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Abstract

The objective of this paper is to present a framework for thgigh of discontinuous Galerkin
(dG) methods for elliptic problems. The idea is to start framybrid formulation of the problem
involving as unknowns the main field in the interior of themaéat domains and its fluxes and
traces on the element boundaries. Rather than working Wighthree-field formulation, fluxes
are modeled using finite difference expressions and thetrdices are determined by imposing
continuity of fluxes, although other strategies could beigl: This procedure is applied to four
elliptic problems, namely, the convection-diffusion etiom (in the diffusion dominated regime),
the Stokes problem, the Darcy problem and the Maxwell prabM/e justify some well known
dG methods with some modifications that in fact allow to inyerthe performance of the original
methods, particularly when the physical properties areadisnuous.

Keywords: Discontinuous Galerkin, elliptic problems, hybrid forratibns, stabilized finite element
methods

1 Introduction

The aim of this work is to present a methodology for desigrdiggontinuous Galerkin (dG) methods
for elliptic problems. The starting point is a three-fieldohig formulation of the problem, in which the
unknowns are the main field in the interior of the element domaef the finite element partition, their
fluxes on the interelement edges (faces, in 3D) and theiedratso on these edges.

Instead of considering the fluxes and the traces as indeperdgables, they are related to the
main field in the interior of the element domains, which mayriberpolated in a discontinuous manner.
The way to design this relationship is as follows. First, éisbare written in terms of the main variable
and its traces. The interesting point is when derivativesaeded to compute these fluxes. It is required
to reconstruct the unknown from the discontinuous appration and the traces. A particular way to
do this is proposed here, which consists of assuming thalifoentinuous approximation is valid up
to a certain distance to the element boundary, from whertrdhbes are used for the reconstruction. The
derivatives of the reconstructed variable can now be apmabed using finite difference expressions,
this leading to an expression of the fluxes in terms of theodisicuous approximation and the traces.

Once the fluxes are given, the traces can be obtained by ingpositinuity of fluxes. The expres-
sions for the fluxes and traces in terms of the discontinuppsoximation can be also extended to their
test functions, which can be expressed in terms of the testitins of the discontinuous approxima-
tion. When these expressions are inserted into the hybsictate problem, a problem posed in terms
of the main field in the interior of the element domains is otgd. We show that several dG methods
can be obtained following this procedure (see [1]), with eanodifications that in fact improve their
performance and which are commented later. The methodadesggribed is then applied to four ellip-
tic problems, namely, the convection-diffusion equatiortiie diffusion dominated regime), the Stokes
problem, the Darcy problem and the Maxwell problem.

Apart from the design of dG formulations, the present fraorvean also be used for the design of
stabilized finite element method including stabilizatiemts defined on the element boundaries [16] or
for the formulation of new transmission conditions in domaiteraction problems (with applications
for example to domain decomposition and fluid-structurerantion) [15].

The organization of the paper is as follows. In Section 2 wecdiee the hybrid formulation of
an abstract elliptic problem that serves as starting pantte methodology we propose. We also
describe our “program” in this section. The ideas outlinesl taen applied to four elliptic problems,
namely, the convection-diffusion equation in the diffusidominated regime (Section 3), the Stokes
problem (Section 4), the Darcy problem (Section 5) and thewéd problem (Section 6). Some simple
numerical examples are presented in Section 7, which aeaded to show the improvement in the
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behavior of domain decomposition preconditioners for fgols with physical coefficient jumps when
a modification motivated by the present approach is usedclGsions close the paper in Section 8.

2 An abstract elliptic problem in hybrid form

2.1 Continuous problem

The numerical approximation we propose can be motivated fxdiybrid formulation of the problem
(see [8, 9]). Let us now introduce it at the continuous lepeilpr to any numerical approximation.
Assume that we have a boundary value problem posed in a ddnaifiR? (d = 2, 3), which we will
assume polyhedral in the finite element approximationt apfi? = Q; Uy, and withI' = 9Q; N 082,
(see Fig. 1).

Figure 1: Splitting of the domain

Let X be a space of functions defined @nwhich in our applications will be a classical Sobolev
space. The notatiof, -),, and(-, -)_ will respectively denote thé?(w) inner product and the integral
in a regionw of the product of two functions, this case including the dyadairing. The subscripb
will be deleted wher = 2. The norm in the functional spacé will be indicated by|| - || x.

Consider an abstract variational problem consisting inifiigén unknown: in X such that

B(u,v) = L(v) Yv e X, (1)

where B(u, v) is a bilinear form onX x X and L a linear form defined ok, both assumed to be
continuous. If the problem considered involves Dirichletibdary conditions, we will assume that they
are homogeneous and enforced in an essential manner, thagay, included in the definition of.
However, at the numerical level it would be straightforweraxtend the method to be introduced to a
penalty method to impose such conditions.

Let u;, v; be the restrictions ofi, v € X to subdomair2;, and X; the spaces where they belong,
i = 1,2. Suppose that: € X has a well defined trace adn belonging to a spac#&’, and a flux
corresponding to the differential operator associatedljd€longing to a spacé; when computed
from subdomairni);, i = 1, 2. Then, the hybrid formulation of (1) that we consider is thiofving: find



u; € X;, \j € Fy,1=1,2,andy € T such that

Bi(uy,v1) — (A1, v1)r = li(v1) Vo € Xy,
By(ug,v2) — (A2, v2)r = la(v2) Vv € Xo,

(1,u1 —y)r =0 Vuy € P,
(p2,u2 —v)r =0 Vg € Fy,
(K, A1+ A2)r =0 Ve eT,

whereB; and L; are the restrictions aB and L to X; x X; and X}, respectively.

