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Abstract. In this work, we propose an enhanced implementation of balancing Neumann-
Neumann (BNN) preconditioning together with a detailed numerical comparison against the balanc-
ing domain decomposition by constraints (BDDC) preconditioner. As model problems, we consider
the Poisson and linear elasticity problems. On one hand, we propose a novel way to deal with singular
matrices and pseudo-inverses appearing in local solvers. It is based on a kernel identification strategy
that allows us to efficiently compute the action of the pseudo-inverse via local indefinite solvers. We
further show how, identifying a minimum set of degrees of freedom to be fixed, an equivalent definite
system can be solved instead, even in the elastic case. On the other hand, we propose a simple
modification of the preconditioned conjugate gradient (PCG) algorithm that reduces the number of
Dirichlet solvers to only one per iteration, leading to similar computational cost as additive methods.
After these improvements of the BNN PCG algorithm, we compare its performance against that of
the BDDC preconditioners on a pair of large-scale distributed-memory platforms. The enhanced
BNN method is a competitive preconditioner for three-dimensional Poisson and elasticity problems,
and outperforms the BDDC method in many cases.
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1. Introduction. Many scientific phenomena are governed by partial differen-
tial equations (PDEs). The solution of these problems can be approximated by a
discretization (and possibly linearization) of these equations e.g. via finite element
(FE) methods. As a result, we end up with a linear system of equations that can be
solved with the aid of computers. For complex realistic applications the systems are
so large that can only be solved in distributed-memory platforms. Domain decompo-
sition (DD) algorithms that require a partition of the original problem (domain) into
sub-domains (e.g. one per processor) have been designed with this purpose. They are
used as preconditioners of iterative solvers and involve the solution of local problems
that can be done in parallel combined with inter-processor communication.

DD preconditioners that only require to solve local problems are highly parallel,
but unfortunately they are not algorithmically scalable, i.e. the number of iterations
increase with the number of processors and/or the size of the original linear system. In
order to improve the situation, a coarse solver must be introduced, which couples all
the sub-domains. The dimension of the coarse-grid problem is linear with respect to
the number of processors, and small compared to the size of the original problem for
interesting ranges of applicability. Although the amount of parallelism to be exploited
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for the solution of the coarse-grid problem is small (relatively to that of the fine-grid
problem), effective coarse solvers make the number of iterations almost independent
of the size of the problem and number of processors.

The best suited “local” DD preconditioner is the so-called Neumann-Neumann
(NN) preconditioner, since it does not require a coloring technique. Many systems
arising from the discretization of PDEs do not have a zero-order (reaction) term and
pure Neumann problems are singular, with a known kernel space. As a result, the
solution of the local (pure) Neumann problems require a solvability condition, i.e. the
residual must be balanced. Mandel proposed in [21] to consider a coarse space which
makes the resulting local problems balanced, an approach related to the deflation
techniques in [26, 33]. In order to attain this, the coarse and NN preconditioners
must be combined in a multiplicative way. In addition, the resulting method is quasi-
optimal (algorithmically scalable) with a poly-logarithmic expression of the condition

number of the preconditioned system κBNN = 1 + log2( H
h
), where

(
H
h

)d
is the size of

the local problems; d is the space dimension. Keeping fixed the load per processor
(local system size), the number of iterations of the PCG solver is (asymptotically)
independent of the number of processors and size of the global system. This desirable
property is a must for achieving weak scalability [17].

The original BNN algorithm requires to compute the coarse-grid problem exactly
and the coarse-grid system matrix has a denser stencil [23] than the original FE matrix.
Further, since it is a multiplicative preconditioner, two matrix-vector products are
needed per PCG iteration (see [21,32]), i.e. two Dirichlet solvers, whereas additive DD
methods only require one. These considerations have probably motivated the BDDC
preconditioner by Dohrmann [9]. The BDDC preconditioner is usually considered an
improved version of the BNN preconditioner [22, 23]. The basis for the coarse solver
is non-conforming (when using continuous FEs) and as a result the coarse solver is
not exact. Further, coarse and fine components of the preconditioner are combined
in an additive way. .

2. Enhancements in this work. The target of this work is to rehabilitate
the BNN preconditioner for large-scale computations in computational fluid and solid
mechanics. We consider Poisson’s problem and linear elasticity. The first one is the
bottleneck of fluid simulations which use pressure Schur complement-type algorithms
[3, 10], whereas the second is the kernel of any solid mechanics constitutive model.

The first enhancement we propose regards to the treatment of the singular local
matrices. We observe that the local indefinite problems can be transformed into
equivalent positive definite (PD) ones by simply fixing judiciously picked degrees of
freedom. The choice of the DoFs to fix for the Laplacian problem is straightforward
but less obvious in the case of three-dimensional elasticity. The final algorithm does
not require to solve additional local problems or geometrical and modeling information
and can straightforwardly use any off-the-shell direct solver. At every iteration of the
PCG algorithm, only a backward and forward substitution is performed to evaluate
the local problems, and no singular value decomposition (SVD) is used. The resulting
method can also be applicable to other algorithms that involve the solution of local
pure Neumann problems, as in the FETI method, and is certainly competitive with
respect to previous approaches [8, 11, 13, 24]. For the (now definite) local problems,
we have at our disposal the most advanced sparse direct solvers for the local problems
which make an extensive use of level 3 BLAS libraries.

The second enhancement is the reduction of CPU cost per BNN-PCG iteration.
We have designed an alternative algorithm which requires only one Dirichlet and one
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Neumann solver per iteration. It implies a reduction of one Dirichlet solver with
respect to the classical BNN preconditioned conjugate gradient [21,32]. This way, the
number of local problems to be solved is identical as for additive methods like BDDC.
We observe that this CPU reduction can also be attained by considering a deflated
algorithm, algorithm DEF1 in [31], combined with a NN preconditioner. However,
the algorithm we propose is a re-statement of A-DEF2 in [31], which has been proved
to be more stable to perturbations.

Finally, we show a simple way to deal with non-balanced residual, which allows one
to consider inexact solvers for the coarse problem and additive BNN preconditioners.

With the rehabilitation of the BNN algorithm proposed in this work, together
with the previous observations, we carry out a detailed comparison of BNN and BDDC
methods. As far as we know, there is not a comparison of this type in the literature.
Again, we have considered Poisson and elasticity problems in both two and three
space dimensions.

