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Abstract

The objective of this paper is to present a framework for the design of discontinuous Galerkin
(dG) methods for elliptic problems. The idea is to start froma hybrid formulation of the problem
involving as unknowns the main field in the interior of the element domains and its fluxes and
traces on the element boundaries. Rather than working with this three-field formulation, fluxes
are modeled using finite difference expressions and then thetraces are determined by imposing
continuity of fluxes, although other strategies could be devised. This procedure is applied to four
elliptic problems, namely, the convection-diffusion equation (in the diffusion dominated regime),
the Stokes problem, the Darcy problem and the Maxwell problem. We justify some well known
dG methods with some modifications that in fact allow to improve the performance of the original
methods, particularly when the physical properties are discontinuous.

Keywords: Discontinuous Galerkin, elliptic problems, hybrid formulations, stabilized finite element
methods

1 Introduction

The aim of this work is to present a methodology for designingdiscontinuous Galerkin (dG) methods
for elliptic problems. The starting point is a three-field hybrid formulation of the problem, in which the
unknowns are the main field in the interior of the element domains of the finite element partition, their
fluxes on the interelement edges (faces, in 3D) and their traces also on these edges.

Instead of considering the fluxes and the traces as independent variables, they are related to the
main field in the interior of the element domains, which may beinterpolated in a discontinuous manner.
The way to design this relationship is as follows. First, fluxes are written in terms of the main variable
and its traces. The interesting point is when derivatives are needed to compute these fluxes. It is required
to reconstruct the unknown from the discontinuous approximation and the traces. A particular way to
do this is proposed here, which consists of assuming that thediscontinuous approximation is valid up
to a certain distance to the element boundary, from where thetraces are used for the reconstruction. The
derivatives of the reconstructed variable can now be approximated using finite difference expressions,
this leading to an expression of the fluxes in terms of the discontinuous approximation and the traces.

Once the fluxes are given, the traces can be obtained by imposing continuity of fluxes. The expres-
sions for the fluxes and traces in terms of the discontinuous approximation can be also extended to their
test functions, which can be expressed in terms of the test functions of the discontinuous approxima-
tion. When these expressions are inserted into the hybrid discrete problem, a problem posed in terms
of the main field in the interior of the element domains is obtained. We show that several dG methods
can be obtained following this procedure (see [1]), with some modifications that in fact improve their
performance and which are commented later. The methodologydescribed is then applied to four ellip-
tic problems, namely, the convection-diffusion equation (in the diffusion dominated regime), the Stokes
problem, the Darcy problem and the Maxwell problem.

Apart from the design of dG formulations, the present framework can also be used for the design of
stabilized finite element method including stabilization terms defined on the element boundaries [16] or
for the formulation of new transmission conditions in domain interaction problems (with applications
for example to domain decomposition and fluid-structure interaction) [15].

The organization of the paper is as follows. In Section 2 we describe the hybrid formulation of
an abstract elliptic problem that serves as starting point for the methodology we propose. We also
describe our “program” in this section. The ideas outlined are then applied to four elliptic problems,
namely, the convection-diffusion equation in the diffusion dominated regime (Section 3), the Stokes
problem (Section 4), the Darcy problem (Section 5) and the Maxwell problem (Section 6). Some simple
numerical examples are presented in Section 7, which are intended to show the improvement in the
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behavior of domain decomposition preconditioners for problems with physical coefficient jumps when
a modification motivated by the present approach is used. Conclusions close the paper in Section 8.

2 An abstract elliptic problem in hybrid form

2.1 Continuous problem

The numerical approximation we propose can be motivated from a hybrid formulation of the problem
(see [8, 9]). Let us now introduce it at the continuous level,prior to any numerical approximation.
Assume that we have a boundary value problem posed in a domainΩ ⊂ R

d (d = 2, 3), which we will
assume polyhedral in the finite element approximation, split asΩ̄ = Ω̄1∪ Ω̄2, and withΓ = ∂Ω1∩∂Ω2

(see Fig. 1).

Figure 1: Splitting of the domain

Let X be a space of functions defined onΩ, which in our applications will be a classical Sobolev
space. The notation(·, ·)ω and〈·, ·〉ω will respectively denote theL2(ω) inner product and the integral
in a regionω of the product of two functions, this case including the duality pairing. The subscriptω
will be deleted whenω = Ω. The norm in the functional spaceX will be indicated by‖ · ‖X .

Consider an abstract variational problem consisting in finding an unknownu in X such that

B(u, v) = L(v) ∀v ∈ X, (1)

whereB(u, v) is a bilinear form onX × X andL a linear form defined onX, both assumed to be
continuous. If the problem considered involves Dirichlet boundary conditions, we will assume that they
are homogeneous and enforced in an essential manner, that isto say, included in the definition ofX.
However, at the numerical level it would be straightforwardto extend the method to be introduced to a
penalty method to impose such conditions.

Let ui, vi be the restrictions ofu, v ∈ X to subdomainΩi, andXi the spaces where they belong,
i = 1, 2. Suppose thatu ∈ X has a well defined trace onΓ belonging to a spaceT , and a flux
corresponding to the differential operator associated to (1) belonging to a spaceFi when computed
from subdomainΩi, i = 1, 2. Then, the hybrid formulation of (1) that we consider is the following: find
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ui ∈ Xi, λi ∈ Fi, i = 1, 2, andγ ∈ T such that

B1(u1, v1)− 〈λ1, v1〉Γ = l1(v1) ∀v1 ∈ X1,

B2(u2, v2)− 〈λ2, v2〉Γ = l2(v2) ∀v2 ∈ X2,

〈µ1, u1 − γ〉Γ = 0 ∀µ1 ∈ F1,

〈µ2, u2 − γ〉Γ = 0 ∀µ2 ∈ F2,

〈κ, λ1 + λ2〉Γ = 0 ∀κ ∈ T,

whereBi andLi are the restrictions ofB andL to Xi ×Xi andXi, respectively.
If the problem includes imposition of fluxes ofu in a partΓN of ∂Ω, which for the sake of simplicity

we may consider contained in∂Ω1 (see Fig. 1), this imposition may be also “hybridized”, yielding the
problem

B1(u1, v1)− 〈λ1, v1〉Γ − 〈λN , v1〉ΓN
= L1(v1) ∀v1 ∈ X1, (2)

B2(u2, v2)− 〈λ2, v2〉Γ = L2(v2) ∀v2 ∈ X2, (3)

〈µ1, u1 − γ〉Γ + 〈µ1, u1 − γ〉ΓN
= 0 ∀µ1 ∈ F1, (4)

〈µ2, u2 − γ〉Γ = 0 ∀µ2 ∈ F2, (5)

〈κ, λ1 + λ2〉Γ + 〈κ, λN 〉ΓN
= 〈κ, q〉ΓN

∀κ ∈ T, (6)

whereq is the flux to be prescribed. In this case, the linear formL (and the formsL1 andL2 resulting
from the splitting of the domain) doesnot include the prescription of the fluxes, andT includes functions
defined onΓN .

