

A Reuse-Based Economic Model for
Software Reference Architectures

Silverio Martínez-Fernández1, Claudia Ayala1,
Xavier Franch1

1 Software Engineering for Information Systems Group

Universitat Politècnica de Catalunya (GESSI-UPC)

Barcelona, Spain

{smartinez, cayala, franch}@essi.upc.edu

November 2012

Report ESSI-TR-12-6

Departament d’Enginyeria de Serveis i Sistemes d’Informació

ESSI-TR-12-6 2

A Reuse-Based Economic Model for

Software Reference Architectures

Silverio Martínez-Fernández, Claudia Ayala, Xavier Franch

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Abstract—The growing size and complexity of software systems, together with critical time-to-market

needs, demand new software engineering approaches for software development. To remain competitive,

organizations are challenged to make informed and feasible value-driven design decisions in order to

ensure the quality of the systems. However, there is a lack of support for evaluating the economic

impact of these decisions with regard to software reference architectures. This damages the

communication among architects and management, which can result in poor decisions. This paper aims

at opening a path in this direction by presenting a pragmatic preliminary economic model to perform

cost-benefit analysis on the adoption of software reference architectures as key asset for optimizing

architectural decision-making. The model is based on existing value-based metrics and economics-

driven models used in other areas. A preliminary validation based on a retrospective study showed the

ability of the model to support a cost-benefit analysis presented to the management of an IT consulting

company. This validation involved a cost-benefit analysis related to reuse and maintenance; other

qualities will be incorporated as our research progresses.

Index Terms—Software architecture, reference architecture, architecture evaluation, cost-benefit

analysis, quality attributes.

I. INTRODUCTION AND MOTIVATION

Nowadays, the size and complexity of software systems, together with critical time-to-market

needs, demand new software engineering (SE) approaches to software development. One of these

approaches is the use of software reference architectures (RA), which are becoming widely studied

and adopted in SE research and practice [3]. An RA encompasses the knowledge about how to

design concrete software architectures (SA) of systems of a given application domain; therefore, it

must address the business rules, architectural styles, best practices of software development, and the

software elements that support development of systems [18].

The motivation behind RAs is to systematically reuse knowledge and software elements when

developing concrete SA for new systems, to help with the evolution of a set of systems that stem

from the same RA, or to ensure standardization and interoperability. However, although the adoption

of an RA might have plenty of benefits for an organization, it also implies several challenges, among
them the need for an initial investment [11].

Thus, organizations need to ensure the feasibility of adopting an RA by assessing their goals, the

resources they can invest and the expected benefits. In spite of this need, there is a lack of research

methods for economics-driven RA evaluation [19]. In particular, there is a shortage of economic

models to “precisely evaluate the benefit of ‘architecture projects’ - those that aim to improve one or

more quality attributes of a system” [6]. Thus, the adoption of RAs is usually made without
evaluating their economic impact.

The goal of this paper is to set a new research direction on RA evaluation attracting both:

researchers for the need to formulate accurate models, and practitioners for the opportunity of

making more informed decision-making about whether to make the strategic move to RA adoption.

ESSI-TR-12-6 3

Due to the aforementioned lack of research in this specific area, we have aimed at adopting and

adapting existing results in related areas, from classical software reuse to product line engineering.

It is worth mentioning that the paper has its origin in an ongoing action-research initiative among

our research group and the Center of Excellence on Software Architectures (ARCHEX) of Everis, a

multinational consulting company based in Spain. ARCHEX experienced the inability to calculate

the return on investment (ROI) derived from RAs that they create for organizations. The model

stemming from this collaboration is currently under formative evaluation, but the current results are

already triggering change in some development processes in the organization (e.g., bug reporting and

management). As part of the collaboration, we had the chance to provide an initial validation of the

economic model. It comprises a retrospective evaluation of an RA created by Everis for the IT
department of a public administration center in Spain.

II. BACKGROUND

Current research on RA evaluation [2][10][12] has little support to analyze the cost and benefits

of RAs based on economics. However, there exist a few SA evaluation methods that drive the

decision-making process during SA review and design. In this direction, Moore et al. presented

CBAM [17], Ozkaya et al. proposed an economic valuation of architectural patterns [21], and

Ivanovic et al. quantified the customer value that stems from quality improvements [13]. Although

these SA methods are useful for prioritizing architectural strategies that bring higher value, they can

be applied only in a restricted way for RAs adoption. RAs involve fundamental assumptions that

these methods do not reflect, especially when it comes to defining potential economic benefits and
the payback time.