The outline of the article is as follows. In Section 3 we introduce the abstract
Schwarz setting, non-overlapping DD and the BNN preconditioner. In Section 4 we
show how to avoid the pseudo-inverses, make the local problems PD and consider inex-
act solvers. We propose a modified PCG algorithm and the corresponding elimination
of one Dirichlet solver per iteration in Section 5. Section 6 includes a detailed nu-
merical experimentation on distributed memory machines (DDMs) up to 4,096 cores
and 0.4 billion DoFs, with special emphasis on the evaluation of the weak scalability.
Finally, some conclusions are drawn in Section 8.

3. Abstract Schwarz theory. Let us consider a bounded polyhedral domain
Ω ∈ Rd with d = 2, 3. In this work, we will focus on two different second-order model
problems: the Poisson problem and linear elasticity. We can state both problems as
follows: find u ∈ V cont such that

(3.1) a(u, v) = `(v), for any v ∈ V cont,

where a(·, ·) : V cont × V cont → R and `(·) : V cont → R. For the Poisson problem, we
take V cont := H1

0 (Ω) and define the bilinear form as

(3.2) a(v1, v2) :=

∫
Ω

∇v1 · ∇v2dx, for any v1, v2 ∈ H1
0 (Ω).

We can analogously state the (compressible) linear elasticity problem by considering
the vector-valued space of functions, i.e. V cont := H1

0 (Ω)d and the bilinear form

(3.3) a(v1, v2) :=

∫
Ω

σs(v1) : σs(v2)dx, for any v1, v2 ∈ H1
0 (Ω)d.

The stress tensor is defined as σs(v) := 2µε(v)+λ(∇·v)I, where ε(v) = 1
2 (∇v+(∇v)t)

is the strain rate tensor, µ and λ are the Lamé constants, I denotes the identity tensor
and the super-script t stands for transpose operator. We refer to [5] for the quasi-
incompressible case in the frame of BNN preconditioning.

We consider a global conforming mesh (partition) T = {Ki : i = 1, . . . , nelm} of
Ω into d-simplices, hexahedra (d = 3) or quadrilaterals (d = 2) [6]. Let us introduce
the conforming FE space V ⊂ H1

0 (Ω). We define the finite-dimensional linear PD
operator (matrix) A : V → V ′ by Av = a(v, ·) for any v ∈ V and the linear functional
(vector) f ∈ V ′ such that f(v) = `(v) for any v ∈ V . Then, the discretization of
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problem (3.1) leads to the following algebraic system:

find u ∈ V such that Au = f.(3.4)

We introduce a set of auxiliary vector spaces {Vi : i = 1, . . . , N}, a set of (at least)
semi-PD operators Bi : Vi → V ′i and a set of injections Ii : Vi → V . An abstract

additive Schwarz preconditioner B : V ′ → B for A is defined by B =
∑N
i=0 IiB

−1
i Iti ;

the transpose operator Iti : V ′ → V ′i is defined as 〈Iti g, vi〉 = 〈g, Iivi〉. In order to

get a full rank preconditioner B, we assume that V =
∑N
i=0 IiVi. The operators

IiB
−1
i Iti can alternatively be combined in a multiplicative or hybrid fashion (see [32]).

In Section 3.2 we define these ingredients for the BNN preconditioner.

3.1. Non-overlapping domain decomposition. We consider a partition of Ω
into subdomains {Ωi : i = 1, . . . , nsbd} (domain decomposition) and a partition of T
into local meshes {Ti : i = 1, . . . , nsbd} such that Ti is a conforming mesh of Ωi.

Let us assume for simplicity that both the FE subdomain partition and T are
shape regular and quasi-uniform.The diameter of Ωi is denoted by Hi whereas H :=
max{Hi : i = 1, . . . , nsbd}. Analogously, given a FE K ∈ T , hK denotes its diameter
and h = maxK∈T hK .

The interface of Ωi is defined by Γi = ∂Ωj \ ∂Ω. The whole interface (skeleton)
of the domain decomposition is Γ =

⋃nsbd

i=1 Γi. Following the notation in [7], the set
of nodes of Ti that belong to Γi is denoted by Γih (idem for Γ and Γh). Then, we can
define the space V 0 of bubble functions in V that vanish on Γ and its A-orthogonal
complement H, i.e. 〈Aϕ, v0〉 = 0 for any ϕ ∈ H and v0 ∈ V 0; H is usually called the
space of harmonic extensions [7]. As a result, the solution of the original problem can
be written as u = u0 + ϕ, where

〈Au0, v0〉 = 〈f, v0〉, for any v0 ∈ V 0,(3.5a)

〈Aϕ, θ〉 = 〈f −Au0, θ〉, for any θ ∈ H.(3.5b)

Let us define the Schur complement operator S : H → H ′ by 〈Sϕ, φ〉 = 〈Aϕ, φ〉, for
any ϕ, φ ∈ H. Problem (3.5b) can be re-stated as:

Sϕ = γ, where γ = (f −Au0)(θ) for any θ ∈ H,(3.6)

whereas u0 can be obtained by solving in parallel local Dirichlet problems [32]. Finally,
let us remark that any function θ ∈ H is uniquely defined by its value on the skeleton
nodes Γh [7, Lemma 7.5.20]. As a result, (3.6) can be stated as a linear system for
the skeleton unknowns.

We construct the local FE spaces {Vi : i = 1, . . . , nsbd} associated to Ti (in the
same way V is constructed from T ) where we enforce that any element of Vi vanishes
on ∂Ω ∩ ∂Ωi. We say that Ωi is floating if ∂Ω ∩ ∂Ωi = ∅ and non-floating otherwise.
For every local space, we define the bilinear form

ai(u, v) =

∫
Ωi

∇u · ∇vdx, for any u, v ∈ Vi,

(analogously for elasticity) as well as the matrix Ai : Vi → V ′i , defined by Aiv = a(v, ·)
for v ∈ Vi. Ai is semi-PD for floating sub-domains and PD for non-floating ones.
Then, we define the space Hi ⊂ Vi as the Ai-orthogonal space of bubbles V 0

i . The
local Schur complement operator Si : Hi → H ′i is defined by 〈Siϕ, θ〉 = 〈Aiϕ, θ〉 for
any ϕ, θ ∈ Hi.
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3.2. Balancing Neumann-Neumann preconditioner. A DD preconditioner
must be a good approximation to S−1 whose application allows for a maximum
amount of parallelization. The key ingredients of any Schwarz preconditioner are
(Hi, Ii, B