Concerning the well posedness of the problem (for simplicity with ΓN = ∅), let us write it as a
single variational equation of the form

Bhyb(u1, u2, λ1, λ2, γ; v1, v2, µ1, µ2, κ) = Lhyb(v1, v2, µ1, µ2, κ), (7)

where

Bhyb(u1, u2, λ1, λ2, γ; v1, v2, µ1, µ2, κ) := B1(u1, v1)− 〈λ1, v1〉Γ +B2(u2, v2)− 〈λ2, v2〉Γ

+ 〈µ1, u1 − γ〉Γ + 〈µ2, u2 − γ〉Γ + 〈κ, λ1 + λ2〉Γ,

Lhyb(v1, v2, µ1, µ2, κ) := L1(v1) + L2(v2),

with (u1, u2, λ1, λ2, γ) ∈ X1 × X2 × F1 × F2 × T and which must hold for all(v1, v2, µ1, µ2, κ) ∈
X1 ×X2 × F1 × F2 × T . If we assume thatBi(ui, vi) are coercive inXi ×Xi (i = 1, 2), we have that

Bhyb(u1, u2, λ1, λ2, γ;u1, u2, λ1, λ2, γ) = B1(u1, u1) +B2(u2, u2) & ‖u1‖
2
X1

+ ‖u2‖
2
X2

,

where& is used to denote≥ up to positive constants, and. will be used analogously. Control on
‖λ1‖F1

, ‖λ2‖F2
and‖γ‖T can be obtained only if the inf-sup conditions

inf
µi∈Fi\{0}

sup
vi∈Vi\{0}

〈µi, vi〉Γ
‖µi‖Fi

‖vi‖Xi

≥ CF , i = 1, 2, (8)

inf
κ∈T\{0}

sup
µi∈Fi,µ1+µ2 6=0

〈κ, µ1 + µ2〉Γ
‖κ‖T (‖µ1‖F1

+ ‖µ2‖F2
)
≥ CT , (9)

hold for positive constantsCF andCT . Under assumptions (8) and (9), the coercivity ofBi(ui, vi) in
Xi×Xi (i = 1, 2) and appropriate continuity of all the forms involved in theproblem, a well posedness
result for (7) can be easily proved. WhenBi(ui, vi) are not coercive, but the problem corresponds to a
well posed saddle point problem, this well posedness can also be established.
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2.2 Finite element approximation

Let Ph = {K} be a shape regular finite element partition of the domainΩ of diameterh. Let also
Eh = {E} be the collection of edges associated toPh. In particular, we will be interested in edges
interior toΩ, which will be labelledE0, and edges onΓN , which will be labelledEN . Summation over
all the elements will be indicated as

∑

K and summation over the edges as
∑

E . Consistently with the
notation introduced previously, the symbol〈f1, f2〉D will be used to denote the integral of the product
of functionsf1 andf2 overD, with D = K (an element),D = ∂K (an element boundary) orD = E
(an edge).

Figure 2: Notation for the approximation of fluxes and tracesfor interior edges

Suppose now that elementsK1 andK2 share an edgeE, and letn1 andn2 be the normals to
E exterior toK1 andK2, respectively (see Fig. 2). For a scalar functionf , possibly discontinuous
acrossE, we define its jump as[[ nf ]]E := n1f |∂K1∩E + n2f |∂K2∩E, and for a vector or tensorv,
[[ n · v ]]E := n1 · v|∂K1∩E +n2 · v|∂K2∩E . Averages of functions discontinuous across an edgeE will
be denoted by{f}E = 1

2
(f |∂K1∩E + f |∂K2∩E), omitting the subscriptE when there is no possibility

of confusion. Note that we could write[[ nf ]]E = 2{nf}E, although we will keep the notation[[ nf ]]E
to stress the presence of the normaln, which gives the meaning of jump to this expression. Note also
that it is common to omit the normal in the definition of[[ nf ]]E , so that the jump of a scalar function
is a vector [1].

We can easily extend formulation (2)-(6) to multiple subdomains and, in particular, to the case
in which each of these is an element domain ofPh. The resulting hybrid formulation can then be
approximated using a finite element method. LetVh, Fh andTh be the spaces whereuh, λh andγh are
sought, respectively. Note thatFh is made of functions that may be multi-valuate on the edges ofthe
finite element partition, whereasTh is made of functions uniquely defined on these edges. These spaces
will be endowed with the appropriate norm depending on the problem considered.

The extension of the hybrid formulation to the elements of the finite element partition reads as
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follows: find (uh, λh, γh) ∈ Vh × Fh × Th such that

∑

K

BK(uh, vh)−
∑

K

〈λh, vh〉∂K =
∑

K

LK(vh), (10)

∑

K

〈κh, λh〉∂K = 〈κh, q〉ΓN
, (11)

∑

K

〈µh, uh − γh〉∂K = 0, (12)

for all (vh, µh, κh) ∈ Vh × Fh × Th.

2.3 From the hybrid to the irreducible form

The objective of this work can be summarized by saying that weintend to design dG methods based on
the hybrid finite element approximation (10)-(12). To this end, the key point to step to the method we
propose isto design expressions to compute the fluxesλh and the tracesγh from finite difference-like
approximations.The steps we propose are:

1. Compute the fluxesλh from values ofuh, γh using finite difference-like expressions.

2. Compute the tracesγh by imposing continuity of total fluxes, including Neumann boundary con-
ditions where they are applied.

3. Go to the expression obtained in 1 with the expression ofγh just obtained to computeλh in terms
of uh.

This general procedure will be applied in the following sections to different elliptic problems. Before
proceeding, let us remark that step 2 will allow us to significantly simplify the problem. Suppose that
λh = Λh(uh) is the expression of the fluxes in terms ofuh obtained, for simplicity without Neu-
mann boundary conditions. If we can satisfy exactly the continuity of these fluxesand take the flux
test functionµh = Λh(vh), vh being the test function foruh, then (11) will be exactly satisfied and
∑

K 〈µh, γh〉∂K = 0. The problem reduces then to finduh ∈ Vh such that

∑

K

BK(uh, vh)−
∑

K

〈Λh(uh), vh〉∂K −
∑

K

〈Λh(vh), uh〉∂K =
∑

K

LK(vh), (13)

for all vh ∈ Vh, where we have added up (10) and what remains of (12) becauseµh is not independent of
vh. The sign of the third term in the left-hand-side of this expression has been chosen to get a symmetric
problem whenBK is symmetric.