Another inspiring area is Software Product Lines (SPL). A survey by Ali et al. [1] summarized

twelve economic models for SPL. Among them, we may remark SIMPLE [7]. SIMPLE comprises a

set of cost and benefit functions that can be used to construct equations that can answer a number of

questions such as whether the SPL approach is the best option for development and what is the ROI
for this approach.

On the other hand, there exist several approaches that propose metrics for estimating cost savings

in software development and maintenance. For instance, Poulin considered the reuse of assets in

developing individual applications, and the potential costs savings that it implies to the development

and maintenance [22]. Metrics as dependency structure matrices (DSM) have been applied to assist

architecture-level analysis, such as value of modular designs, and they have proven to be particularly

insightful for validating the future value of architecting modular systems [6]. MacCormack et al.

extracted coupling metrics from an architecture DSM view for inferring the likelihood of change

propagation and, hence, future maintenance costs [15]. Baldwin et al. presented a gene-ric expression

for evaluating the option to redesign a module also based on DSMs [4] that is used in [24]. In

addition, the use of technical debt (either architecture-focused [20] or code-based [14]) is a way to
measure unexpected rework costs due to expediting the delivery of stakeholder value in short.

Despite the existence of this inspiring body of work from the SPL, software reuse and modular

design areas, the proposed models are not directly applicable to RAs. Although SPL and RAs have

similarities (both have reuse as their core strategy) they have also important differences. RAs deal

with the range of knowledge of an application domain, providing standardized solutions for such a

broad domain, while SPL approaches are more specialized, focusing sometimes on a specific subset
of the systems of a domain and providing standardized solutions for a smaller family of systems [18].

This state of the art drove us to the formulation of an economic model for RAs, which is currently
on its formative stage.

ESSI-TR-12-6 4

III. AN ECONOMIC MODEL FOR REFERENCE ARCHITECTURES

A. Method for formulating the model

An RA cost-benefit analysis should be based on giving an economic value to its activities. This
can be done in three steps:

1) Identify the costs and benefits stemming from the use of an RA: It is necessary to identify the RA

quality attributes that bring more benefit to the development and maintenance of systems, and the

costs of constructing these systems [17]. These attributes may vary depending on the characteristics

of RA [3]. It is crucial to involve relevant stakeholders to ensure the trustworthiness of the collected

information [23].

2) Adopt metrics that quantify the costs and benefits identified in the first step in order to convert

them into a monetary value: The metrics to quantify them may vary depending on the data available
in the organization involved.

3) Add the costs and benefits calculated in the second step to the formula for calculating the ROI:

ROI=
Benefits-Costs

Costs

(1)

where the benefits are the improvements of system quality attributes, and the costs are the

expenses in constructing the systems and the RA. Eq. 1 has been proposed by Boehm [5].

B. Example of application

The action-research collaboration with Everis provided us the opportunity of implementing this

general-purpose method in a particular case.

For the first step, we conducted a survey involving project managers, architects and developers of

9 organizations in Europe (7 from Spain) [16]. The survey pointed out that the main perceived

economic benefits on the use of RAs were: (1) an increased value from the improvement of quality

attributes, since their reused architectural knowledge is incrementally improved with previous

successful experiences from its application domain; (2) cost savings in the development and

maintenance of systems due to the reuse of software elements and the adoption of best practices of

software development that increase the productivity of developers. These cost savings could be seen

as the improvement of reusability and maintainability quality attributes. Thus, we decided to focus

our cost-benefit analysis over these particular dimensions.

For the second step, we found that some of the potential metrics to be used were not as pragmatic

as the organization needed. In other words, the organization should have been invested extra time

which was not an option. Furthermore, we faced the problem that some of the required data to apply

the proposed metrics was not previously registered by the organization. Thus, we stressed the

emphasis on formulating a practical model that incrementally deals with diverse cost-benefit aspects.

This helped us to prioritize the operationalization of these aspects into the model.

We started the formulation of metrics by adopting Poulin’s method for measuring code reuse

[22]. With the help of the propagation cost metric [15], we also consider necessary changes to

reusable elements (which are not considered by Poulin’s method) and, therefore, maintainability. For

this purpose, we use six cost-benefit factors, which we classify into development and maintenance:

a) Benefits and costs of development:

 DCA (Development Cost Avoidance). It is the benefit from reusing RA’s software modules

in applications compared to building the applications independently.