−1
i ), i.e. the sub-spaces, injections and local preconditioners. The local

spaces Hi for i = 1, . . . , nsbd have been defined above. In addition, we define the
coarse space H0 in such a way that Iiv ∈ H0 for any v ∈ ker(Si) and i = 1, . . . , nsbd.
Let us denote by {φiα, α = 1, . . . , n̄ker} a basis for the kernel of Si without Dirichlet
boundary conditions; an explicit definition of these vectors can be found in Section
4.1. For the elastic problem in three dimensions, the dimension of the potential ker-
nel n̄ker is six (rigid body motions) whereas only one (the constant function) for the
Laplacian problem. Do not confuse n̄ker with the true dimension of ker(Si), which
will be denoted by nker(i) below. An arbitrary function Iiφ

i
α will not belong to V in

general, since it can violate the subdomain homogeneous Dirichlet boundary condi-
tions. So, we consider a modification of these functions, denoted by Dir(Iiφ

i
α), which

consists on assigning the DoFs of Dirichlet type to zero. We consider the coarse space

H0 = {Dir(Iiφ
i
α) : i = 1, . . . , nsbd, α = 1, . . . , n̄ker}.(3.7)

Let us remark that this particular choice of the coarse space always includes n̄ker

coarse DoFs per subdomain.
The injection operators for the local sub-spaces Ii : Hi → H, for i = 1, . . . , nsbd

are built as follows. Since any function of H is uniquely defined by its values on Γh,
we define

Iiϕi(p) =

{ 1
N(p)ϕi(p) if p ∈ Γih,

0 otherwise.
,

where ϕi(p) can be an scalar or a vector (e.g., for the elastic problem); N(p) provides
the number of subdomains that contain a given node p. Further, I0 is the trivial
injection.

Let us denote by S0 = It0SI0 the Galerkin projection of the Schur complement
on the coarse space H0. We can take B−1

0 = I0S
−1
0 It0. In this case, the coarse

preconditioner is of Galerkin type, also called exact solver [32]. On the other hand,

we take B−1
i = IiS

†
i I
t
i , using the pseudo-inverse (S†i ) of the local Schur complement

Si. On non-floating subdomains S†i = S−1
i and on floating ones it should be computed,

in principle, from a SVD of Si (see Section 4). When a local residual γi is balanced,
i.e.

γi ∈ ker(Si)
⊥,(3.8)

the local problem Siϕi = γi has infinite solutions and S†i γi is a particular one (the one
orthogonal to ker(Si)). This solvability condition, which motivated the design of the
BNN preconditioner, is satisfied by Itiγ, when the global residual γ ∈ H⊥0 . Therefore,
a multiplicative combination of B−1

0 , the NN preconditioner

B−1
NN :=

N∑
i=1

IiS
†
i I
t
i(3.9)

and B−1
0 is considered and the resulting hybrid preconditioner is symmetric. After

some algebraic manipulations, taking into account that the coarse correction B0 is
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exact (of Galerkin type), the resulting preconditioner can be written as follows [31]:

B−1
BNN = B−1

0 + (I −B−1
0 S)B−1

NN(I − SB−1
0 ).(3.10)

The left-preconditioned BNN system reads as

B−1
BNNSϕ = B−1

BNNγ.

4. Treatment of singular local matrices. One of the drawbacks associated
to the BNN preconditioner (as well as FETI methods) is the requirement to deal with
the possibly singular local matrices {Si : i = 1, . . . , nsbd}. Clearly, the use of SVDs
for these problems [15] is possible but not acceptable in terms of CPU cost.

The treatment of the singular local matrices has been considered by many authors,
mainly for the elasticity problem. De Roeck and Le Tallec proposed in [25] to perturb
the problem, replacing zero pivots in a Gaussian elimination algorithm by positive
(small) values (see also [13] for FETI methods). Unfortunately, this approach would
prevent one to use out-of-the-box direct solvers like PARDISO [27,28]or WSMP [18],
since it is intrusive.∗ One popular approach is the one proposed in [11], which considers
a geometrical algorithm to obtain the size of the kernel nker(i) and a subsequent
factorization with full pivoting of the original matrix till reaching the nker(i) last rows,
where a singular value decomposition (SVD) is used to compute the Schur complement
of the remaining DoFs (see also [11,24]). The use of full pivoting is prohibitive and the
very recent work [8] proposes a clever modification of the algorithm that determines
a lower bound of the maximum size of the upper diagonal block that is nonsingular
and can be factorized with any existing solver whereas the Schur complement for
the last rows is again performed by a SVD. A non-intrusive version of this approach
requires to solve as many local problems as untouched rows in order to build the
Schur complement, which has an important impact in the computational cost of the
method. Even more important, this methodology does not provide a basis for the
kernel, which is required for BNN preconditioning.

In this work, we consider a different approach. First, we exploit the knowledge of
the differential operator in hand to propose a kernel basis detection, which is purely
algebraic. Once a kernel basis is known, the action of S†i can be computed by solving
an indefinite problem, as shown in Section 4.1. Further, the solvability condition
(3.8) allows us to prove that an equivalent definite system can be obtained by simply
fixing judiciously picked degrees of freedom. The final algorithm does not require
to solve additional local problems or geometrical and modeling information and can
straightforwardly use any off-the-shell direct solver. In Section 4.2 we present the
method for the elastic problem and sketch its simplification to the Poisson problem,
which is straightforward.

Finally, we observe that the BNN preconditioner with indefinite local systems does
not require the solvability condition (3.8) to be a full rank and effective preconditioner.
It permits one to consider inexact coarse solvers or an additive version of the BNN
method.†. We finally illustrate the contributions presented herein with the example
in Section 4.4.

∗An intrusive approach requires the sources of the direct solver software. As an example, none
of these solvers provide the sources for modifications.
†To the best of our knowledge, an additive BNN method has not been proposed so far (see Section

4.3)
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4.1. Local kernel identification. Let us define the space Rbd(Ωi) = {ϕα :
α = 1, . . . , 3(d−1)} of potential rigid-body motions ϕα for Ωi; this space has dimension
3(d− 1). We consider the three-dimensional elasticity problem. The functions ϕα are
defined by

ϕα(p) = rα(xp), for any p ∈ Ωi,

where the vector-valued functions rα are:

r1 =

[
1
0
0

]
, r2 =

[
0
1
0

]
, r3 =

[
0
0
1

]
, r4 =

[
x2

−x1

0

]
, r5 =

[
−x3

0
x1

]
, r6 =

[
0
x3

−x2

]
.

The kernel of Ai (and subsequently Si) can only be composed of linear combinations
of displacement fields in the rigid-body space. The situation of floating subdomains
is simple, since ker(Si) ≡ Rbd(Ωi). On the other hand, when three not aligned (two
in two dimensions) vertices of ∂Ωi have all the displacement components fixed, the
kernel of Si is empty. Intermediate situations cannot be straightforwardly handled.