A possible way to satisfy the exact continuity of fluxes is to take them of the formλh = Λh(uh) =
n·Λ0

h(uh), withΛ
0
h(uh) a single-valued vector field defined on the element edges. This will be precisely

the form of the fluxes we will propose.
When there are Neumann boundary conditions, a particular expression for the fluxesλh will be

obtained, the corresponding test function being zero. Thisresults in the classical boundary term corre-
sponding to the prescription of fluxes that needs to be added to (13). This equation will be the starting
point of our developments.

Remark 1 Most dG methods are motivated by integration-by-parts of the differential equation tested
with a test functionvh within each element, which leads to the first term in the left-hand-side of (13)
and, as we shall see, part of the second. Then (part of) the third term is introduced to ensure symmetry,
provided [[ nu ]]E = 0 for the solution of the continuous problemu. After this, additional “stability”
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terms need to be added to ensure appropriate continuity of the unknown (in a weak sense) [7]. In our
case, these terms will appear naturally in the definition ofΛh(uh), whose design will be “non-classical”
in order to satisfy (11) exactly. Moreover, even though it does not appear in (13), we will have at our
disposal a definition of a trace.

Remark 2 Other hybrid formulations can be used as starting point to design dG methods. In particular,
in [12] a hybrid formulation is proposed for the diffusion equation, which is extended in [11, 23] to the
convection-diffusion equation. The hybridization of the problem is completely different to our three-
field approach, introduced first in [16] for the same problem.Our unknowns are the field in the interior
of the elements and its traces and fluxes on the boundaries, whereas in the above references it is the
unknown and the fluxes in the interior (dual mixed formulation) and the traces on the boundaries. Note
that our objective is to motivate standard dG methods with some modifications, whereas a non-standard
formulation is proposed in [12, 11, 23].

3 Scalar convection-diffusion equation (diffusion dominated case)

In this section we apply the previous idea to the convection-diffusion equation in the diffusion domi-
nated regime, the simplest elliptic problem. Convection and reaction and only introduced for generality,
without considering the instabilities that may arise when either of these terms dominates the diffusive
one.

3.1 Problem statement

The boundary value problem we consider is: findu : Ω −→ R such that

L(u) := −∇ · (k∇u) + a · ∇u+ su = f in Ω,

u = 0 onΓD,

T (u) := k∂nu = q onΓN , (14)

wherek > 0 is the diffusion coefficient,a ∈ R
d the advection velocity ands ≥ 0 the reaction (ab-

sorption) coefficient. All these coefficients may be considered piecewise constant within each element
of the finite element partition, for simplicity. The boundary is split as∂Ω = ΓD ∪ΓN , and∂n ≡ n · ∇.

The irreducible weak form of the problem reads: findu ∈ V = {v ∈ H1(Ω) | v|ΓD
= 0} such that

B(u, v) = L(v) ∀v ∈ V,

where

B(u, v) := (k∇u,∇v) + (a · ∇u, v) + (su, v),

L(v) := 〈f, v〉+ 〈q, v〉ΓN
.

The hybrid formulation corresponding to (2)-(6) in this case is posed in the spacesV defined above,
T = H

1/2
00 (Γ) andFi = (H

1/2
00 (Γi))

′ (the prime denoting dual space), withΓi = ∂Ωi∩Ω. The solution
of the hybrid problem isγ = u1|Γ1

= u2|Γ2
, λ1 = −λ2 = k1n1 · ∇u1|Γ1

= −k2n2 · ∇u2|Γ2
. The

extension to a hybrid problem considering all subdomains ofthe finite element partition (problem (10)-
(12)) is also immediately set. Abusing of the notation, we can consider this same problem as afinite
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element approximationof the hybrid continuous one, the finite element spaces being

Vh =
{

vh :
⋃

K −→ R | vh|K ∈ Ppd(K), K ∈ Ph

}

,

Fh =
{

µh :
⋃

∂K −→ R | µh|∂K ∈ Ppf (∂K), K ∈ Ph

}

,

Th =
{

κh :
⋃

E −→ R | κh|E ∈ Ppt(E), E ∈ Eh, andκh|E = 0 if E ⊂ ΓD

}

,

wherePp(ω) is the set of polynomials of degreep on the domainω.

3.2 Approximation of fluxes and calculation of traces

Let us apply the methodology described in Subsection 2.3 to the convection-diffusion equation. Assume
first that we have an interior edge, the situation depicted inFig. 2. Suppose that this edgeE is shared
by two elementsK1, K2 ∈ Ph. Let us take now a normal direction across edgeE, eithern1 or n2.
Values of the unknowns and the coefficientk will be denoted with the superscript− or+ depending on
whether they belong to the left or right side ofE with respect to the normal chosen.

We assume that the approximationuh is meaningful to compute the fluxesλh up to a distanceδ
to edgeE, on which the trace takes a valueγh. The distanceδ will be a parameter of the formulation.
Using an approximation of orderO(δ), the fluxes can be approximated as

λ±
h ≈

k±

δ
(γh − u±h,δ),

whereu+h,δ andu−h,δ are the values ofuh at a distanceδ from E. These can be computed from a Taylor
expansion as (see Figure 3):

u±h,δ = u±h − δ∂n±u±h +O(δ2),

where∂n+ is the derivative in the direction of the normal chosen and∂n− the opposite. Therefore:

λ±
h ≈

k±

δ
(γh − u±h ) + k±∂n±u±h . (15)

Equations (15) complete the first step of the strategy described earlier. It is obvious that other pos-
sibilities could be used. In particular, ifuh,2δ is the value ofuh at a distance2δ from the edge,
we could approximateλ±

h = k
2δ (3γh − 4u±h,δ + u±h,2δ) + O(δ2). Using the expansionsu±h,δ =

u±h − δ∂n±u±h + 1
2
δ2∂2

n±u
±
h + O(δ3) andu±h,2δ = u±h − 2δ∂n±u±h + 2δ2∂2

n±u
±
h + O(δ3), we would

obtainλ±
h = 3k±

2δ (γh − u±h ) + k±∂n±u±h +O(δ2) instead of (15). The change is only in the factor that
multiplies1/δ, which is a numerical parameter. Thus, we may keep (15) for our purposes.