If the problem includes imposition of fluxes@in a partl” 5 of 9€2, which for the sake of simplicity
we may consider contained @12; (see Fig. 1), this imposition may be also “hybridized”, diely the
problem

Bi(u1,v1) — (A1, v1)r — (An,v1)ry = Li(v1) Vo € Xy, (2)
By (ug,v3) — (A2, v2)r = La(v2) Yoy € Xo, (3)
(1, ur —y)r + (u1,ur —Y)ry =0 Vi € i, (4)
(2, u2 —y)r =0 Vg € Fy, (5)
(Ky A1 4+ A2)r + (K, AN)ry = (K, @)1y Ve eT, (6)

wheregq is the flux to be prescribed. In this case, the linear fdrifand the forms.; and L, resulting
from the splitting of the domain) doestinclude the prescription of the fluxes, afidncludes functions
defined ol .

Concerning the well posedness of the problem (for simpligitth 'y = ), let us write it as a
single variational equation of the form

By (w1, u2, A\, A2, v;5 01, V2, i1, ph2, &) = Ligh (v1,v2, i1, pi2, k), (7)
where
By (u1, u2, A1, A2, v; 01, V2, i1, i, k) := Bi(u1,v1) — (A1, v1)r + Ba(ug,v2) — (A2, v2)r

+ (1, ur — )1 + (2, u2 —Y)r + (K, A1 + A2)1,
Liyb (01, v2, 1, pr2, &) := Li(v1) + La(va),

with (ul,U,Q,)\l,)\Q,’y) € X1 X Xox Fi x Foy xT and which must hold for alﬁvl,vg,m,ug,ﬂ) S
X1 x Xo x Fy x Fy» x T If we assume thaB; (u;, v;) are coercive inX; x X; (i = 1,2), we have that

Bhyb (u1, g, A1, Mg, ¥; 1, g, A1, A2, ) = Bi(ug, u) + Ba(ug, ug) 2 flully, + lluzll,,

where 2 is used to denote> up to positive constants, ang will be used analogously. Control on
IA ]| 7, [[ A2l 7, @nd]|y]|7 can be obtained only if the inf-sup conditions

inf osup YT S ©)
m€FA{0} o, cvi\ {0y lill 7 llvill x,
inf <I€,,U,1 + M2>F > CT, (9)

in sup
KET\{0} ;e Fy pur+pa20 BN T ([p ]l 7y + [[p2l y)

hold for positive constant§’r andCr. Under assumptions (8) and (9), the coercivityBfu;, v;) in

X; x X; (1 = 1,2) and appropriate continuity of all the forms involved in fireblem, a well posedness
result for (7) can be easily proved. Whéq(u;, v;) are not coercive, but the problem corresponds to a
well posed saddle point problem, this well posedness canba®stablished.
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2.2 Finite element approximation

Let P, = {K} be a shape regular finite element partition of the donfaiof diameterh. Let also
En = {E} be the collection of edges associatedAg In particular, we will be interested in edges
interior to€2, which will be labelledEy, and edges of y;, which will be labelledE'y,. Summation over
all the elements will be indicated &s ;- and summation over the edges)as,. Consistently with the
notation introduced previously, the symkdl, f2) p will be used to denote the integral of the product
of functions f; and f> over D, with D = K (an element)D = 0K (an element boundary) dv» = FE
(an edge).

Figure 2: Notation for the approximation of fluxes and trafcesnterior edges

Suppose now that elemenis;, and Ks share an edgé#’, and letn; andny be the normals to
E exterior to K and K5, respectively (see Fig. 2). For a scalar functipnpossibly discontinuous
acrossE, we define its jump ag§nf |, = niflox,ne + n2flak,ne, and for a vector or tensar,
[n-v]g =mn1 v|ox,nE + N2 - v]ar,nE- Averages of functions discontinuous across an ddgell
be denoted by f} r = %(f|3KlmE + flor,ne), omitting the subscriptl when there is no possibility
of confusion. Note that we could wrifen f |, = 2{n f} g, although we will keep the notatidfv f |,
to stress the presence of the normalwhich gives the meaning of jump to this expression. Note als
that it is common to omit the normal in the definition pk f |; , so that the jump of a scalar function
is a vector [1].

We can easily extend formulation (2)-(6) to multiple sub@ims and, in particular, to the case
in which each of these is an element domain/f The resulting hybrid formulation can then be
approximated using a finite element method. gt F}, andT}, be the spaces whetg,, \;, and~, are
sought, respectively. Note thaj, is made of functions that may be multi-valuate on the edgahkeof
finite element partition, whereds, is made of functions uniquely defined on these edges. Thesesp
will be endowed with the appropriate norm depending on tloblpm considered.

The extension of the hybrid formulation to the elements ef fihite element partition reads as



follows: find (up, Ap,vn) € Vi, x E}, x Ty, such that

> Br(up,vn) = > (Ansvndax = Y Lic(vn), (10)
K K K

Z (Kny An)orx = (Fn, @)Ty (11)
K

> (pns un = n)ox =0, (12)
K

for all (vh,,uh, Iih) e Vy X Fy, x Ty,

2.3 From the hybrid to the irreducible form

The objective of this work can be summarized by saying thaiwead to design dG methods based on
the hybrid finite element approximation (10)-(12). To thiglethe key point to step to the method we
propose igo design expressions to compute the fluxgsind the tracesy, from finite difference-like
approximationsThe steps we propose are:

1. Compute the fluxes;, from values ofuy, v;, using finite difference-like expressions.

2. Compute the traceg, by imposing continuity of total fluxes, including Neumanrubdary con-
ditions where they are applied.

3. Goto the expression obtained in 1 with the expressioy, @ist obtained to computg, in terms
of uy,.

This general procedure will be applied in the following s@ts$ to different elliptic problems. Before
proceeding, let us remark that step 2 will allow us to sigaifity simplify the problem. Suppose that
An = Ap(up) is the expression of the fluxes in terms«wf obtained, for simplicity without Neu-
mann boundary conditions. If we can satisfy exactly the iooity of these fluxesand take the flux
test functionu, = Ap(vp), v, being the test function fou,, then (11) will be exactly satisfied and
>k (thsyn)arx = 0. The problem reduces then to fing € V}, such that

> Bre(un,on) = > (Mn(un),va)orx — Y (An(vn),un)ox = Y Lic(vn), (13)
K K

K K

for all v, € V},, where we have added up (10) and what remains of (12) beggus@ot independent of
vp. The sign of the third term in the left-hand-side of this eegzion has been chosen to get a symmetric
problem whenBj is symmetric.