 UDC (Unique Development Costs). It is the cost to develop the unique parts of an application

that are not already implemented in the modules of the RA.

 ADC (Additional Development Costs). It is the cost of developing an RA for a particular

organization.

ESSI-TR-12-6 5

b) Benefits and costs of maintenance:

 SCA (Service Cost Avoidance). It is the benefit from modifying the reused code only once.

 AMC (Additional Maintenance Costs). It is the cost of fixing bugs in the (reusable) RA

modules.

 AEC (Additional Evolution Costs). It is the cost of changing or adding functionalities to the

RA modules.

Given a number n of applications built in top of the RA, and a number m of RA modules added or

changed as it evolves, the benefits and costs of adopting an RA are defined as:

Benefits= DCAi+SCAi

n

i=1

(2)

Costs=ADC+AMC+ UDCi

n

i=1

+ AECj

m

j=1

(3)

Table I shows the formulas to calculate the six factors as well as parameters that are needed for

these calculations.

As final step, we can use the benefits of Eq. 2 and costs of Eq. 3 into the Eq. 1 in order to
calculate the ROI.

TABLE I. PARAMETERS OF THE ECONOMIC MODEL TO CALCULATE THE ROI OF ADOPTING A REFERENCE ARCHITECTURE IN

AN ORGANIZATION

Parameter Description (adapted for the RA context) Value in the

study

RCR [22] Relative Cost of Reuse: effort that it takes to reuse a component without modification

versus writing it new one-at-a-time

0.064

RCWR [22] Relative Cost of Writing for Reuse: effort that it takes to write a reusable component versus

writing it for one-time use only

2.468

ER [22] Error Rate: the historical error rate in new software developed by your organization, in

errors per thousand lines of code

2.015

errors/kLOC

EC [22] Error Cost: your organization’s historical cost to fix errors after releasing new software to

the customer, in euros per error

1,036.38

€/error

NMSI New Module Source Instruction: the LOC that the changed or new module has, which can

be the average of previous ones

1,526

LOC/module

PC [15] Propagation Cost: the percentage of code affected in the RA when performing evolutions

(i.e., changing modules)

9.7 %

CPL [22] Cost per LOC: the historical cost to develop a LOC of new software in your organization 2.5 €

USI Unique Source Instructions: the amount of unique software (i.e., not reused) that was

written or modified for an application

2,885

RSI [22] Reused Source Instructions: it is the total LOC of the RA’s modules that are reused in an

application

8,364

TSI [22] Total Source Instructions: it is the total LOC of the RA that can be reused 41,189 LOC

DCA [22] Development Cost Avoidance: the benefits from reusing RA’s modules  DCA = RSI *

(1-RCR) * CPL

19,579 €

ADC [22] Additional Development Costs: the costs to develop the RA  ADC = (RCWR-1) * TSI *

CPL

151,213 €

UDC Additional Unique Development Costs: the costs to develop the unique part of an

application  UDC = USI*CPL

7,212 €

SCA [22] Service Cost Avoidance: the benefits from maintaining only once RA’s modules  SCA =

RSI * ER * EC

17,467 €

AMC Additional Maintenance Costs: the cost of fixing bugs in the (reusable) RA modules 

AMC = TSI * ER * EC

86,019 €

AEC Additional Evolution Costs: the costs of changing or adding a new functionality and

maintaining it to the RA  AEC = evolution development + evolution maintenance +

propagation = (NMSI*CPL) +(NMSI*ER*EC) +(TSI*CPL*PC)

17,028 €

ESSI-TR-12-6 6

IV. PRELIMINARY VALIDATION

To assess the feasability of the economic model, we con-ducted a retrospective analysis of a

particular case, in which we calculated the costs and benefits (and hence the ROI) of adopting an RA

in the IT department of a public organization. This adoption was driven by Everis so that we applied
the implementation of the model described in Section III.B.

By the time we performed the validation, the public organization had already: (1) adopted an RA,

(2) created an application using the RA –which we consider “exemplar” application–, and (3) fixed

errors discovered in the RA software elements that were reused by the application.

The validation consisted of 3 parts. First, a post-mortem analysis in which our challenge was to
extract metrics (see Table I) from already collected data. We calculated:

 ADC, RA initial investment, which lasted 6 months.