The second step consists of imposing continuity oftotal fluxes. For the continuous problem, this
amounts to say that[[ n · k∇u ]] ≡ [[ T (u) ]] = 0. Note that here we use the symbol[[ · ]] understanding
thatT (u) contains the normal in its definition. Using expressions (15) and going back to the notation
in Fig. 2, the approximate continuity of fluxes leads to

0 = [[ T (u) ]]

≈ λh,1 + λh,2

≈
1

δ
[(k1 + k2)γh − k1uh,1 − k2uh,2] + [[ T (uh) ]]

= [[ T (uh) ]] +
2

δ
({k}γh − {kuh}). (16)
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Figure 3: Approximation of fluxes

This allows us to obtain the approximation of the traces on each edge we were looking for:

γh =
{kuh}

{k}
−

δ

2{k}
[[ T (uh) ]] . (17)

Here and below, we will use the symbol= for our models to compute fluxes and traces, understanding
that they are approximations to the exact expressions.

Inserting (17) into (15) we see that the fluxes on the boundaries of the elements can be computed
as

λh =
k

δ
(γh − uh) + T (uh)

=
k

δ

(

{kuh}

{k}
− uh

)

−
k

2{k}
[[ T (uh) ]] + T (uh).

This expression can be written in a more suggestive way. Consider the harmonic average:

〈k〉 :=
k1k2
{k}

=
2k1k2
k1 + k2

.

We may write, after some algebraic manipulations (considering for example elementK1):

k1
δ

(

{kuh}

{k}
− uh,1

)

= −
〈k〉

2δ
n1 · [[ nuh ]] ,

−
k1

2{k}
[[ T (uh) ]] + T (uh)1 = 〈k〉n1 · {∇uh}.

We finally obtain:

λh = −
〈k〉

2δ
n · [[ nuh ]] + 〈k〉n · {∇uh}. (18)

Equations (17) and (18) are the expressions sought in the case of interior edges. Note that (18) is in
fact defined on the boundaries of the elements, and thereforethe value on the edge is not uniquely
defined. In fact, as it was mentioned earlier, these fluxes areof the form λh = n · Λ0

h(uh), with

Λ
0
h(uh) = − 〈k〉

2δ [[ nuh ]] + 〈k〉{∇uh} single-valued.
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Suppose now that the edge we consider is on the Neumann boundary, that is to say,E ⊂ ΓN . The
continuity of total fluxes has to be replaced by theequilibriumof fluxes in the case of Neumann edges.
Proceeding as above, we now have that

λh = q. (19)

This expression is defined for the part of the element boundaries that belongs toΓN . From the approx-
imation ofλh, which now does not depend on the traces, we have:

q = λh ≈ T (uh) +
k

δ
(γh − uh).

Therefore:

γh = uh −
δ

k
(T (uh)− q). (20)

3.3 The resulting discontinuous Galerkin approximation

The original hybrid formulation can be written in a compact form as indicated in (13) withΛ(vh) given
by (18) or (19).

Let us collect the expressions obtained. The fluxes and traces for interior edges are given by:

γh =
{kuh}

{k}
−

δ

2{k}
( [[ kn · ∇uh ]] ), (21)

λh = −
〈k〉

2δ
n · [[ nuh ]] + 〈k〉n · {∇uh}. (22)

The test functions may be taken as

κh =
{kvh}

{k}
−

δ

2{k}
[[ kn · ∇vh ]] , (23)

µh = −
〈k〉

2δ
n · [[ nvh ]] + 〈k〉n · {∇vh}, (24)

with vh ∈ Vh.
For Neumann edges the corresponding expressions are:

γh = uh −
δ

k
(kn · ∇uh − q),

λh = q,

κh = vh − δn · ∇vh,

µh = 0.

Remark 3 It is obvious that other choices of test functions are possible, particularly if no care is put on
whether the resulting formulation is symmetric or not. The ones chosen here automatically will yield
adjoint consistency of the method to be designed.
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We have that

−
∑

K

〈λh, vh〉∂K +
∑

K

〈κh, λh〉∂K −
∑

K

〈µh, uh − γh〉∂K

= −
∑

E

〈−
〈k〉

2δ
[[ nuh ]] + 〈k〉{∇uh}, [[ nvh ]] 〉E

−
∑

E

〈−
〈k〉

2δ
[[ nvh ]] + 〈k〉{∇vh}, [[ nuh ]] 〉E

− 〈vh, q〉ΓN
+ 〈κh, q〉ΓN

=
∑

E

〈k〉δ〈
1

δ
[[ nvh ]] − {∇vh},

1

δ
[[ nuh ]] − {∇uh}〉E −

∑

E

〈k〉δ〈{∇vh}, {∇uh}〉E

− 〈vh, q〉ΓN
+ 〈κh, q〉ΓN

Using this in (13) we obtain the method we propose: finduh ∈ Vh such that

∑

K

k〈∇vh,∇uh〉K +
∑

K

〈vh,a · ∇uh〉K +
∑

K

s〈vh, uh〉K

+
∑

E

〈k〉δ〈
1

δ
[[ nvh ]] − {∇vh},

1

δ
[[ nuh ]] − {∇uh}〉E −

∑

E

〈k〉δ〈{∇vh}, {∇uh}〉E

=
∑

K

LK(vh) + 〈vh, q〉ΓN
,

for all vh ∈ Vh.

Remark 4 Let us make several remarks about the numerical approximation just obtained:

• Essentially, we have recovered the so called interior penalty method. Note that we may take
δ = δ0h, with δ0 < 1/2, which is now the algorithmic parameter of the formulation.This penalty
term is not added “a posteriori”, as usual, but comes from thereconstruction of the unknown in
terms of its values in the element interiors and its traces onthe element boundaries.

• Adjoint consistency is ensured. This is a result of taking the test functions as indicated in (23)
and (24), and therefore it is quite natural when looking at the hybrid form of the problem.

• Several different methods may be devised within the framework presented. Among the possible
alternatives there are different approximations of the diffusive fluxes using finite-difference-like
expressions or other expressions of the test functions.

• The most salient feature of the method obtained with respectto the classical interior penalty
method is the use of harmonic averages rather than arithmetic ones. This has been derived from
the continuity of the fluxes, but has been used earlier for theconvection-diffusion equation in
[17], and later in [18], for example. It has also beed used in adomain decomposition method
in [10].
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4 Stokes’ problem

In this section we apply the idea of Section 2 to the Stokes problem. Contrary to the previous section,
we will skip most of the details and state only the results. The omitted steps are merely algebraic
manipulations that are similar to those done for the convection-diffusion equation.