A possible way to satisfy the exact continuity of fluxes isaket them of the form\;, = Ay (up) =
n-AY (uy), with A9 (u;,) a single-valued vector field defined on the element edges vilibe precisely
the form of the fluxes we will propose.

When there are Neumann boundary conditions, a particularesgion for the fluxes; will be
obtained, the corresponding test function being zero. fidsslts in the classical boundary term corre-
sponding to the prescription of fluxes that needs to be aduét3). This equation will be the starting
point of our developments.

Remark 1 Most dG methods are motivated by integration-by-parts efdtfferential equation tested
with a test functionv;, within each element, which leads to the first term in the hefitd-side of (13)
and, as we shall see, part of the second. Then (part of) tlektdrim is introduced to ensure symmetry,
provided [nu ], = 0 for the solution of the continuous problem After this, additional “stability”
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terms need to be added to ensure appropriate continuityeafrtknown (in a weak sense) [7]. In our
case, these terms will appear naturally in the definitiongfuy, ), whose design will be “non-classical”
in order to satisfy (11) exactly. Moreover, even though ieslaot appear in (13), we will have at our
disposal a definition of a trace,

Remark 2 Other hybrid formulations can be used as starting point sigtledG methods. In particular,
in [12] a hybrid formulation is proposed for the diffusionugdion, which is extended in [11, 23] to the
convection-diffusion equation. The hybridization of thelgem is completely different to our three-
field approach, introduced first in [16] for the same probl@ur unknowns are the field in the interior
of the elements and its traces and fluxes on the boundarieseadin the above references it is the
unknown and the fluxes in the interior (dual mixed formulafiand the traces on the boundaries. Note
that our objective is to motivate standard dG methods withesmodifications, whereas a non-standard
formulation is proposed in [12, 11, 23},

3 Scalar convection-diffusion equation (diffusion domin&ed case)

In this section we apply the previous idea to the convedtiffision equation in the diffusion domi-
nated regime, the simplest elliptic problem. Convectiot maction and only introduced for generality,
without considering the instabilities that may arise whighes of these terms dominates the diffusive
one.

3.1 Problem statement

The boundary value problem we consider is: findQ2 — R such that

L(u):=-V-(kVu)+a-Vu+su=f inQ,
u =0 onl'p,
T (u) := kdpyu=gq onTy, (14)

wherek > 0 is the diffusion coefficienta € R< the advection velocity and > 0 the reaction (ab-

sorption) coefficient. All these coefficients may be consgdepiecewise constant within each element

of the finite element partition, for simplicity. The boungas split aso2 =T'p Uy, andd, = n - V.
The irreducible weak form of the problem reads: find V = {v € H'(Q) | v|r, = 0} such that

B(u,v) = L(v) Yo eV,
where

B(u,v) := (kVu, Vv) + (a - Vu,v) + (su,v),
L(U) = <f7 U> + <Q7 U>FN'

The hybrid formulation corresponding to (2)-(6) in thise&sposed in the spac&sdefined above,
T = Holf(l“) andF; = (HéO/Q(Fi))’ (the prime denoting dual space), with = 02; N 2. The solution
of the hybl’ld problem IS}/ = u1|p1 = u2|p2, A= —Xy = king - VU1|F1 = —kongy - Vu2|1‘2. The
extension to a hybrid problem considering all subdomainbefinite element partition (problem (10)-

(12)) is also immediately set. Abusing of the notation, we cansider this same problem adirite



element approximatioof the hybrid continuous one, the finite element spaces being
Vi={on: | JK — R oali € B, (K), K € Py},
By ={mn: | JOK — R | ulox € P, (0K), K € Py},
T, = {nh \JE — R | rilp € By (E), E €&, andry|g =0if E C FD} ,

whereP,(w) is the set of polynomials of degrgeon the domainu.

3.2 Approximation of fluxes and calculation of traces

Let us apply the methodology described in Subsection 213tcanvection-diffusion equation. Assume
first that we have an interior edge, the situation depictefign2. Suppose that this eddeis shared
by two elementds,, K> € P;. Let us take now a normal direction across edgecithern, or n..
Values of the unknowns and the coefficiénwill be denoted with the superscript or + depending on
whether they belong to the left or right side Bfwith respect to the normal chosen.

We assume that the approximatiap is meaningful to compute the fluxas up to a distancey
to edgeFE, on which the trace takes a valyg. The distanceé will be a parameter of the formulation.
Using an approximation of ordé€?(¢), the fluxes can be approximated as

+

)‘fj; ~ %(’Vh - Ui(s)a

whereu; s andu;, ; are the values of), at a distancé from E. These can be computed from a Taylor
expansion as (see Figure 3):

Uy s = Uy — 00, 2wy + O(8%),

whered,,+ is the derivative in the direction of the normal chosen apd the opposite. Therefore:

AE ~ ﬁ( — i) + kro,cui (15)

h 5 Uk T Uy nEUp, -

Equations (15) complete the first step of the strategy desdrearlier. It is obvious that other pos-
sibilities could be used. In particular, ify, o5 is the value ofu, at a distances from the edge,
we could approximate\;: = £ (3y, — 4uj 5 + uj,5) + O(0%). Using the expansions; ; =
U — 00+ uif + 16202, uf + O(8°) anduy 5 = ui — 200,+uif + 26202, ui + O(6°), we would
obtain\; = %(% — ) + k*0,+ui + O(5?) instead of (15). The change is only in the factor that
multiplies 1/, which is a numerical parameter. Thus, we may keep (15) foporposes.

