Ali et al. [1] summarized 

twelve economic models for SPL. Among them, we may remark SIMPLE [7]. SIMPLE comprises a 

set of cost and benefit functions that can be used to construct equations that can answer a number of 

questions such as whether the SPL approach is the best option for development and what is the ROI 
for this approach. 

On the other hand, there exist several approaches that propose metrics for estimating cost savings 

in software development and maintenance. For instance, Poulin considered the reuse of assets in 

developing individual applications, and the potential costs savings that it implies to the development 

and maintenance [22]. Metrics as dependency structure matrices (DSM) have been applied to assist 

architecture-level analysis, such as value of modular designs, and they have proven to be particularly 

insightful for validating the future value of architecting modular systems [6]. MacCormack et al. 

extracted coupling metrics from an architecture DSM view for inferring the likelihood of change 

propagation and, hence, future maintenance costs [15]. Baldwin et al. presented a gene-ric expression 

for evaluating the option to redesign a module also based on DSMs [4] that is used in [24]. In 

addition, the use of technical debt (either architecture-focused [20] or code-based [14]) is a way to 
measure unexpected rework costs due to expediting the delivery of stakeholder value in short.  

Despite the existence of this inspiring body of work from the SPL, software reuse and modular 

design areas, the proposed models are not directly applicable to RAs. Although SPL and RAs have 

similarities (both have reuse as their core strategy) they have also important differences. RAs deal 

with the range of knowledge of an application domain, providing standardized solutions for such a 

broad domain, while SPL approaches are more specialized, focusing sometimes on a specific subset 
of the systems of a domain and providing standardized solutions for a smaller family of systems [18]. 

This state of the art drove us to the formulation of an economic model for RAs, which is currently 
on its formative stage. 
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III. AN ECONOMIC MODEL FOR REFERENCE ARCHITECTURES 

A. Method for formulating the model 

An RA cost-benefit analysis should be based on giving an economic value to its activities. This 
can be done in three steps: 

1) Identify the costs and benefits stemming from the use of an RA: It is necessary to identify the RA 

quality attributes that bring more benefit to the development and maintenance of systems, and the 

costs of constructing these systems [17]. These attributes may vary depending on the characteristics 

of RA [3]. It is crucial to involve relevant stakeholders to ensure the trustworthiness of the collected 

information [23]. 

2) Adopt metrics that quantify the costs and benefits identified in the first step in order to convert 

them into a monetary value: The metrics to quantify them may vary depending on the data available 
in the organization involved. 

3) Add the costs and benefits calculated in the second step to the formula for calculating the ROI: 

ROI=
Benefits-Costs

Costs
 
 

(1) 

where the benefits are the improvements of system quality attributes, and the costs are the 

expenses in constructing the systems and the RA. Eq. 1 has been proposed by Boehm [5]. 

B. Example of application 

The action-research collaboration with Everis provided us the opportunity of implementing this 

general-purpose method in a particular case. 

For the first step, we conducted a survey involving project managers, architects and developers of 

9 organizations in Europe (7 from Spain) [16]. The survey pointed out that the main perceived 

economic benefits on the use of RAs were: (1) an increased value from the improvement of quality 

attributes, since their reused architectural knowledge is incrementally improved with previous 

successful experiences from its application domain; (2) cost savings in the development and 

maintenance of systems due to the reuse of software elements and the adoption of best practices of 

software development that increase the productivity of developers. These cost savings could be seen 

as the improvement of reusability and maintainability quality attributes. Thus, we decided to focus 

our cost-benefit analysis over these particular dimensions. 

For the second step, we found that some of the potential metrics to be used were not as pragmatic 

as the organization needed. In other words, the organization should have been invested extra time 

which was not an option. Furthermore, we faced the problem that some of the required data to apply 

the proposed metrics was not previously registered by the organization. Thus, we stressed the 

emphasis on formulating a practical model that incrementally deals with diverse cost-benefit aspects. 

This helped us to prioritize the operationalization of these aspects into the model.   

We started the formulation of metrics by adopting Poulin’s method for measuring code reuse 

[22]. With the help of the propagation cost metric [15], we also consider necessary changes to 

reusable elements (which are not considered by Poulin’s method) and, therefore, maintainability. For 

this purpose, we use six cost-benefit factors, which we classify into  development and maintenance: 

a) Benefits and costs of development:  

 DCA (Development Cost Avoidance). It is the benefit from reusing RA’s software modules 

in applications compared to building the applications independently. 

 UDC (Unique Development Costs). It is the cost to develop the unique parts of an application 

that are not already implemented in the modules of the RA. 