4.1 Problem statement

The Stokes problem consists of findingu : Ω −→ R
d andp : Ω −→ R such that

−∇ · (ν∇u) +∇p = f (25)

∇ · u = 0 (26)

whereν > 0 is the viscosity, which we will consider constant within each element of the finite element
approximation we will introduce, andf is the vector of body forces. For simplicity, the boundary
conditionu = 0 will be assumed and, as in the previous section, it will be applied in an essential
manner. Note also that we have not used the symmetric gradient of u in the viscous term. This would
complicate a little the approximation of the tractions, as we shall see, but could also be used without
major difficulty.

When the problem is written in a hybrid form, which is a straightforward exercise, the identification
with the abstract problem of Section 2 is obtained noting that the unknownu and the fluxesλ are

u = [u, p] ∈ R
d × R,

λ = [λu, λp] = [−pn+ ν∂nu, 0] ∈ R
d × R.

4.2 Discontinuous Galerkin approximation

The dG finite element method to be proposed has again the structure (13), now with

B([u, p], [v, q]) = (ν∇u,∇v)− (p,∇ · v) + (q,∇ · u).

Les us consider now aGalerkin finite element approximation of the hybrid problem, with the
unknowns identified with a subscripth as usual. If we impose the continuity of the discrete fluxes ina
manner similar to that used for the convection-diffusion equation we will have that:

0 = λu,h,1 + λu,h,2

= −ph,1n1 − ph,2n2 + ν1n1 · ∇uh,1 + ν2n2 · ∇uh,2

≈ − [[ phn ]] + [[ ν∂nuh ]] +
1

δ

[

(ν1 + ν2)γu,h − ν1uh,1 − ν2uh,2

]

,

whereγu,h are the traces ofu. These can be determined from this last expression, yielding:

γu,h =
{νuh}

{ν}
−

δ

2{ν}
(− [[ phn ]] + [[ ν∂nuh ]] ) . (27)

This allows us to compute the fluxes, which after algebraic manipulations are:

λu,h = −
〈ν〉

2δ
n · [[ n⊗ uh ]] + 〈ν〉n · {∇uh} − n〈ν〉

{ph
ν

}

. (28)
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With these fluxes in terms of the unknowns we can already formulate the dG method for the Stokes
problem we propose, which consists of finding[uh, ph] in the appropriate dG spacesVh×Qh such that

∑

K

〈ν∇uh,∇vh〉K −
∑

K

〈ph,∇ · vh〉K +
∑

K

〈qh,∇ · uh〉K

+
∑

E

〈ν〉〈−{∇uh}+
{ph

ν

}

I, [[ n⊗ vh ]] 〉E +
∑

E

〈ν〉〈−{∇vh} −
{qh
ν

}

I, [[ n⊗ uh ]] 〉E

+
∑

E

〈ν〉

2δ
〈 [[ n⊗ uh ]] , [[ n⊗ vh ]] 〉E =

∑

K

〈f ,vh〉K ,

for all test functions[vh, qh] ∈ Vh ×Qh.

Remark 5 Essentially, we have recovered the interior penalty methodfor the Stokes problem with two
major differences with respect to what would be a standard approach:

1. The use of harmonic averages of the viscosityν in the boundary terms.

2. The scaling of the pressure and the pressure test functionby ν in the terms involving tractions on
the element boundaries.

As for the convection-diffusion equation, adjoint consistency is ensured.
Note that the algebraic system resulting from this discretevariational problem may be rendered

symmetric simply by changing the sign ofqh, as it is usually done for the conforming approximation to
Stokes’ problem.

4.3 Stabilized finite element problem

In the previous subsection we have considered the Galerkin finite element approximation to Stokes’
problem. In order to be stable, appropriate choices for the velocity and pressure spaces,Vh andQh are
required. Here we briefly present a stabilized finite elementmethod which is aimed to allow for any
interpolation spaces for velocity and pressure. Since it isneither our purpose to give a full heuristic
motivation of the method, nor to analyze it, we will simply indicate how to motivate it. We refer to [26]
for the analysis of different dG approximations of the Stokes problem.

Our way to design stabilized finite element methods is based on the so called Variational Multiscale
(VMS) concept [22]. In the simplest case we will consider, wemay split the unknown in the interior of
the elements asu ≈ uh + u′, and leave the pressure asp ≈ ph. The fieldu′ is in fact what needs to be
approximated. We refer to it as the velocity subgrid scale, and is assumed to be much smaller thanuh,
at least ash → 0. Likewise, we approximateγu ≈ γu,h + γ ′

u, γ′
u being the trace ofu′.

Neglecting the derivatives ofu′ on the element edges and considering|u′| ≪ |uh|, we only need
to deal with the terms:

∑

K

〈ν∇(uh + u′),∇vh〉K +
∑

K

〈qh,∇ · (uh + u′)〉K

=
∑

K

〈ν∇uh,∇vh〉K +
∑

K

〈qh,∇ · uh〉K

−
∑

K

〈u′, ν∆vh +∇qh〉K +
∑

K

〈γ ′
u, ν∂nvh + qhn〉∂K , (29)

where we have used the fact thatν is constant within each element domainK.
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The next step isto modelu′ in each element domainK andγ′
u on each edgeE. We will not give

the details of how to do this modelling, and refer for exampleto [14, 16]. In fact, the approximation
for γ ′

u follows from what we have presented in the previous subsection. Expression (27) should now be
equal toγu,h+ γ′

u, understanding this equality as a splitting of the space of traces with one component
in the trace finite element space and another in the trace subgrid scale space. Taking the effect of the
projection as an algorithmic constant we modelu′ andγ′

u as

u′ = τK(f + ν∆uh −∇ph), τK = c1
h2

ν
, (30)

γ′
u = τE (− [[ phn ]] + [[ ν∂nuh ]] ) , τE = c2h〈ν

−1〉 (31)

wherec1 and c2 are fixed algorithmic constants andh is a characteristic size of either the element
domainK or of the edgeE.

Inserting these expressions into (29) the stabilized finiteelement method we propose is: find
[uh, ph] ∈ Vh ×Qh such that

∑

K

〈ν∇uh,∇vh〉K −
∑

K

〈ph,∇ · vh〉K +
∑

K

〈qh,∇ · uh〉K

+
∑

K

τK〈−ν∆uh +∇ph, ν∆vh +∇qh〉K +
∑

E

τE〈 [[ −ν∂nuh + phn ]] , [[ ν∂nvh + qhn ]] 〉E

+
∑

E

〈ν〉〈−{∇uh}+
{ph
ν

}

I, [[ n⊗ vh ]] 〉E +
∑

E

〈ν〉〈−{∇vh} −
{qh
ν

}

I, [[ n⊗ uh ]] 〉E

+
∑

E

〈ν〉

2δ
〈 [[ n⊗ uh ]] , [[ n⊗ vh ]] 〉E =

∑

K

〈f ,vh〉K +
∑

K

τK〈f , ν∆vh +∇qh〉K ,

(32)
for all test functions[vh, qh] ∈ Vh × Qh. The parametersτK and τE are given by (30) and (31),
respectively.