The second step consists of imposing continuityadél fluxes. For the continuous problem, this
amounts to say thdtn - kVu] = [T (u)] = 0. Note that here we use the symHol] understanding
that 7 (u) contains the normal in its definition. Using expressions @i going back to the notation
in Fig. 2, the approximate continuity of fluxes leads to

0=[T(u)]
~ A+ A2
~ %[(/ﬁ + ko)yn — kiup, — kaup o] + [T (up) ]
= [T )]+ 2 (kb — (R ). (16)



| ® o |
| |

Figure 3: Approximation of fluxes

This allows us to obtain the approximation of the traces ahealge we were looking for:

{kun} &
Yh = -
{k}y  2{k}
Here and below, we will use the symbelfor our models to compute fluxes and traces, understanding

that they are approximations to the exact expressions.
Inserting (17) into (15) we see that the fluxes on the bourdanf the elements can be computed

[T (un)]- (17)

as
k
A = g(’Yh —up) + T (up)
k ({kup} k
=5 (M - ) - g 1T 1+ T
This expression can be written in a more suggestive way. i@enthe harmonic average:

o ik 2hiks
T {k} - ]{?1—1—]{?2.

We may write, after some algebraic manipulations (consideior example elemenk’):

ky ({kup} (k)

_zf—;;} [T (un) ]+ T (un)s = (k)yny - {Vup}.

We finally obtain:

Ap = —%n [nup] + (k)n - {Vup}. (18)

Equations (17) and (18) are the expressions sought in tleeafasterior edges. Note that (18) is in
fact defined on the boundaries of the elements, and therd#fiergalue on the edge is not uniquely
defined. In fact, as it was mentioned earlier, these fluxeohitbe form A\, = n - A%(uh), with

A9 (up,) = —<—’f;> [nuy] + (k){Vuy} single-valued.
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Suppose now that the edge we consider is on the Neumann bgutids is to sayF C I'y. The
continuity of total fluxes has to be replaced by #wiilibrium of fluxes in the case of Neumann edges.

Proceeding as above, we now have that
&

This expression is defined for the part of the element bouesl#inat belongs tb' . From the approx-
imation of A, which now does not depend on the traces, we have:

k
q =X~ T(up) + g(’Yh — up).

Therefore:

J

Yh = Up — E(T(uh) —q). (20)

3.3 The resulting discontinuous Galerkin approximation

The original hybrid formulation can be written in a compawtnf as indicated in (13) with (v;,) given
by (18) or (19).
Let us collect the expressions obtained. The fluxes andsfacénterior edges are given by:

_ {kupy 6

ko ) @)
Ay = —%n- [nun] + (k) - {Vun). 22)
The test functions may be taken as
K = {]E:’;} - %[[kn V], (23)
=[]+ (B (V). (24)

with vy, € V.
For Neumann edges the corresponding expressions are:

1)
Th = Up — E(lm -Vuy, — q),

)\h:qa
Rp :vh—&n-Vvh,
pn = 0.

Remark 3 It is obvious that other choices of test functions are pdssfarticularly if no care is put on
whether the resulting formulation is symmetric or not. Tine®chosen here automatically will yield
adjoint consistency of the method to be desigred.
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We have that
- Z (s vndor + D (ns Aok — 3 (st — n)o
K K
= —Z nuh]] + (k{Vur}, [non]) e

- Z [[nvh + (k){Vur}, [nun]) e

- <Uh7q> I'n + <’L€h7q>l—‘1\7

= Z nvh]] —{Vu,}, [[nuh]] {Vur}) e Z d{{Vurt, {Vunt)p

E
- <vh>Q>FN + <Kh>q>FN

Using this in (13) we obtain the method we propose: fipds 1}, such that

Z k:(Vvh, Vuh>K + Z <Uh, a - Vuh>K + Z S<Uh7uh>K
K K K

—_

300 —mhﬂ—{wh},gﬂnuhﬂ (Vurhe — S RSV} (Vun )

E
= g L (vr) + (v, @)1y »

Oq

for all vy, € V.

Remark 4 Let us make several remarks about the numerical approximatst obtained:

e Essentially, we have recovered the so called interior pgmakthod. Note that we may take
0 = dph, with 6y < 1/2, which is now the algorithmic parameter of the formulati®his penalty
term is not added “a posteriori”, as usual, but comes fronréleenstruction of the unknown in
terms of its values in the element interiors and its tracetherelement boundaries.

Adjoint consistency is ensured. This is a result of taking tist functions as indicated in (23)
and (24), and therefore it is quite natural when looking atrtiibrid form of the problem.

Several different methods may be devised within the frammkywoesented. Among the possible
alternatives there are different approximations of théudife fluxes using finite-difference-like
expressions or other expressions of the test functions.

The most salient feature of the method obtained with resgethe classical interior penalty

method is the use of harmonic averages rather than arithroegs. This has been derived from
the continuity of the fluxes, but has been used earlier forctrerection-diffusion equation in

[17], and later in [18], for example. It has also beed used domain decomposition method
in [10].
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4 Stokes’ problem

In this section we apply the idea of Section 2 to the Stokeblpm. Contrary to the previous section,
we will skip most of the details and state only the resultse Bimitted steps are merely algebraic
manipulations that are similar to those done for the commedtiffusion equation.

4.1 Problem statement

The Stokes problem consists of findimg Q@ — R andp : @ — R such that

-V -(wVu)+Vp=f (25)
V-u=0 (26)
wherer > 0 is the viscosity, which we will consider constant within katement of the finite element
approximation we will introduce, ang is the vector of body forces. For simplicity, the boundary
conditionu = 0 will be assumed and, as in the previous section, it will beliaggn an essential
manner. Note also that we have not used the symmetric gtafienin the viscous term. This would
complicate a little the approximation of the tractions, asshall see, but could also be used without
major difficulty.
When the problem is written in a hybrid form, which is a strafgrward exercise, the identification
with the abstract problem of Section 2 is obtained noting tth@ unknown, and the fluxes\ are

u=[u,p] € R x R,

A= [Au, Np] = [-pn + v0,u, 0] € RY x R.