 ADC (Additional Development Costs). It is the cost of developing an RA for a particular 

organization. 
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b) Benefits and costs of maintenance: 

 SCA (Service Cost Avoidance). It is the benefit from modifying the reused code only once. 

 AMC (Additional Maintenance Costs). It is the cost of fixing bugs in the (reusable) RA 

modules.  

 AEC (Additional Evolution Costs). It is the cost of changing or adding functionalities to the 

RA modules. 

Given a number n of applications built in top of the RA, and a number m of RA modules added or 

changed as it evolves, the benefits and costs of adopting an RA are defined as: 

     
Benefits=  DCAi+SCAi 

n

i=1
 
 

(2) 

 

     

Costs=ADC+AMC+ UDCi

n

i=1

+ AECj

m

j=1

 

 
(3) 

 

Table I shows the formulas to calculate the six factors as well as parameters that are needed for 

these calculations. 

As final step, we can use the benefits of Eq. 2 and costs of Eq. 3 into the Eq. 1 in order to 
calculate the ROI. 
 

TABLE I.  PARAMETERS OF THE ECONOMIC MODEL TO CALCULATE THE ROI OF ADOPTING A REFERENCE ARCHITECTURE IN 

AN ORGANIZATION 

Parameter Description (adapted for the RA context) Value in the 

study 

RCR [22] Relative Cost of Reuse: effort that it takes to reuse a component without modification 

versus writing it new one-at-a-time 

0.064 

RCWR [22] Relative Cost of Writing for Reuse: effort that it takes to write a reusable component versus 

writing it for one-time use only 

2.468 

ER [22] Error Rate: the historical error rate in new software developed by your organization, in 

errors per thousand lines of code 

2.015 

errors/kLOC 

EC [22] Error Cost: your organization’s historical cost to fix errors after releasing new software to 

the customer, in euros per error 

1,036.38 

€/error 

NMSI New Module Source Instruction: the LOC that the changed or new module has, which can 

be the average of previous ones 

1,526 

LOC/module 

PC [15] Propagation Cost: the percentage of code affected in the RA when performing evolutions 

(i.e., changing modules) 

9.7 % 

CPL [22] Cost per LOC: the historical cost to develop a LOC of new software in your organization 2.5 € 

USI Unique Source Instructions: the amount of unique software (i.e., not reused) that was 

written or modified for an application 

2,885 

RSI [22] Reused Source Instructions: it is the total LOC of the RA’s modules that are reused in an 

application 

8,364 

TSI [22] Total Source Instructions: it is the total LOC of the RA that can be reused 41,189 LOC 

DCA [22] Development Cost Avoidance: the benefits from reusing RA’s modules  DCA = RSI * 

(1-RCR) * CPL  

19,579 € 

ADC [22] Additional Development Costs: the costs to develop the RA  ADC = (RCWR-1) * TSI * 

CPL 

151,213 € 

UDC Additional Unique Development Costs: the costs to develop the unique part of an 

application  UDC = USI*CPL 

7,212 € 

SCA [22] Service Cost Avoidance: the benefits from maintaining only once RA’s modules  SCA = 

RSI * ER * EC 

17,467 € 

AMC Additional Maintenance Costs: the cost of fixing bugs in the (reusable) RA modules  

AMC = TSI * ER * EC 

86,019 € 

AEC Additional Evolution Costs: the costs of changing or adding a new functionality and 

maintaining it to the RA  AEC = evolution development + evolution maintenance + 

propagation = (NMSI*CPL) +(NMSI*ER*EC) +(TSI*CPL*PC) 

17,028 € 
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IV. PRELIMINARY VALIDATION 

To assess the feasability of the economic model, we con-ducted a retrospective analysis of a 

particular case, in which we calculated the costs and benefits (and hence the ROI) of adopting an RA 

in the IT department of a public organization. This adoption was driven by Everis so that we applied 
the implementation of the model described in Section III.B. 

By the time we performed the validation, the public organization had already: (1) adopted an RA, 

(2) created an application using the RA –which we consider “exemplar” application–, and (3) fixed 

errors discovered in the RA software elements that were reused by the application. 

The validation consisted of 3 parts. First, a post-mortem analysis in which our challenge was to 
extract metrics (see Table I) from already collected data. We calculated: 

 ADC, RA initial investment, which lasted 6 months. 

 DCA, the benefit of reusing code from the RA in the development of the exemplar 

application. 

 SCA, the cost from fixing the errors of the reused code in the exemplar application. 

 UDC, the cost of developing the application. 

The above costs were accurately computed because this organization keeps track of project 

activities with their invested time. To identify the benefits, we interviewed application developers to 

estimate the costs of developing applications without using the RA. When there was no data, we 

asked the involved stakeholders as a light-weight solution [23]. 