Formulation (32) is the stabilized dG method that we propose. Even though it is not our intention
here to do its numerical analysis, which will be presented elsewhere, it is able to yield stable solutions
for any pair of velocity-pressure finite element spacesVh andQh. In particular, equal interpolation will
be used in the numerical examples.

Remark 6 In [13] the authors propose another dG formulation of the Stokes problem that allows equal
order interpolation; the formulation therein includes a term of the form

∑

E 〈 [[ phn ]] , [[ qhn ]] 〉E , and
therefore it is only consistent for smooth enough pressures, namelyp ∈ H1(Ω). This method would
not converge to solutions with minimum regularity. In our case, consistency is ensured by the inclusion
of the whole traction−ν∂nuh + phn in the jump.

5 Darcy’s problem

Let us consider now Darcy’s problem. We will treat it very briefly, since as we shall explain in this case
the hybrid point of view does not introduce any modification to classical dG methods for this problem.
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5.1 Problem statement

The problem we consider now consists of findingu : Ω −→ R
d andp : Ω −→ R such that

σu+∇p = f

∇ · u = g

whereσ > 0 is the porosity coefficient, which we will consider constantwithin each element of the
finite element approximation,f is the vector of body forces andg is a prescribed mass flux satisfying
the compatibility condition(g, 1) = 0 since, for simplicity, the boundary conditionn · u = 0 on ∂Ω
will be assumed. Once again, it will be applied in an essential manner.

The weak variational form of the problem admits two functional settings (see [6] for a discussion).
Here we will concentrate in the so calledH(div,Ω) × L2(Ω) (mixed dual) formulation, which in the
irreducible case consists of findingu ∈ V = {v ∈ H(div,Ω) | n · v = 0 on ∂Ω} andp ∈ Q =
L2(Ω)/R such that

B([u, p], [v, q]) := (σu,v)− (p,∇ · v) + (q,∇ · u) = 〈f ,v〉+ 〈g, q〉 =: L([v, q]),

for all v ∈ V , q ∈ Q.
The continuous hybrid formulation has the structure described in Section 2, now with the unknown

u and the fluxesλ given by

u = [u, p] ∈ R
d × R,

λ = [λu, λp] = [−pn, 0] ∈ R
d ×R. (33)

5.2 Discontinuous Galerkin approximation

The discrete hybrid finite element approximation to the problem consists of findinguh, ph, λu,h and
γu,h in the appropriate finite element spaces such that

∑

K

σ〈uh,vh〉K −
∑

K

〈ph,∇ · vh〉K +
∑

K

〈qh,∇ · uh〉K

−
∑

K

〈λu,h,vh〉∂K +
∑

K

〈λu,h,κu,h〉∂K +
∑

K

〈µu,h,uh − γu,h〉∂K

=
∑

K

〈f ,vh〉K +
∑

K

〈g, qh〉K , (34)

for all test functionsvh, qh, µu,h andκu,h.
Contrary to the previous problems, the fluxes in (33) do not contain any derivative of the unknown.

Moreover, they depend onp, whose trace does not appear in the hybrid formulation of theproblem.
However, it is particularly simple to design an expression for these fluxes that satisfies a priori the
continuity imposed weakly in (34). The simplest way to achieve this is to model the fluxes and their test
functions as

λu,h = −{ph}n, µu,h = −{qh}n, (35)

on each edgeE. With these expressions inserted into (34) we recover the structure (13). The tracesγu,h

and their test functions are not required (note that only thecontinuity of the normal component ofuh

is weakly prescribed in (34) when (35) is used). It is observed that (35) coincides with (28) when the
viscosity vanishes. In fact, we could have treated Brinkman’s problem including the limiting cases of
zero porosity (Stokes) and zero viscosity (Darcy), as in theunified framework proposed in [2].
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Nevertheless, the formulation obtained with the proceduredescribed is a standard dG approxima-
tion to Darcy’s problem without stabilization terms, and thus in this case the hybrid point of view does
not lead to any modification of standard methods.

We refer to [3] for dG finite element approximations to Darcy’s problem including stabilization
terms.

6 Maxwell’s problem

6.1 Problem statement

The last problem we consider is Maxwell’s problem, which consists of findingu : Ω −→ R
d and

p : Ω −→ R such that

∇× (ν∇× u)− ε∇p = f , (36)

−∇ · (εu) = 0, (37)

whereν > 0 andε > 0 are physical properties, again considered piecewise constant, andf is a forcing
vector. The simplest boundary conditionsn × u = 0 andp = 0 on ∂Ω will be adopted. Note that the
solution of the continuous problem isp = 0. This unknown is in fact an artifact to impose condition
(37) at the discrete level. See [5, 6, 4] and references therein for a discussion.

As for Darcy’s problem, the weak variational form of the problem admits two functional settings
(see [6]). Here we will consider only theH(curl,Ω)×H1(Ω) formulation, which allows one to capture
singular solutions. It consists of findingu ∈ V = {v ∈ H(curl,Ω) | n × v = 0 on ∂Ω} and
p ∈ Q = H1

0 (Ω) such that

B([u, p], [v, q]) := (ν∇× u,∇× v)− (ε∇p,v) + (ε∇q,u) = 〈f ,v〉 =: L([v, q]),

for all v ∈ V , q ∈ Q.
Once again, the continuous hybrid formulation has the structure described in Section 2, now with

the unknownu and the fluxesλ given by

u = [u, p] ∈ R
d × R,

λ = [λu, λp] = [−n× (ν∇× u),n · (εu)] ∈ R
d × R. (38)

6.2 Discontinuous Galerkin approximation

Let us explicitly write down the discrete hybrid finite element approximation to Maxwell’s problem. Let
[uh, ph] be the approximation sought to[u, p], [λu,h, λp,h] the approximation to[λu, λp] and[γu,h, γp,h]
the approximation to the traces of[u, p] on the edges of the finite element partition. These finite element
unknowns are solution of the problem

∑

K

BK([uh, ph], [vh, qh])−
∑

K

〈λu,h,vh〉∂K −
∑

K

〈λp,h, qh〉∂K =
∑

K

LK([vh, qh]), (39)

∑

K

〈κu,h,λu,h〉∂K +
∑

K

〈κp,h, λp,h〉∂K = 0, (40)