4.2 Discontinuous Galerkin approximation
The dG finite element method to be proposed has again thaw&l(d3), now with
B([u,p], [v,q]) = (vVu,Vv) — (p,V-v)+ (¢, V - u).

Les us consider now &alerkin finite element approximation of the hybrid problem, with the
unknowns identified with a subscriptas usual. If we impose the continuity of the discrete fluxes in
manner similar to that used for the convection-diffusiona@n we will have that:

0= )\u,h,l + )\u,h,2

= —Pp,1M1 — Pp oMo +viny - Vuy 1 + 1vong - Vuy, o

1
~ —[ppn] + [vohun] + < [(Vl + v2)Yup — V1UR1 — V2uh,2] )

0
wherev, ;, are the traces af. These can be determined from this last expression, yigldin
_ {yuh} 5

Yun = wr 2t (=[pan] + [vOpun]) . (27)

This allows us to compute the fluxes, which after algebrainimdations are:
_ W Ph
= —ggmn- [n@u] + ()n- (V) —n() {7} (28)
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With these fluxes in terms of the unknowns we can already ftat@uhe dG method for the Stokes
problem we propose, which consists of finding,, p;,| in the appropriate dG spac®s x @}, such that

> WV, Vor) g =Y (on, Ve vn)k + Y (an, V- un) i
K

K K

£ ATl G n@ ve + 30 (~{Ton) = {H L [n e wl)s

+Z<—(5 ([noun], [n@onlle =) (fvn)k,

K

for all test functiondvy,, gx] € Vi, x Q.

Remark 5 Essentially, we have recovered the interior penalty metbothe Stokes problem with two
major differences with respect to what would be a standapdogeh:

1. The use of harmonic averages of the viscosity the boundary terms.

2. The scaling of the pressure and the pressure test furmyiorin the terms involving tractions on
the element boundaries.

As for the convection-diffusion equation, adjoint consigty is ensured.

Note that the algebraic system resulting from this discvergational problem may be rendered
symmetric simply by changing the sign®f, as it is usually done for the conforming approximation to
Stokes’ problemg

4.3 Stabilized finite element problem

In the previous subsection we have considered the Galerkite flement approximation to Stokes’
problem. In order to be stable, appropriate choices for #hecity and pressure spacé$, and(Q);, are
required. Here we briefly present a stabilized finite elermeathod which is aimed to allow for any
interpolation spaces for velocity and pressure. Since tiieigher our purpose to give a full heuristic
motivation of the method, nor to analyze it, we will simplglioate how to motivate it. We refer to [26]
for the analysis of different dG approximations of the Stogeoblem.

Our way to design stabilized finite element methods is basddeso called Variational Multiscale
(VMS) concept [22]. In the simplest case we will consider,may split the unknown in the interior of
the elements aa ~ u;, + v/, and leave the pressurejas- p;,. The fieldu’ is in fact what needs to be
approximated. We refer to it as the velocity subgrid scate,ia assumed to be much smaller thay
at least ag — 0. Likewise, we approximate,, ~ v, , + vy v, being the trace of’.

Neglecting the derivatives af’ on the element edges and considerin < |uy|, we only need
to deal with the terms:

> WV(un+u), Vor)k + Y {qn, V- (w + )k
K K

= WVup, Vor)k + > {gn, V - un) i
K K

= (W AU+ Van)k + Y (Vi vOnvh + ann)ox, (29)
K K

where we have used the fact thais constant within each element domdin
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The next step i$0o modelu’ in each element domaiR and+!, on each edgé’. We will not give
the details of how to do this modelling, and refer for exantpl¢l4, 16]. In fact, the approximation
for 4/, follows from what we have presented in the previous subsecExpression (27) should now be
equal tov,, ,, +,,, understanding this equality as a splitting of the spaceaots with one component
in the trace finite element space and another in the traceidutitple space. Taking the effect of the
projection as an algorithmic constant we modébnd~/, as

h2
u =7 (f +vAu, — Vpy), Tk =a—, (30)
~, =75 (=[ppn] + [vOpur]), TE= C2h<V71> (31)

wherec; and ¢y are fixed algorithmic constants armdis a characteristic size of either the element
domaink or of the edgeF.

Inserting these expressions into (29) the stabilized fiailanent method we propose is: find
[un, pr] € Vi, X Q) such that

Z <1/Vuh, V’Uh>K —

K

Z {pn, V- o)k + Z (qn: V- up) i

K K

+ZTK I/Auh—FVph,VA’Uh—Fth K+ZTE

+Z {Vuh}—k{j}I,[[n@vh]]E—i—Zu
E

Vanuh +Phn]]> [[Vanvh + th]]>E

(—{Vop} — {%’l} I[n®u])s

+Z<—5 ([n@unl [n®val)s

= Z<f,'uh>K—|—ZTK<f,VA'Uh+V(Ih>K
K

K

(32
for all test functionsjv,, qn] € Vi, x Q. The parametersyi and 7z are given by (30) and (31),
respectively.

Formulation (32) is the stabilized dG method that we prop&sen though it is not our intention
here to do its numerical analysis, which will be presentedwhere, it is able to yield stable solutions
for any pair of velocity-pressure finite element spaggaind@);,. In particular, equal interpolation will
be used in the numerical examples.