In those intermediate situations, we propose the following algorithm, that extracts
a basis for the kernel of the local problem. At every subdomain, we compute the
Galerkin projection of Ai onto Rbd(Ωi), denoted by ARbd

i :

(ARbd
i )α,β = rα ·Airβ , α, β = 1, . . . , 6.

It can easily be computed by six matrix-vector products Aiϕα; no Dirichlet solvers are
required at this step. Let us remark that ARbd

i ∈ R6×6 only includes non-zero terms
related to the imposition of boundary conditions, since all the differential terms are
canceled by rigid-body motions. Now, we can perform a SVD decomposition of ARbd

i .
For this very small geometrical matrix, we do not have to distinguish between very
small eigenvalues that come from the ill-conditioned matrix Ai, a problem commented
in [11]. Further, this step has a negligible CPU cost, due to the size of the matrix.
Finally, this process does not require any additional information but the system ma-
trix, an improvement with respect to [11]. However, some pathological situations can
be devised in which the geometric matrix ARbd

i is ill-conditioned too (see some ex-
amples in [11]) even though these pathological situations are extremely unlikely after
automatic mesh-partitioning of a well-posed problem. In these situations, we have to
decide among those elements that belong to the coarse basis and those that do not,
and a “small tolerance” must be used with this purpose. However, the great difference
of BNN with respect to FETI methods is the fact that to add to the coarse space rigid
body motions that are not really in the kernel but correspond to small eigenvalues is
not a problem at all. On the contrary, this is the raison d’être of deflated algorithms,
and extensively BNN preconditioning.

In these pathological situations (and finite arithmetic) the kernel of the local oper-
ator is not well defined (as it depends on a “small tolerance”) and different algorithms
for SVD might produce different results. It could be argued which one deserves the
name BNN (the one that identifies the real kernel) but the present one works without
any trouble (call it enhanced BNN if desired). In fact, the “small coefficient” ε to be
picked is not a negative side of the algorithm but an strength, since we can identify
ill-posed rigid-body modes and include them in the coarse space, making the selection
of the coarse space adaptively based on the spectrum of the matrix, which is a strong
point in the frame of deflation and projection-type iterative solvers.
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We assume exact arithmetics for the subsequent discussion. We denote by {xiα :
α = 1, . . . , nker(i)} a basis of ker(ARbd

i ). The obvious extensions

viα =

n̄ker∑
β=1

xiα
∣∣
β
rβ , α = 1, . . . , nker(i)

form a basis of ker(Ai) and their restriction onto Γih, {φiα : α = 1, . . . , nker(i)}, a basis

of ker(Si). At this point S†i γ is the solution of the problem [15]: find ϕ ∈ ker(Si)
⊥

such that

〈Siϕ, θ〉 = 〈γ, θ〉 for any θ ∈ ker(Si)
⊥,(4.1)

which, in matrix form, reads[
Si Ψt

i

Ψi 0

] [
ϕ
λ

]
=

[
γ
0

]
,

where Ψi ∈ Rnker(i)×nnin with rows {φiα}; nnin denotes the number of interface DoFs.
Note that problem (4.1) is well-posed (and it has a unique solution) and that when
condition (3.8) is satisfied, λ = 0 and Siϕ = γ.

4.2. Definite local solvers. Our goal now is to find a system equivalent to
(4.1) in which the restriction can be easily eliminated to obtain a definite matrix. To
do so, let us compute a row echelon form of Ψi, denoted by Ψ̃i [30]. ‡ The rows of
Ψ̃i, that we will denote as φ̃α, for α = 1, . . . , nker(i), form another basis for ker(Si).
Now, on each row α we can identify the index β(α) (in fact a DoF label) such that
column β(α) of Ψ̃i is eα, for α = 1, . . . , nker(i). Then we can define a 0 − 1 matrix
∆ ∈ Rnker(i)×nnin whose rows ∆α have only one nonzero entry (∆α)β(α) = 1, for
α = 1, . . . , nker(i). Abusing of notation, we will also denote by ∆ the vectorial space
spanned by the rows of ∆, whose dimension is also nker(i).

The Laplacian case is straightforward. For non-floating subdomains only, we pick
an arbitrary a ∈ Γih and define ∆ ∈ R(1 × nnin) such that the only nonzero value is
(∆)1a = 1.

We have the following result:
Proposition 4.1. Let us consider a subdomain Ωi (1 ≤ i ≤ nsbd). When

condition (3.8) is satisfied, S†i γ is equal to (up to an element of ker(Si)) ϕ̄ ∈ ∆⊥,
solution of

〈Siϕ̄, θ〉 = 〈γ, θ〉 for any θ ∈ ∆⊥.(4.2)

Proof. First observe that ∆⊥ ∩ ker(Si) = {0}, that is, for any θ ∈ ker(Si):

(θ, δ) = 0 for any δ ∈ ∆ ⇐⇒ θ = 0.(4.3)

‡In row echelon form, there is at least one column equal to ei, for i = 1, . . . , nker(i), where ei is
equal to one at i and zero elsewhere. As an example, for an arbitrary matrix Ψ composed by three
eigenvectors, by simple row manipulations we can always end up with a matrix in row echelon form: ∗ . . . ∗ 1 ∗ . . . ∗ 0 ∗ . . . ∗ 0 ∗ . . . ∗

∗ . . . ∗ 0 ∗ . . . ∗ 1 ∗ . . . ∗ 0 ∗ . . . ∗
∗ . . . ∗ 0 ∗ . . . ∗ 0 ∗ . . . ∗ 1 ∗ . . . ∗

 .
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This result is easily checked by the construction of ∆. Any θ ∈ ker(Si) can be

expressed as θ =
∑nker(i)
α=1 θαφ̃α and any δ ∈ ∆ as δ =

∑nker(i)
α=1 δα∆α. By construction,

(φ̃α,∆β) = 0 for any α 6= β(4.4)

implies θα = 0 for α = 1, . . . , nker(i).
Further, using the equality dim(∆) = dim(ker(Si)) = nker(i) and the orthogo-

nality property (4.4), we readily get Hi = ∆⊥ ⊕ ker(Si). Therefore problem (4.2) is
well-posed (and has a unique solution).

Now, adding to the test function of (4.2) any element of ker(Si), ϕ̄ satisfies

〈Siϕ̄, θ〉 = 〈γ, θ〉 for any θ ∈ Hi,(4.5)

where we have used the fact that γ satisfies the solvability condition (3.8). In the
same way (Hi = ker(Si)

⊥ ⊕ ker(Si)), adding to the test function of (4.1) any element

of ker(Si), ϕ = S†i γ satisfies

〈Siϕ, θ〉 = 〈γ, θ〉 for any θ ∈ Hi.(4.6)

Subtracting (4.5) and (4.6), we readily prove that S†i γ and ϕ̄ can only differ in an
element of ker(Si), proving the proposition.