 DCA, the benefit of reusing code from the RA in the development of the exemplar

application.

 SCA, the cost from fixing the errors of the reused code in the exemplar application.

 UDC, the cost of developing the application.

The above costs were accurately computed because this organization keeps track of project

activities with their invested time. To identify the benefits, we interviewed application developers to

estimate the costs of developing applications without using the RA. When there was no data, we

asked the involved stakeholders as a light-weight solution [23].

Second, it was necessary to estimate the rest of factors:

 AMC, the cost of fixing all bugs in RA code. Since we knew the SCA for the exemplar

application and the percentage of reuse, we calculated the error rate and error cost, which we

used to estimate AMC.

 AEC, the cost of: (1) changing or developing a module with new functionality, (2) fixing its

bugs, (3) making changes in the rest of the RA to integrate it.

Third, we constructed a business case for 3 years starting when the organization decided to adopt

the RA, in order to calculate the ROI. For the first 8 months of those 3 years, we have real data about

the RA development and the exemplar RA-based application. To estimate the costs and benefits for

the rest of these 3 years, after some additional interviews, we have made the following assumptions:

 Future applications will have similar characteristics and complexity as the exemplar one.

 The public organization will develop 8 applications per year. Since the RA creation lasted 6

months, the first year they will develop just 4 applications.

 The totality of AMC is computed in the first year.

 A module is evolved (with new functionality) or added to the RA every year starting the

second year.

Under these assumptions, the costs and benefits for the future can be calculated as shown in Table

II. Table III summarizes the total costs and benefits for these 3 years. As we can see in Table III, this

organization will realize a ROI within 2 years through gains in systematic reuse and application

maintainability. The ROI after 3 years is 78%.

TABLE II. DESIGN OF THE BUSINESS CASE

 Year 1 Year 2 Year 3

Total benefit 4*(DCA+SCA) 8*(DCA+SCA) 8*(DCA+SCA)

Total cost ADC+AMC+4*UDC 8*UDC+AEC 8*UDC+AEC

ESSI-TR-12-6 7

TABLE III. RESULTS OF THE BUSINESS CASE

 Year 1 Year 2 Year 3 Total

Total benefit 148,190 € 296,379 € 296,379 € 740,948 €

Total cost 266,083 € 74,729 € 74,729 € 415,540 €

Net cash flow -117,894 € 221,651 € 221,651 € 325,408 €

Cumulative cash flow .. -117,894 € 103,757 € 325,408 €

Data collection in this exemplar case was supported by the adoption of good practices with tool

support: activity tracking with JIRA
1
 (keeping track of activities and their invested time); test-driven

development with Sonar
2
 that informed about basic software metrics and percentages of tests

compliance; and continuous integration with Jenkins
3
. The adoption of these practices and tools to

collect data is the basis for moving software development from its usual low-validity environment, to

a high-validity environment. As stated by Erdogmus and Favaro [9], high-validity environments

allow acquiring reliable expert intuition and performing an accurate cost-benefit analysis, in this case

of RAs.

V. CONCLUSIONS & NEXT STEPS

Architecture improvements are extremely difficult to evaluate in an analytic and quantitative way,

contrary to the business efficacy (sales, marketing, and manufacturing) [6]. Methods and models for

changing this state of the practice are demanded.

This paper has opened the path on the area of using economic models for RA assessment. We

think that this area has a significant impact not just for researchers but also for practitioners in

software development and organization’s executives. We presented an economic model to translate

measured or estimated data (i.e., metrics) into monetary terms (i.e., cost-benefit analysis). Then, we

use them as the basis for analyzing the economic value of an RA (i.e., valuation) that is adapted by

an organization in the pursuit of its business strategies. Thus, our work aligns with Erdogmus et al.

vision on economic activities in software industry, that fall into 4 levels: metrics, cost-benefit
analysis, valuation and business strategy [8].

We have conducted a preliminary validation to calculate the ROI of adopting an RA in a real

organization. This organization will realize a return on their investment within two years through

gains in systematic reuse and applications maintainability. The method presented is generic enough

to be used when other quality attributes are prioritized by relevant stakeholders. The presented

economic model allows quantifying the value that an RA of Type 2 or 4 (those designed with an

intended scope of a single organization) [3] brings to an organization. Its strongest point is the

integration of different metrics that complement each other evaluating several RA-relevant aspects.
On the other hand, a potential weakness of this approach is that it does not look at risks.