Remark 6 In [13] the authors propose another dG formulation of th&k&groblem that allows equal
order interpolation; the formulation therein includes arteof the form)_ . ([psn], [¢xn])E, and
therefore it is only consistent for smooth enough pressuraselyp € H'(£2). This method would
not converge to solutions with minimum regularity. In ouseaconsistency is ensured by the inclusion
of the whole traction-v0,u;, + pn in the jump.;

5 Darcy’s problem

Let us consider now Darcy’s problem. We will treat it verydily, since as we shall explain in this case
the hybrid point of view does not introduce any modificatiortkassical dG methods for this problem.
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5.1 Problem statement

The problem we consider now consists of findiag 2 — R% andp : Q — R such that

cu+Vp=Ff
V-u=gyg

whereos > 0 is the porosity coefficient, which we will consider constarthin each element of the
finite element approximationy is the vector of body forces angis a prescribed mass flux satisfying
the compatibility conditiong, 1) = 0 since, for simplicity, the boundary condition- © = 0 on 02
will be assumed. Once again, it will be applied in an esskeménner.

The weak variational form of the problem admits two functibsettings (see [6] for a discussion).
Here we will concentrate in the so calléfi(div, Q) x L?(Q2) (mixed dual) formulation, which in the
irreducible case consists of finding € V = {v € H(div,Q) | n-v = 00ndQ} andp € Q =
L?(92)/R such that

B([u,pl,[v,q]) :== (ou,v) — (p,V-v) + (¢, V - u) = (f,v) + (9,9) =: L([v,4q]),

forallv e V,q € Q.
The continuous hybrid formulation has the structure dbscrin Section 2, now with the unknown
u and the fluxes\ given by

u=[u,p] € RT xR,
A=Ay, ] = [-pn,0] € R x R. (33)

5.2 Discontinuous Galerkin approximation

The discrete hybrid finite element approximation to the f@obconsists of findingey,, pp, A, and
v, In the appropriate finite element spaces such that

> olunvn)k = (pn, Ve vn)k + Y (an V- un) i
K

K K
= Aunvrdor + Y ups Bun)orx T (Hhup Wh = Yun)oK
K K K
=> (foon)k + {9 an)x, (34)
K K

for all test functionsvy,, gn, p,, , ANdKy -

Contrary to the previous problems, the fluxes in (33) do nataia any derivative of the unknown.
Moreover, they depend am whose trace does not appear in the hybrid formulation ofptioblem.
However, it is particularly simple to design an expressionthese fluxes that satisfies a priori the
continuity imposed weakly in (34). The simplest way to aghithis is to model the fluxes and their test
functions as

Au,h = _{ph}n7 lJ/u,h = _{qh}n7 (35)

on each edgé’. With these expressions inserted into (34) we recover thetsre (13). The tracesg, ;,
and their test functions are not required (note that onlyctivdinuity of the normal component of;,

is weakly prescribed in (34) when (35) is used). It is obsgryet (35) coincides with (28) when the
viscosity vanishes. In fact, we could have treated BrinkKemproblem including the limiting cases of
zero porosity (Stokes) and zero viscosity (Darcy), as iruthiied framework proposed in [2].
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Nevertheless, the formulation obtained with the procediasrribed is a standard dG approxima-
tion to Darcy’s problem without stabilization terms, andghn this case the hybrid point of view does
not lead to any modification of standard methods.

We refer to [3] for dG finite element approximations to Dascgtoblem including stabilization
terms.

6 Maxwell's problem

6.1 Problem statement

The last problem we consider is Maxwell’s problem, whichsists of findingu : Q@ — R? and
p: Q@ — R such that

Vx vV xu)—eVp=f, (36)
-V (eu) =0, (37)

wherer > 0 ande > 0 are physical properties, again considered piecewise @onsindf is a forcing
vector. The simplest boundary conditionsx u = 0 andp = 0 on 92 will be adopted. Note that the
solution of the continuous problem js= 0. This unknown is in fact an artifact to impose condition
(37) at the discrete level. See [5, 6, 4] and referencesithfmea discussion.

As for Darcy’s problem, the weak variational form of the gdesh admits two functional settings
(see [6]). Here we will consider only thié(curl, 2) x H! () formulation, which allows one to capture
singular solutions. It consists of finding € V = {v € H(curl,Q) | n x v = 0 on 992} and
p € Q = H}(Q) such that

B([u,p], [v,q]) := WV x u,V x v) — (eVp,v) + (eVq,u) = (f,v) =: L([v,q]),

forallveV,q e Q.
Once again, the continuous hybrid formulation has the siraadescribed in Section 2, now with
the unknownu and the fluxes\ given by

u=[u,p] € RY x R,
A=A, ] = [-n x vV x u),n - (cu)] € R x R. (38)

6.2 Discontinuous Galerkin approximation

Let us explicitly write down the discrete hybrid finite elemb@pproximation to Maxwell’s problem. Let
[un, pr] be the approximation soughtf, p|, [Ay,n, Ap,»] the approximation to\,,, \p] and[vy,, ,, Vp,x]
the approximation to the traces [af, p] on the edges of the finite element partition. These finite efeém
unknowns are solution of the problem

> Br([un,pal [vnanl) = > Aunvn)ox — 3 Qo andox = Y Li([vnan]),  (39)

K K K K
D (B Aupor + Y (o Ap)or =0, (40)
K K

D (B wh = Yun)or + Y (phsPh — Ypa)ox =0, (41)
K K

which has to hold for all test functiofi®, qr], [, 4 fp,n] @NA [k, 4, Kp ] IN the corresponding finite
element spaces.
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To proceed in this case as explained in Section 2, we needdolai@ the fluxes in terms of the
traces and determine the latter by imposing continuity effdirmer. Now this idea has to be applied
componentwise, since the fluxes have the two componants, A, »]. Imposing continuity of the first
component, that is to say, thfita x vV x w] = 0, and using a similar procedure to approximate
derivatives as in Sections 3 and 4, we get

_ fvunp 0 nxvV Xu
Yu,h = {I/} + Q{V} [[ \4 h]]a (42)
Auh = %n x {n x up} — (v)yn x {V x ux}. (43)

Continuity of the second component of the fluxes follows frpm- (c<w)] = 0. This condition
does not involve any derivative of the unknown. The simphessf to fulfil it is to take