In fact, ∆ is never built in practice and the system (4.2) only requires to fix the
β(i) DoF (associated to the i-component of the displacement) for i = 1, . . . ,m. The
vectors φ̃α are not needed in a implementation of the preconditioner since the Iiφ̃α
are automatically included in the coarse space H0 defined in (3.7). Thus, we only
need to know the rows β(α), which can be obtained in O(n2

ker(i)) operations and so,
in a negligible CPU cost.

This fact has an impact on the computational cost of the BNN algorithm. Sys-
tem (4.2) is very appealing from a computational point of view. The constraint in
system (4.2) can be explicitly enforced, i.e. the corresponding Lagrange multiplier
can be easily eliminated, leading to a PD matrix, without the need to introduce any
perturbation to the problem. At this point, this system of equations can be solved
by any direct solver for PD matrices. We show in Section 4.4 the impact of using
indefinite vs. definite solvers on the CPU cost, which makes the definite version more
appealing in the multiplicative case.

4.3. Inexact and additive BNN. The use of (4.2) requires γ ∈ ker(Si)
⊥.

We can make it true for hybrid preconditioners where the coarse solver is solved
exactly, but not for additive ones. In case the residual is not exactly balanced we
can still use (4.1), which is indefinite but nonsingular. This would be, in fact, a very
easy implementation of the (non-scalable) NN preconditioner. But we can also easily
consider an additive BNN preconditioner

B−1
ABNN = B−1

0 +B−1
NN,

where S†i is applied solving the local problem (4.1). This way, we can use any existing
direct solver for indefinite matrices without modifications or perturbations; PARDISO
and WSMP all have this capability. We can easily check that this is in fact the ad-
ditive version of B−1

BNN, since (4.2) and (4.1) are equivalent when applied to balanced
residuals. It is easy to prove that the additive preconditioner is a full rank precon-
ditioner. We have performed some numerical experiments so far, showing the good
performance of the method. However, it is always outperformed by the enhanced
version of the multiplicative BNN algorithm. For this reason, we have decided not to
include these experiments in this work.
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Fig. 4.1. Convergence history for the 2-norm of the PCG residual of three different BNN
variants.

4.4. An illustrative example. Let us illustrate with a numerical example the
effect of the techniques proposed in this section on the convergence of BNN PCG
iterations. We consider the linear elasticity problem on a rectangular prism Ω =
[0, 5] × [0, 3] × [0, 1] with homogeneous Dirichlet boundary conditions u = 0 on the
face contained on the y = 0 plane and on the corners (5, 3, 1) and (5, 3, 0), and
uz = 0 on the corners (0, 3, 0) and (0, 3, 1). The rest of the boundary is subject to
homogeneous Neumann boundary conditions. For the discretization, P1 elements and
two unstructured meshes of tetrahedra were generated using a mesh generator with a
mesh diameter of h = 1

5 and h = 1
10 . The resulting meshes have 18,577 tetrahedra and

3,814 nodes, and 146,268 tetrahedra and 27,348 nodes, respectively. These meshes
were then partitioned into 64 subdomains (i.e., local meshes) using METIS [19].

We checked that the proposed algorithm properly identifies the kernel of the local
elasticity operator for all subdomains in the partition, which for this particular case
is composed of kernels with dimension 6, 5, 3, and 0. In Figure 4.1 (a) and (b) we
show, for h = 1

5 and h = 1
10 , respectively, the convergence history for the 2-norm of

the PCG residual of three different BNN variants. The variant labeled as “INDEF.
SVD” uses the proposed algorithm only for kernel basis detection and therefore re-
quires the solution of local indefinite problems, that labeled as “DEF. SVD+REF”
uses the proposed machinery for both basis kernel detection and subsequent identi-
fication of DoFs to obtain an equivalent symmetric-PD local problem, while the one
labeled as “INDEF. BLIND” does not use this machinery at all and blindly assumes
that all possible rigid-body motions are included in the kernel of the local operator.
Figure 4.1 shows that a wrong basis kernel detection has a non-negligible negative
impact on the convergence of the PCG solver and that this impact is more severe
with finer meshes. Besides, “INDEF. SVD” and “DEF. SVD+REF” are equivalent
(up-to rounding errors), as enunciated by Proposition 4.1.

5. An enhanced preconditioned conjugate gradient algorithm. The BNN
preconditioner is usually applied in a PCG algorithm. As it has been observed in [31],
after some manipulations (assuming exact arithmetics), the BNN-PCG algorithm can
be stated in many ways. The original expression of the BNN preconditioner in (3.10)
requires to compute two coarse solvers, one Neumann problem and two Dirichlet
problems (associated to the application of the Schur complement system matrix S);
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this full version is the one denoted BNN in [31], which will be denoted (f)BNN herein.
However, as already pointed out by Mandel in his seminal paper [21], the application
of the BNN preconditioner in the PCG algorithm always leads to a balanced residual
iterate. Thus, we can always omit the first coarse preconditioner B−1

0 in (f)BNN
by properly balancing the initial residual. That is to say, given as initial guess x̃0,
we compute r̃0 = b − Sx̃0, the coarse correction x0 = x̃0 + B−1

C r̃0 and the balanced
residual r0 = (I−SB−1

C )r̃0. We can easily check that the first (coarse) preconditioner
can be eliminated, since B−1

C rj = 0 at all the iterations of the PCG algorithm. As a
result, after the initial balancing, the BNN preconditioner reads as:

B−1
BNN = B−1

C +B−1
NN −B

−1
C SB−1

NN = B−1
C + (I −B−1

C S)B−1
NN .

This version of the BNN preconditioner is called A-DEF2 in [31]. A further simplifica-
tion is possible. Assuming again the fact that the residual is balanced, i.e. B−1

C rj = 0,
we can simplify the previous expression as

B−1
BNN = (I −B−1

C S)B−1
NN .

This method is the R-BNN2 preconditioner in [31], which is also the preconditioner
proposed in [32, Fig. 6.2]. However, this simplification has been proved to have a
negative impact in the stability and convergence properties of the resulting algorithm
[31]. This is due to the fact that the loss of balance (due to rounding errors, inexact
solvers and loose stopping criteria) for the residual in A-DEF2 is corrected at every
iteration by the application of the last coarse preconditioner B−1

C whereas this is not
the case for R-BNN2.