Second, it was necessary to estimate the rest of factors: 

 AMC, the cost of fixing all bugs in RA code. Since we knew the SCA for the exemplar 

application and the percentage of reuse, we calculated the error rate and error cost, which we 

used to estimate AMC. 

 AEC, the cost of: (1) changing or developing a module with new functionality, (2) fixing its 

bugs, (3) making changes in the rest of the RA to integrate it. 

Third, we constructed a business case for 3 years starting when the organization decided to adopt 

the RA, in order to calculate the ROI. For the first 8 months of those 3 years, we have real data about 

the RA development and the exemplar RA-based application. To estimate the costs and benefits for 

the rest of these 3 years, after some additional interviews, we have made the following assumptions: 

 Future applications will have similar characteristics and complexity as the exemplar one. 

 The public organization will develop 8 applications per year. Since the RA creation lasted 6 

months, the first year they will develop just 4 applications.  

 The totality of AMC is computed in the first year. 

 A module is evolved (with new functionality) or added to the RA every year starting the 

second year. 

Under these assumptions, the costs and benefits for the future can be calculated as shown in Table 

II. Table III summarizes the total costs and benefits for these 3 years. As we can see in Table III, this 

organization will realize a ROI within 2 years through gains in systematic reuse and application 

maintainability. The ROI after 3 years is 78%. 

TABLE II.  DESIGN OF THE BUSINESS CASE 

 Year 1 Year 2 Year 3 

Total benefit 4*(DCA+SCA) 8*(DCA+SCA) 8*(DCA+SCA) 

Total cost ADC+AMC+4*UDC 8*UDC+AEC 8*UDC+AEC 
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TABLE III.  RESULTS OF THE BUSINESS CASE 

 Year 1 Year 2 Year 3 Total 

Total benefit 148,190 € 296,379 € 296,379 € 740,948 € 

Total cost 266,083 € 74,729 € 74,729 € 415,540 € 

Net cash flow -117,894 € 221,651 € 221,651 € 325,408 € 

Cumulative cash flow .. -117,894 € 103,757 € 325,408 €  

 

Data collection in this exemplar case was supported by the adoption of good practices with tool 

support: activity tracking with JIRA
1
 (keeping track of activities and their invested time); test-driven 

development with Sonar
2
 that informed about basic software metrics and percentages of tests 

compliance; and continuous integration with Jenkins
3
. The adoption of these practices and tools to 

collect data is the basis for moving software development from its usual low-validity environment, to 

a high-validity environment. As stated by Erdogmus and Favaro [9], high-validity environments 

allow acquiring reliable expert intuition and performing an accurate cost-benefit analysis, in this case 

of RAs.  

 

V. CONCLUSIONS & NEXT STEPS 

Architecture improvements are extremely difficult to evaluate in an analytic and quantitative way, 

contrary to the business efficacy (sales, marketing, and manufacturing) [6]. Methods and models for 

changing this state of the practice are demanded. 

This paper has opened the path on the area of using economic models for RA assessment. We 

think that this area has a significant impact not just for researchers but also for practitioners in 

software development and organization’s executives. We presented an economic model to translate 

measured or estimated data (i.e., metrics) into monetary terms (i.e., cost-benefit analysis). Then, we 

use them as the basis for analyzing the economic value of an RA (i.e., valuation) that is adapted by 

an organization in the pursuit of its business strategies. Thus, our work aligns with Erdogmus et al. 

vision on economic activities in software industry, that fall into 4 levels: metrics, cost-benefit 
analysis, valuation and business strategy [8]. 

We have conducted a preliminary validation to calculate the ROI of adopting an RA in a real 

organization. This organization will realize a return on their investment within two years through 

gains in systematic reuse and applications maintainability. The method presented is generic enough 

to be used when other quality attributes are prioritized by relevant stakeholders. The presented 

economic model allows quantifying the value that an RA of Type 2 or 4 (those designed with an 

intended scope of a single organization) [3] brings to an organization. Its strongest point is the 

integration of different metrics that complement each other evaluating several RA-relevant aspects. 
On the other hand, a potential weakness of this approach is that it does not look at risks. 

As future work, we plan to enrich the economic model with more metrics (like technical debt) to 

analyze more quality attributes, and coping with metrics risk. Also, we want to use homogeneity 

metrics to discover the RA modules that bring more benefit to an organization [7]. 

                                                           
1 http://www.atlassian.com/es/software/jira/overview 
2 http://www.sonarsource.org/ 
3 http://jenkins-ci.org/ 
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