Ap.h =n - {eup}. (44)

With the choices (43) and (44) the fluxes are automaticalhtinaous across interelement bound-
aries and, as explained earlier, traces are not requirdteidiscrete hybrid finite element problem. In
particular, the boundary terms in (39)-(41) are

= unsvn)ar = D Mphs @)or + > (o wn)or + > (pns Ph) o
K

K K K

— Z %({n X up}, {n x vp})E
— ZQ(W(V X up, {n X vp})p — Z2<V><V X vp, {n X up})E

E

> {ewn}, [nan e+ ({evn}, [npn]) e,
E E

and therefore the dG method for the Maxwell problem we prepmmsists of findinduy,, py,] in the
appropriate dG spacés, x (), such that

ZV(V X uh,V X 'Uh>K — 25<Vph,vh>;( + Z&(th,uh>[(
K

K K

+3 %({n X up}, {n x vp})p
B

(45)
=D 2V xwp, {n x vp})p = Y 2NV x vy, {n x wp})p
B B
=Y ewn} [nanD) e + Y ({evn), [npn e =D (Fron)k,
E E K

for all test functionsjvy,, q5] € Vi x Q. Alternative dG formulations for the Maxwell problem can
be found e.g. in [21, 20, 19, 24]. The main novelty of our apptois the introduction of the harmonic
averages.

6.3 Stabilized finite element problem

Formulation (45) is of Galerkin type. To ensure stabilifgpeopriate interpolation spaces fay, andp,,
need to be chosen. In order to avoid any restriction in thécehaf these interpolating spaces, a stabi-
lized finite element formulation combining continuous atgtdntinuous interpolations was proposed
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in [4]. In the particular case of elementwise discontinuapproximations, the method proposed in the
paper mentioned is applicable in the present context.

We do not intend to describe in detail the stabilization rodttve propose, but just to explain the
essential idea. Let be a characteristic length of the computational donfairSince the solution to
(36)-(37) isp = 0, the solutionu remains unaltered if the Laplacian-like ternf?V - (¢Vp) is added
to the left-hand-side of (37). In the discrete problem, #tisws one to gefd '-control onp;,. Note that
the length scalé is needed to ensure an adequate scalability of the problem.

To ensure stability ofy;, in H(curl, 2) one needs to contré¥ x uy;, anduy, itself in L2(2). The
first control is straightforward from (45). It has been shawfb] that the latter can be obtained if one
is able to bounchV - uy, properly scaled, ir.?(€2). This leads to the introduction of a least squares
form of this term in (45).

With the two ideas described in mind, the modification of (@&t we propose consists of finding
[un, pr] In the appropriate dG spacés x @)y, such that

Z v(V xup, V xop) g — Y e(Vpn,vn)k + Y e(Van, up)x
K K

+ZTK (eup), (Evh)>K+ZTE<[[en-uh]],[[en-vh]]>E
E

+ Z T<{n xupf, {n X vp})E
_Z Vxuh,{nxvh}>E—22(u>(Vth,{nxuh}>E

E

- Z ({eun}, [nan e+ {evn}, [npn]) e
E E

+ Y Ce(Vpn, Van)k + ZEQ% (Inpn], [nan e =Y (f,vn)k
B K

K

for all test functiongvy,, q1] € V3, x Qp, and where the parameterg andry are given by

h? h{s~1)
TK = 01%7 TE = 0277

c1 andces being algorithmic constants.

7 Numerical examples

Rather than proposing new methods, the aim of this paperédes to describe a framework to design
discontinuous Galerkin methods from hybrid formulatioHswever, in doing so we have been led to
the use of harmonic averages rather than arithmetic aveddle physical properties when computing
certain terms on the element edges. The aim of this sectitm égesmpare both possibilities for two
problems in which, to our knowledge, harmonic averages hatbeen used before, namely, the Stokes
problem and the Maxwell problem. Therefore, we will compaeeformulations we have proposed with
those obtained replacing) and (v~ by {v} and{v—'}, respectively.

For the numerical examples we have considered, the differanthe solution using the two ap-
proachesurn out to be very smalHowever, we observed an enormous difference in the pedioce of
domain decomposition preconditioners for iterative sayavhen strong physical parameter jumps are
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present on the sub-domain interfaces. This is what we re@xtt \We show that the use of harmonic
averages leads to a much better performance of iterativersolwith the number of iterations quite
insensitive to the ratio of physical properties betweemgnieoring elements. We start with Maxwell’s
problem and then show an example of Stokes’ problem, sineddimer happens to be somewhat
simpler than the latter. Triangular linear finite elemerasehbeen used for the discretization and the
sub-domain linear systems have been solved with a multdr@parse direct solver.

7.1 Maxwell’s problem

We consider in this example Maxwell's problem for two diffat materials, the first one located in
0 =[—1,0] x [-1,1] and the second one i, = [0, 1] x [—1, 1]. The physical domain in which the
test problem is solved i@ = Q; U Q5. As indicated above, we compare the results obtained with th
formulation proposed in this work, which uses harmonic ages of the physical coefficients in the dG
terms, with a formulation that uses arithmetic averages.

Let us consider the test problem with exact solution

(x+y—2>+ 2y +y° + 23 — 322y — 3zy® + ¢,

2z —y + 2% + 22y — Ly? — 23 — 322y + 3ay® + )
(z+ ey — ex? + wy + &y? + a3 — 3e?y — 3wy® + &y,
(4 D)z —y+ 322 + 28wy — 3y* — &2 — 32%y + 3exy® +y3) onQy,

on )y

wherez = i—; andv = 71, ¢; andy; being the physical properties {;, i = 1,2. This function is the
solution of problem (36)-(37) with the appropriate Diriehboundary conditions and zero forcing term.