A detailed comparison of these preconditioners (and many others) both theoreti-
cally and numerically can be found in [31]. The excellent numerical comparison in this
reference considers the sensitivity of the convergence properties and stability of these
algorithms with respect to the above mentioned perturbations. Out of this analysis,
A-DEF2 proves to be the best algorithm in terms of theory and numerics. However,
the way A-DEF2 is implemented in this reference requires to solve two coarse prob-
lems, two Dirichlet problems and one Neumann problem, which is prohibitive in terms
of CPU cost. Let us remark that A-DEF2 method can also be expressed as follows:

B−1
BNN = B−1

C +B−1
NN −B

−1
C SB−1

NN = B−1
C (I − SB−1

NN ) +B−1
NN ,(5.1)

as originally proposed by Mandel [21]. This way, only one coarse solver, two Dirichlet
problems and one Neumann problem are needed, as for the R-BNN2 method. This
is in accordance to what is considered for a hybrid multiplicative preconditioner with
exact coarse solver. As an example, we quote [32, pg. 139] when the authors refer to
the BNN algorithm:

“Therefore, there is a total of one Neumann and two Dirichlet problems on each
substructure and one coarse problem in each step.”

At this point, we can consider the distributed PCG Krylov solver, using the
BNN preconditioner above. The PCG method is stated in Algorithm 1, whereas
the application of the BNN preconditioner using the last expression in (5.1) can be
found in Algorithm 2. In order to stress the most CPU intensive parts, we have
explicitly detailed in these algorithms, the following tasks with their corresponding
abbreviations:

DS: Dirichlet solve, NS: Neumann solve, CS: Coarse solve.
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Algorithm 1: x = PCG(S, r0)

1: z0 := i BNN(r0)
2: p0 := z0

3: for j = 0, . . . , till convergence do
4: sj+1 = Spj (DS)
5: αj := (rj , zj)/(sj+1, pj)
6: xj+1 := xj + αjpj
7: rj+1 := rj − αjsj
8: zj+1 := i BNN(rj+1)
9: βj := (rj+1, zj+1)/(rj , zj)

10: pj+1 := zj+1 + βjpj
11: end for

Algorithm 2: z = i BNN(r)

1: z := B−1
NNr, (NS)

2: s = r − Sz (DS)
3: z := z +B−1

C s (CS)

But there is still room for improvement. The first key observation is the following.
One Dirichlet solver comes from the system matrix-vector product and cannot be
eliminated. However, the second one, which comes from the residual update in a
multiplicative preconditioner (the S application in Algorithm 2) can be spared. The
idea is to use the fact that SI0v0 for v0 ∈ V0 can be expressed as

(5.2) SI0v0 =

nsbd∑
i=1

n̄ker∑
α=1

v
(i,α)
0 Sθi,α,

where θi,α are the elements of the H0 basis in (3.7), i.e. θi,α = Dir(Iiφ
i
α). Since all the

quantities Sθi,α have been computed (and stored) in the assembly of the S0 operator,
one can compute SI0v0 using (5.2) and does not require to solve any Dirichlet solver.

Unfortunately, this fact cannot be readily used in the standard PCG Algorithm
1. It leads to the second key observation. We propose in Algorithm 3 a modified
PCG algorithm, which we will prove to be equivalent (up to rounding errors) to the
standard one. The idea is to consider a different treatment of the array s in an
incremental way. In those places where we put (∗), we make use of the previous idea,
in order to spare one Dirichlet solver per iteration. We have the following result:

Proposition 5.1. Algorithms 1-2 and 3-4 are equivalent.

Proof. It is easy to see that s1 is the same for both algorithms, since s̃0 = Sz0

and p0 = z0 at the first iteration. Next, we proceed by induction. Let us assume that
si is equivalent for both algorithms. In Algorithm 1 si+1 = Spi, whereas in Algorithm
3 we have si+1 = Szi + βiSpi−1, where we have used the fact that s̃i = Szi and the
equivalence assumption at step i, i.e. si = Spi−1. We readily end the proof recalling
the definition of pi = zi + βipi−1.

This re-statement of the BNN preconditioner makes it as expensive (in terms of
Dirichlet, Neumann and coarse problems per iteration) as additive-type precondition-
ers like BDDC. Clearly, the enhancement of the method in Algorithms 3-4 is more
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Algorithm 3: x = enh PCG (S, r0)

1: (z0, s̃0) := enh i BNN(r0)
2: p0 := z0

3: s0 := 0
4: for j = 0, . . . , till CONV do
5: sj+1 = s̃j + βsj
6: αj := (rj , zj)/(sj+1, pj)
7: xj+1 := xj + αjpj
8: rj+1 := rj − αjsj
9: (zj+1, s̃j+1) := enh i BNN(rj+1)

10: βj := (rj+1, zj+1)/(rj , zj)
11: pj+1 := zj+1 + βjpj
12: end for

Algorithm 4: (z, s̃) = enh i BNN(r)

1: z := B−1
NNr, (NS)

2: s̃ := Sz (DS)
3: z0 := B−1

C (r − s̃)
4: s̃ = s̃+ Sz0 (*)
5: z := z + z0 (CS)

important as the size of the local problems increase. In the numerical experiments
section, we compare the cost of the original and enhanced formulations.

Remark 5.1. Let us remark that there is another way to reduce the number
to Dirichlet solvers to only one by combining the deflated method in [33] with a NN
preconditioner. The original deflated method [26] requires two global matrix-vector
products per iteration, which for DD algorithms amounts for two Dirichlet solvers.
This approach is extensively used [1, 2, 20]. In [33] the authors proposed a different
deflated algorithm with enhanced stability properties, DEF-1 in [31], which has a very
appealing feature: the matrix-vector application related to the deflation projection acts
over coarse components. Thus, this version of deflation is also superior in terms of
CPU cost when using (5.2) without the need to modify the PCG algorithm. As far
as we know, this fact is not clearly stated in the literature. In any case, the resulting
DEF1 algorithm together with a NN preconditioner is not as stable as (f)BNN and
A-DEF2 algorithms above (see [31]).

6. Numerical experiments. In this section we experimentally evaluate on a
pair of radically different large-scale distributed-memory machines the weak scala-
bility of BNN and BDDC iterative sub-structuring DD methods, focusing on the
rehabilitation proposed for the BNN solver.