∑

K

〈µu,h,uh − γu,h〉∂K +
∑

K

〈µp,h, ph − γp,h〉∂K = 0, (41)

which has to hold for all test functions[vh, qh], [µu,h, µp,h] and[κu,h, κp,h] in the corresponding finite
element spaces.
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To proceed in this case as explained in Section 2, we need to calculate the fluxes in terms of the
traces and determine the latter by imposing continuity of the former. Now this idea has to be applied
componentwise, since the fluxes have the two components[λu,h, λp,h]. Imposing continuity of the first
component, that is to say, that[[ n× ν∇× u ]] = 0, and using a similar procedure to approximate
derivatives as in Sections 3 and 4, we get

γu,h =
{νuh}

{ν}
+

δ

2{ν}
[[ n× ν∇× uh ]] , (42)

λu,h =
〈ν〉

δ
n× {n× uh} − 〈ν〉n× {∇× uh}. (43)

Continuity of the second component of the fluxes follows from[[ n · (εu) ]] = 0. This condition
does not involve any derivative of the unknown. The simplestway to fulfil it is to take

λp,h = n · {εuh}. (44)

With the choices (43) and (44) the fluxes are automatically continuous across interelement bound-
aries and, as explained earlier, traces are not required in the discrete hybrid finite element problem. In
particular, the boundary terms in (39)-(41) are

−
∑

K

〈λu,h,vh〉∂K −
∑

K

〈λp,h, qh〉∂K +
∑

K

〈µu,h,uh〉∂K +
∑

K

〈µp,h, ph〉∂K

=
∑

E

4〈ν〉

δ
〈{n × uh}, {n × vh}〉E

−
∑

E

2〈ν〉〈∇ × uh, {n × vh}〉E −
∑

E

2〈ν〉〈∇ × vh, {n× uh}〉E

−
∑

E

〈{εuh}, [[ nqh ]] 〉E +
∑

E

〈{εvh}, [[ nph ]] 〉E ,

and therefore the dG method for the Maxwell problem we propose consists of finding[uh, ph] in the
appropriate dG spacesVh ×Qh such that

∑

K

ν〈∇ × uh,∇× vh〉K −
∑

K

ε〈∇ph,vh〉K +
∑

K

ε〈∇qh,uh〉K

+
∑

E

4〈ν〉

δ
〈{n× uh}, {n × vh}〉E

−
∑

E

2〈ν〉〈∇ × uh, {n× vh}〉E −
∑

E

2〈ν〉〈∇ × vh, {n × uh}〉E

−
∑

E

〈{εuh}, [[ nqh ]] 〉E +
∑

E

〈{εvh}, [[ nph ]] 〉E =
∑

K

〈f ,vh〉K ,

(45)

for all test functions[vh, qh] ∈ Vh × Qh. Alternative dG formulations for the Maxwell problem can
be found e.g. in [21, 20, 19, 24]. The main novelty of our approach is the introduction of the harmonic
averages.

6.3 Stabilized finite element problem

Formulation (45) is of Galerkin type. To ensure stability, appropriate interpolation spaces foruh andph
need to be chosen. In order to avoid any restriction in the choice of these interpolating spaces, a stabi-
lized finite element formulation combining continuous and discontinuous interpolations was proposed
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in [4]. In the particular case of elementwise discontinuousapproximations, the method proposed in the
paper mentioned is applicable in the present context.

We do not intend to describe in detail the stabilization method we propose, but just to explain the
essential idea. Letℓ be a characteristic length of the computational domainΩ. Since the solution to
(36)-(37) isp = 0, the solutionu remains unaltered if the Laplacian-like term−ℓ2∇ · (ε∇p) is added
to the left-hand-side of (37). In the discrete problem, thisallows one to getH1-control onph. Note that
the length scaleℓ is needed to ensure an adequate scalability of the problem.

To ensure stability ofuh in H(curl,Ω) one needs to control∇× uh anduh itself in L2(Ω). The
first control is straightforward from (45). It has been shownin [5] that the latter can be obtained if one
is able to boundh∇ · uh, properly scaled, inL2(Ω). This leads to the introduction of a least squares
form of this term in (45).

With the two ideas described in mind, the modification of (45)that we propose consists of finding
[uh, ph] in the appropriate dG spacesVh ×Qh such that

∑

K

ν〈∇ × uh,∇× vh〉K −
∑

K

ε〈∇ph,vh〉K +
∑

K

ε〈∇qh,uh〉K

+
∑

K

τK〈∇ · (εuh),∇ · (εvh)〉K +
∑

E

τE〈 [[ εn · uh ]] , [[ εn · vh ]] 〉E

+
∑

E

4〈ν〉

δ
〈{n × uh}, {n × vh}〉E

−
∑

E

2〈ν〉〈∇ × uh, {n × vh}〉E −
∑

E

2〈ν〉〈∇ × vh, {n× uh}〉E

−
∑

E

〈{εuh}, [[ nqh ]] 〉E +
∑

E

〈{εvh}, [[ nph ]] 〉E

+
∑

K

ℓ2ε〈∇ph,∇qh〉K +
∑

E

ℓ2
〈ε〉

δ
〈 [[ nph ]] , [[ nqh ]] 〉E =

∑

K

〈f ,vh〉K ,

for all test functions[vh, qh] ∈ Vh ×Qh, and where the parametersτK andτE are given by

τK = c1
h2

ℓ2ε
, τE = c2

h〈ε−1〉

ℓ2
,

c1 andc2 being algorithmic constants.

7 Numerical examples

Rather than proposing new methods, the aim of this paper has been to describe a framework to design
discontinuous Galerkin methods from hybrid formulations.However, in doing so we have been led to
the use of harmonic averages rather than arithmetic averages of the physical properties when computing
certain terms on the element edges. The aim of this section isto compare both possibilities for two
problems in which, to our knowledge, harmonic averages havenot been used before, namely, the Stokes
problem and the Maxwell problem. Therefore, we will comparethe formulations we have proposed with
those obtained replacing〈ν〉 and〈ν−1〉 by {ν} and{ν−1}, respectively.

For the numerical examples we have considered, the difference in the solution using the two ap-
proachesturn out to be very small. However, we observed an enormous difference in the performance of
domain decomposition preconditioners for iterative solvers, when strong physical parameter jumps are
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present on the sub-domain interfaces. This is what we reportnext. We show that the use of harmonic
averages leads to a much better performance of iterative solvers, with the number of iterations quite
insensitive to the ratio of physical properties between neighboring elements. We start with Maxwell’s
problem and then show an example of Stokes’ problem, since the former happens to be somewhat
simpler than the latter. Triangular linear finite elements have been used for the discretization and the
sub-domain linear systems have been solved with a multifrontal sparse direct solver.