The accuracy and convergence rates obtained for the twaufations considered (with harmonic
means and with arithmetic means) are almost identical, anithis is not a point that would justify one
choice over the other one. The importance of using harmaiages comes when considering domain
decomposition techniques with material interfaces. Irufégt we show how the jump on the physical
coefficientr between the two materials deteriorates the estimated timmaiumber of the final linear
system. We have consideregl = 1 andvs, = 1, 10, 100, 1000, 10000. Jumps ore do not alter the
condition number substantially. The results have beerepted for two mesh sizes, namely= 2,
with i = 3, 4. As expected, the condition number deteriorates as 0.
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Figure 4: Condition number of the system matrix. The legamtesentsi, 1 /) whereh = 27,

As a result, the numerical approximation of electromagngtoblems that involve materials with
very different physical properties becomes a challengasl due to the problems encountered when
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solving the linear system. Direct solvers will drasticalduce their accuracy and iterative methods
their convergence. Let us write the resulting system mérixhe problem at hand as

A A >
A= ;
( Az Ago

where the nodes in the set 1 are those that belong to finiteealsx™ C 2;, and analogously for
the set 2. An important fact of the harmonic average is thatpa— oo for 14 fixed, the columns
associated to 1-nodes remain bounded. Now, we can condudeckaJacobi preconditioner based on a

nonoverlapping mesh partition (see [27]), i.e. the matrix
o A11 0
P - < 0 A22 > ’

Using Richardson iterations with this preconditioner ktmblock-Jacobi iterations. In Figure 5 we plot
the number of Richardson iterations for the preconditiosgstem for the two different formulations
against the value,, for ;1 = 1 fixed. We have considered different values for the mesh /siaad

. We can observe from the results in this figure that the pmitioned matrixP~!' A is much better
conditioned for the harmonic averages, being insensitiveoefficient jumps. On the contrary, the

preconditioned matrix is still ill-conditioned when usiagthmetic averages asincreases, and far
large enough it does not converge at all, reaching the maxioflb 000 iterations imposed in the code.

1000 . E— 1000 : : : .
—0—harm. av. (3,1 —O— harm. av. (3,1/100 !
900H vV arith. av. (3,1) i 900H Vv arith. av. (3,1/100) L
—©—harm. av. (4,1 —©— harm. av. (4,1/100 3
. . i - ' i I8
800 I} arith. av. (4,'1l) 1 800 F arith. av. (4,1/100) b
u ¢
7001 " 7001 s
n |
600" H 1 600~ a
o [ o S
£ s00F n £ 500} 4
g H g s
€ 400 H € 400f : A
S 1 S R
c v 2 A
300 Sdivd N 300+ .
s i
~/ /\’ l’ »I
200 S R 200F o
B2 R4
10 A < © gl
0 ; ; ; ; ; ; P N o
0 1 2 3 4 5 6 8 9 10 () 1 4 5 6 7 8 9. 10
Iog(muzlmul) log(nu 2/nu 1)

@) (b)

Figure 5: Number of Richardson iterations required tillwengence, for the two different formulations:
harmonic and arithmetic averages forThe legend representg 1 /c2) whereh = 2.

7.2 Stokes’ problem

Let us consider the numerical approximation of system (26)-with a discontinuous value of This
type of problem is usually found in the simulation of incomgsible elastic materials. We consider the

test problem with exact solution = (z,—y) onQ andp = 0 onQy andp = v, — 11 on Qs. The
resulting problem is solved by the GMRES iterative solvee(f25]) and the same preconditioner as
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above. This problem turns out to be more difficult to solventtiee previous one, and non-orthonormal
Richardson iterations failed to converge in all cases whsmguarithmetic averages.

In Figure 6(a) we show the number of iterations fer= 1 andwv, = 1, 10, 100, 1000, 10000.
Again, two different values of, = 27%, with i = 3,4, have been considered. The harmonic averages
lead to a much lower number of iterations, since it even imgsaas coefficient jumps increase. On
the other hand, arithmetic averages lead to a harder to subiace problem that requires a too large
number of GMRES iterations. Estimates for the condition banof the preconditioned matrix are
plotted in Figure 6(b). As expected, the condition numbethfarmonic averages remains bounded as
7+ "\, 0 whereas it explodes for arithmetic averages.
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Figure 6: Number of GMRES iterations and condition numbethef preconditioned matrix for har-
monic and arithmetic averages and different valuels. of

8 Conclusions

We have proposed a framework for the design of discontin@alsrkin methods for elliptic problems
based on hybrid three-field formulations. Starting with alglem posed in terms of the primal field, its
fluxes and its traces on the element boundaries, the finalgmois obtained after approximating the
last two unknowns in terms of the first. In particular, fluxes @mputed from a reconstruction of the
unknown from the approximated primal variable and its tsa@ad are imposetd be continuousan
essential feature of the procedure we propose.

The general idea described has been applied to four diffetigotic problems. The resulting meth-
ods are very similar to standard dG formulations, with sormtigular features. First, symmetry of the
formulation, and the subsequent adjoint consistency,dw/stto be a consequence of a natural choice
for the test functions. Likewise, the stabilization terniriterior penalty methods is shown to be related
to the calculation of derivatives of the reconstructed wwkm It is also shown that in order to have
continuity of fluxes harmonic averages rather than aritiovaterages of the physical properties need
to be taken on the element edges. For the Stokes problem wertesduced an original scaling of the
pressure that has been also motivated from the continuifiyxds. Finally, we have described how to
treat stabilization terms introduced in order to avoidriegbns in the choice of the interpolating spaces
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posed by inf-sup conditions.

Even if the main objective of this work has been to present thaumlogy to design dG methods

rather than new formulations, we have also tested numBrited use of harmonic averages of physical
variables on the element edges. For the Stokes and the Mgpmeblem we are not aware of other
methods that use this treatment of the physical coefficidfeshave observed that the accuracy of the
solution is similar to that obtained with arithmetic averagbut the performance of domain decompo-
sition preconditioned iterative procedures with stronggatal coefficient jumps is greatly improved.
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