In particular, we have carried out a detailed comparison of the enhanced BNN
formulation proposed in this work with the balancing domain decomposition by con-
straints (BDDC) method proposed in [9], which is considered one of the most advanced
scalable DD techniques. BDDC methods and the FETI-DP methods proposed in [12]
have been proved to have identical condition number bounds and, under natural ad-
ditional assumptions, exactly the same eigenvalues [23]. We do not introduce these
techniques, for the sake of brevity, and refer the interesting reader to the nice presen-
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tation in [7].
Let us just mention that BDDC methods are additive preconditioners with a

non-conforming coarse space; it implies that the coarse problem is not of Galerkin
type. The coarse DoFs are related to geometrical objects: corners, edges and faces
(see [32, Chapter 4] for a definition). In the 2D case, corner DoFs are enough to
get algorithmically scalable preconditioners whereas in 3D face DoFs must also be
included.

6.1. Experimental framework. The algorithms subject of study were imple-
mented in FEMPAR, an in-house developed OO framework which, among other fea-
tures, provides the basic tools for the efficient message-passing (MPI) implementa-
tion of sub-structuring DD solvers. The MPI codes in FEMPAR heavily use stan-
dard computational kernels provided by highly-efficient vendor implementations of
the BLAS. Besides, through proper interfaces to third party libraries, the local prob-
lems can be solved by sparse direct solvers. Although these kernels typically support
multi-threading capabilities (OpenMP), in this work we only explore the distributed-
memory (MPI) parallelism exposed by non-overlapping DD, so that the codes are ex-
ecuted following a pure MPI programming model with a one-to-one mapping among
subdomains, MPI tasks, and computational cores of the distributed-memory machine.

All experiments reported in this section were obtained on two radically different
distributed-memory platforms:

• HPC-FF: QDR Infiniband interconnected commodity cluster composed of
1080 Bull NovaScale R422-E2 blades. Each blade is equipped with two Intel
Xeon X5570 QuadCore processors running at 2.93 GHz (8 computational
cores in total) and 24 GBytes of DDR3 memory, and runs a full-featured SUSE
SLES 11 Linux OS. The codes were compiled using Intel Fortran compiler
(12.1.4) with recommended optimization flags and we used Parastation 5.0
MPI tools and libraries for native message-passing. The codes were linked
against the BLAS and PARDISO [27,28] available on the Intel MKL library
(version 10.3, build 10). PARDISO is a single/multi-threaded software which
follows a super-nodal approach for the efficient exploitation of the processor
cache subsystem thorough the level 3 BLAS during the direct solution of
large and sparse linear systems, and it has been shown to have an excellent
performance relative to other parallel direct sparse solvers [16] .

• Marenostrum: Myrinet-interconnected cluster composed of 2560 JS21 com-
pute nodes, with 4 cores (two dual-core IBM PPC970MP CPUs running at
2.3 GHz) and 8 GBytes of memory RAM each, running a full-featured SUSE
10 Linux OS. MPICH-MX port by Myricom on top of MPICH 1.2.7 was used
for native message-passing, and WSMP [18], version 12.4.9, for the direct
solution of sparse linear systems. WSMP is a single/multi-threaded software
which follows a multifrontal aproach for the exploitation of the level 3 BLAS
in the direct solution of sparse sets of linear systems. In this paper we always
employ its implementation of the sparse Cholesky factorization with default
values. The codes were compiled using IBM XL compilers (12.1) with rec-
ommended optimization flags, and the IBM ESSL BLAS was used for highly
efficient dense linear algebra operations.

6.2. Weak scalability for 2D Poisson with structured meshes on HPC-
FF. In this section we evaluate the degree of weak scalability of several sub-structuring
DD solvers when applied to problem (3.2) on a rectangle Ω = [0, 2] × [0, 1]. For the
discretization, we consider a global conforming structured mesh (partition) of Ω into
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quadrilaterals and bilinear FEs (i.e., Q1-elements). The mesh is partitioned into rect-
angular grids of 4m×2m square local meshes Tij , such that they are conforming with
their corresponding square subdomains Ωij , with i = 1, . . . , 4m, and j = 1, . . . , 2m.
For the experiments, we utilize 8 cores per blade of HPC-FF (4 cores per socket) and
we considered values of m = 1, 2, 4, 6, . . . , 22.

Let us recall that H
h

is a measure of the local problem size; ( H
h
)d is in fact the local

problem size for structured mesh and partition. The number of quadrilaterals on each
local mesh is therefore H

h
× H

h
, and that of the global mesh is given by 4m H

h
×2m H

h
. Weak

scaling studies determine at which rate a given magnitude evolves while increasing
the number of cores while keeping H

h
constant. For an ideal weakly scalable solver this

magnitude should not degrade at all with the number of cores. In this work, we will
focus on two magnitudes, the total computational time required to solve problem (3.2),
and the number of iterations required to solve the preconditioned interface problem.
For sub-structuring DD solvers, the total computational time is concentrated on three
phases: the Schur-complement system and preconditioner set-up, and the iterative
solution of the interface problem by the PCG krylov subspace solver. § In order to
evaluate the weak scaling of the solvers under several computation/communication
balances, we consider increasing values for H

h
= 16, 32, 64, 128, 256 and 512, with

the two extremes being the most and least communication-bounded scenarios of the
sample. The largest problem size H

h
= 512 was selected strategically to be the largest

power-of-two that fits into the machine given a memory limit per core of 1.7 GBytes.

Figure 6.1 reports the weak scalability for the total computation time of three
different implementations of the multiplicative BNN solver, while the BNN plots in
Figure 6.2 illustrate that for the number of PCG iterations required to solve the in-
terface problem. In the PCG method, we set the initial solution vector guess x0 = 0,
and the iteration is stopped whenever the residual rk at a given iteration k satisfies
‖rk‖2 ≤ 10−6‖r0‖2; this set-up also applies to the rest of experiments reported in this
section. In the legend of Figure 6.1, DEF (symmetric-PD) and IND (symmetric INDefi-
nite) refer to the kind of problems and the corresponding sparse direct solvers that are
used for the solution of the local Neumann problems. For symmetric-PD problems,
PARDISO is based on the sparse Cholesky factorization without pivoting, while for
symmetric indefinite problems, it uses a more expensive sparse LDLT factorization
which, for numerical stability purposes, combines static (prior-to-factorization) pivot-
ing via symmetric weighted matchings and classical Bunch-Kaufman dynamic (during
factorization) pivoting only applied inside the supernodes [27,28]. On the other hand,
BNN stands for the classical PCG solver (see Algorithms 1-2), while ENH-BNN refers to
its enhanced implementation (see Algorithms 3-4).