As future work, we plan to enrich the economic model with more metrics (like technical debt) to

analyze more quality attributes, and coping with metrics risk. Also, we want to use homogeneity

metrics to discover the RA modules that bring more benefit to an organization [7].

1 http://www.atlassian.com/es/software/jira/overview
2 http://www.sonarsource.org/
3 http://jenkins-ci.org/

ESSI-TR-12-6 8

REFERENCES

[1] M. Ali, M. Ali Babar, K. Schmid, “A Comparative Survey of Economic Models for Software Product

Lines,” SEAA 2009.

[2] S. Angelov, J.J.M. Trienekens, P. Grefen, “Towards a Method for the Evaluation of Reference

Architectures: Experiences from a Case,” ECSA, 2008.

[3] S. Angelov, P. Grefen, D. Greefhorst, “A framework for analysis and design of software reference

architectures,” Information and Software Technology, vol. 54, 2012.

[4] C.Y. Baldwin, K.B. Clark, “Design Rules: Volume 1, The Power of Modularity,” Cambridge, MA: MIT

Press, 2000.

[5] B. Boehm, “Value-based software engineering: Seven key elements and ethical considerations,” Value-

Based Software Engineering, 2006.

[6] J. Carriere, R. Kazman, I. Ozkaya, “A cost-benefit framework for making architectural decisions in a

business context,” ICSE 2010.

[7] P.C. Clements, J.D. McGregor, and S.G. Cohen, "The Structured Intuitive Model for Product Line

Economics (SIMPLE)," Technical Report CMU/SEI, 2005.

[8] H. Erdogmus, J. Favaro, W. Strigel, “Return on Investment,” IEEE Software, 2004.

[9] H. Erdogmus, J. Favaro, “The Value Proposition for Agility–A Dual Perspective,” 2012. Available at:

http://www.infoq.com/presentations/Agility-Value

[10] B.P. Gallagher, “Using the architecture tradeoff analysis method to evaluate a reference architecture: A

case study,” Technical Report CMU/SEI, 2000.

[11] M. Galster, P. Avgeriou, “Empirically-grounded reference architectures: a proposal,” QoSA/ISARCS,

2011.

[12] B. Graaf, H. van Dijk, A. van Deursen, “Evaluating an embedded software reference architecture,”

CSMR, 2005.

[13] A. Ivanovic, P. America, “Customer Value in Architecture Decision Making,” ECSA, 2010.

[14] J. Letouzey, “The SQALE Method for Evaluating Technical Debt,” MTD@ICSE, 2012.

[15] A. MacCormack, J. Rusnak, and C. Baldwin, “Exploring the Duality between Product and Organizational

Architectures: A Test of the Mirroring Hypothesis”, Harvard Business School Working Paper,

http://hbswk.hbs.edu/item/5894.html.

[16] S. Martínez-Fernández, D. Ameller, C. Ayala, X. Franch and X. Terradellas, “Conducting Empirical

Studies on Reference Architectures in IT Consulting Firms,” UPC, 2012.

[17] M. Moore, R. Kazman, M. Klein, J. Asundi, “Quantifying the Value of Architecture Design Decisions:

Lessons from the Field,” ICSE, 2003.

[18] E.Y. Nakagawa, P.O. Antonino, M. Becker, “Reference architecture and product line architecture,”

ECSA, 2011.

[19] E.Y. Nakagawa, “Reference Architectures and Variability: Current Status & Future Perspectives,”

VARSE/ECSA, 2012.

[20] R.L. Nord, I. Ozkaya P. Kruchten, M. Gonzalez-Rojas, “In Search of a Metric for Managing

Architectural Technical Debt”, ECSA, 2012.

[21] I. Ozkaya, R. Kazman, M. Klein, “Quality-Attribute Based Economic Valuation of Architectural

Patterns,” ESC, 2007.

[22] J.S. Poulin, “Measuring Software Reuse,” Reading, MA: Addison-Wesley, 1997.

[23] R. van Solingen, “Measuring the ROI of Software Process Improvement,” IEEE Software, 2004.

[24] K.J. Sullivan, W. Griswold, Y. Cai, B. Hallen, “The structure and value of modularity in software

design,” ESEC/FSE 2001.