7.1 Maxwell’s problem

We consider in this example Maxwell’s problem for two different materials, the first one located in
Ω1 = [−1, 0] × [−1, 1] and the second one inΩ2 = [0, 1] × [−1, 1]. The physical domain in which the
test problem is solved isΩ ≡ Ω1 ∪ Ω2. As indicated above, we compare the results obtained with the
formulation proposed in this work, which uses harmonic averages of the physical coefficients in the dG
terms, with a formulation that uses arithmetic averages.

Let us consider the test problem with exact solution

u(x, y) =















(x+ y − x2 + xy + y2 + x3 − 3x2y − 3xy2 + y3,
2x− y + 1

2
x2 + 2xy − 1

2
y2 − x3 − 3x2y + 3xy2 + y3) onΩ1

(x+ ε̄y − ε̄x2 + xy + ε̄y2 + x3 − 3ε̄x2y − 3xy2 + ε̄y3,
(ε̄+ ν̄)x− y + 1

2
x2 + 2ε̄xy − 1

2
y2 − ε̄x3 − 3x2y + 3ε̄xy2 + y3) onΩ2,

(46)

whereε̄ = ε1
ε2

andν̄ = ν1
ν2

, εi andνi being the physical properties inΩi, i = 1, 2. This function is the
solution of problem (36)-(37) with the appropriate Dirichlet boundary conditions and zero forcing term.

The accuracy and convergence rates obtained for the two formulations considered (with harmonic
means and with arithmetic means) are almost identical, and so, this is not a point that would justify one
choice over the other one. The importance of using harmonic averages comes when considering domain
decomposition techniques with material interfaces. In Figure 4 we show how the jump on the physical
coefficientν between the two materials deteriorates the estimated condition number of the final linear
system. We have consideredν1 = 1 andν2 = 1, 10, 100, 1000, 10000. Jumps onε do not alter the
condition number substantially. The results have been presented for two mesh sizes, namely,h = 2−i,
with i = 3, 4. As expected, the condition number deteriorates ash ց 0.
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Figure 4: Condition number of the system matrix. The legend represents(i, ε1/ε2) whereh = 2−i.

As a result, the numerical approximation of electromagnetic problems that involve materials with
very different physical properties becomes a challenging task due to the problems encountered when
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solving the linear system. Direct solvers will drasticallyreduce their accuracy and iterative methods
their convergence. Let us write the resulting system matrixfor the problem at hand as

A =

(

A11 A12

A21 A22

)

,

where the nodes in the set 1 are those that belong to finite elementsK ⊂ Ω1, and analogously for
the set 2. An important fact of the harmonic average is that, as ν2 → ∞ for ν1 fixed, the columns
associated to 1-nodes remain bounded. Now, we can consider ablock-Jacobi preconditioner based on a
nonoverlapping mesh partition (see [27]), i.e. the matrix

P =

(

A11 0
0 A22

)

.

Using Richardson iterations with this preconditioner leads to block-Jacobi iterations. In Figure 5 we plot
the number of Richardson iterations for the preconditionedsystem for the two different formulations
against the valueν2, for ν1 = 1 fixed. We have considered different values for the mesh sizeh and
ε. We can observe from the results in this figure that the preconditioned matrixP−1A is much better
conditioned for the harmonic averages, being insensitive to coefficient jumps. On the contrary, the
preconditioned matrix is still ill-conditioned when usingarithmetic averages asν increases, and forν
large enough it does not converge at all, reaching the maximum of 5 000 iterations imposed in the code.
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Figure 5: Number of Richardson iterations required till convergence, for the two different formulations:
harmonic and arithmetic averages forν. The legend represents(i, ε1/ε2) whereh = 2−i.

7.2 Stokes’ problem

Let us consider the numerical approximation of system (25)-(26) with a discontinuous value ofν. This
type of problem is usually found in the simulation of incompressible elastic materials. We consider the
test problem with exact solutionu = (x,−y) on Ω andp = 0 on Ω1 andp = ν2 − ν1 on Ω2. The
resulting problem is solved by the GMRES iterative solver (see [25]) and the same preconditioner as
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above. This problem turns out to be more difficult to solve than the previous one, and non-orthonormal
Richardson iterations failed to converge in all cases when using arithmetic averages.

In Figure 6(a) we show the number of iterations forν1 = 1 andν2 = 1, 10, 100, 1000, 10000.
Again, two different values ofh = 2−i, with i = 3, 4, have been considered. The harmonic averages
lead to a much lower number of iterations, since it even improves as coefficient jumps increase. On
the other hand, arithmetic averages lead to a harder to solveinterface problem that requires a too large
number of GMRES iterations. Estimates for the condition number of the preconditioned matrix are
plotted in Figure 6(b). As expected, the condition number for harmonic averages remains bounded as
ν1
ν2

ց 0 whereas it explodes for arithmetic averages.
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Figure 6: Number of GMRES iterations and condition number ofthe preconditioned matrix for har-
monic and arithmetic averages and different values ofh.

8 Conclusions

We have proposed a framework for the design of discontinuousGalerkin methods for elliptic problems
based on hybrid three-field formulations. Starting with a problem posed in terms of the primal field, its
fluxes and its traces on the element boundaries, the final problem is obtained after approximating the
last two unknowns in terms of the first. In particular, fluxes are computed from a reconstruction of the
unknown from the approximated primal variable and its traces, and are imposedto be continuous, an
essential feature of the procedure we propose.

The general idea described has been applied to four different elliptic problems. The resulting meth-
ods are very similar to standard dG formulations, with some particular features. First, symmetry of the
formulation, and the subsequent adjoint consistency, is shown to be a consequence of a natural choice
for the test functions. Likewise, the stabilization term ininterior penalty methods is shown to be related
to the calculation of derivatives of the reconstructed unknown. It is also shown that in order to have
continuity of fluxes harmonic averages rather than arithmetic averages of the physical properties need
to be taken on the element edges. For the Stokes problem we have introduced an original scaling of the
pressure that has been also motivated from the continuity offluxes. Finally, we have described how to
treat stabilization terms introduced in order to avoid restrictions in the choice of the interpolating spaces
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posed by inf-sup conditions.
Even if the main objective of this work has been to present a methodology to design dG methods

rather than new formulations, we have also tested numerically the use of harmonic averages of physical
variables on the element edges. For the Stokes and the Maxwell problem we are not aware of other
methods that use this treatment of the physical coefficients. We have observed that the accuracy of the
solution is similar to that obtained with arithmetic averages, but the performance of domain decompo-
sition preconditioned iterative procedures with strong physical coefficient jumps is greatly improved.
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