Figure 6.1 clearly evidences that weak scaling curves for the computational time
of BNN solvers result from the sum of two components, a non-scalable one that grows
with the number of cores and a scalable one that is constant (or grows at a very
moderate pace) with the number of cores (always for H

h
fixed). The non-scalable

component includes the assembly/factorization of the coarse-grid system coefficient
matrix during preconditioner set-up and the assembly of the coarse residual/solution

§The reader should be warned while reading this section that the total computational time is
composed by phases with a different order of computational complexity with local problem size
H
h
. For example, the sparse direct factorization of local Dirichlet problems required for the Schur-

complement system set-up grows like O(( H
h
)3), while each Schur complement application (i.e., for-

ward/backward substitution) grows like O(( H
h
)2). We refer to [4] for a detailed exposition of the

computational/memory complexity of each phase.
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Fig. 6.1. Weak scalability for the total computation time of three different implementations of
the multiplicative BNN solver for the 2D Poisson problem on HPC-FF.

of the coarse-system at each preconditioner application. In our current implemen-
tation, the coarse-grid system is assembled and factorized/solved sequentially on a
prescribed processor (let us call it the root processor). This processor also has du-
ties on the fine-grid correction level. This implementation requires the use of MPI
collectives to gather the local contributions of each processor before coarse-matrix as-
sembly/factorization and to gather the contributions of each processor to the coarse
residual and scatter the coarse-grid correction before and after solving the coarse-grid
system, respectively. The performance of these collectives is well-known to degrade
with the number of cores. Besides, the serial solution of the coarse-grid system also
results in idling overheads at each preconditioner application, as the rest of processors
are blocked waiting for the root processor to complete its coarse-grid duties.

It is clearly not the intent of this section to investigate in detail at which rate
each non-scalable basic building block degrades with the number of cores (a detailed
discussion of these topics can be found in [4]) but to provide an overall impression
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Fig. 6.2. Weak scalability for the number of PCG iterations of the multiplicative BNN and the
BDDC(c) and BDDC(ce) solvers for the 2D Poisson problem on HPC-FF.

of what is is expected in practice from the weak scalability of these methods and the
improvements proposed. On the other hand, the non-scalable component of the weak
scaling curves includes the rest of computation and communication performed by the
BNN solver, as e.g. the factorization/solution of local Dirichlet/Neumann problems.
For “sufficiently small” H

h
(e.g., with H

h
= 16, 32, 64), the non-scalable component dom-

inates. However, the nice point is that for gradually larger H
h

the scalable part becomes
more and more dominant, till the non-scalable component is completely masked, i.e.
with H

h
= 256, 512. This is made clear by comparing Figures 6.1 and 6.2, where the

weak scalability curve for the computational time with the largest values of H
h

resem-
bles that of the number of iterations. It is clear that the number of cores can always
be increased arbitrarily so that the non-scalable component becomes dominant. How-
ever, given the memory available per core on current large-scale distributed-memory
machines, and the experimental evidence we have gathered so far, this is expected to
happen for simulations with several tens of thousands of cores.
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Figure 6.1 also shows the benefits from using the enhancements in Sections 4-5,
namely symmetric-PD solvers and to save one Dirichlet problem per PCG iteration,
specially for large H

h
. For example, with H

h
= 512, our proposal results in a 20%

maximum improvement with respect to the implementation that uses the standard
BNN PCG method (it is actually a larger 35% maximum improvement if we focus
on the computational time of the PCG phase). Finally, it is important to stress that
the number of PCG iterations is equivalent for the three implementations, so that the
proposed modifications on the PCG side do not to harm the numerical stability of the
solver. The mild degradation of the number of iterations with respect to H

h
observed

in Figure 6.2 is well-known from the analysis of BNN preconditioners [21,22,32].

Given the rehabilitation we have proposed to the BNN solver, it turns out to
be interesting to answer to what extent the scalability of the BNN preconditioner is
competitive with other iterative substructuring methods with coarse-grid correction
available on the literature. Figures 6.3 and 6.2 compare the weak scalability for the
total computation time and number of PCG iterations of the winner implementation
of the multiplicative BNN solver and those of the BDDC solver with Corner (coded
as C on the legend of the figures) and Corner+Edges (coded as CE on the legend of
the figures) constraints [9]; here we focus on the winner implementation available in
FEMPAR [4]. Hereafter, we will use the terms BDDC(c) and BDDC(ce) to refer to
the latter two algorithms, respectively. For “sufficiently small H

h
” (e.g., H

h
= 16, 32),

BDDC(ce) is the slowest method and its computational time degrades with the num-
ber of cores at the highest rate, followed by the BNN and BDDC(c), with the latter
two methods very close to each other. This ranking is not surprising if one takes
a closer look at the stencil of the coarse-grid coefficient matrix of each method. In
particular, BDDC(c) presents the stencil corresponding to the Q1 FE discretization,
BNN a more intricate one where neighbours of neighbours in the Q1 FE discretization
are also connected, and finally that of BDDC(ce) resembles that of the Q2 FE dis-
cretization. Therefore, it is reasonable that the more intricate the stencil the higher
the complexity of a sparse direct Cholesky when it is applied to solve the coarse-grid
problem. This reasoning is reinforced by Table 6.1, which provides several metrics
of the coarse-grid problem, namely the size and number of non-zeros in its sparse
coefficient matrix, and the size of the optimal root separator of its adjacency graph.
However, with gradually larger H

h
, BDDC(ce) beats its competitors because its lower

asymptotic number of PCG iterations (see Figure 6.2) more than pays off its higher
degradation of the non-scalable component with the number of cores. We stress that
the BNN method becomes highly competitive versus BDDC in terms of computational
time for large H

h
. This has been possible due to the techniques that we have proposed

for its rehabilitation in Sections 4-5.

6.3. Weak scalability for 3D Poisson with structured meshes on Marenos-
trum. In this section we evaluate the weak scalability of the BNN and BDDC solvers
when applied to problem (3.2) on a rectangular prism Ω = [0, 2] × [0, 2] × [0, 1]. For
the discretization, we consider a global conforming structured mesh (partition) of Ω
into hexahedra and trilinear FEs (i.e., Q1-elements). The mesh is partitioned into
rectangular prism grids of 2m × 2m ×m cubic local meshes Tijk, such that they are
conforming with their corresponding cubic subdomains Ωijk, with i, j = 1, . . . , 2m
and k = 1, . . . ,m. For the experiments, we use 4 cores per blade of Marenostrum,
with m = 2, 3 . . . , 10. We consider increasing values for H

h
= 10, 20, 30 and 40. The

largest problem size H
h

= 40 was selected strategically to be the largest multiple-of-ten
that fits into the machine given a memory limit per core of 1.7 GBytes. Note that in
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Fig. 6.3. Weak scalability for the total computation time of the multiplicative BNN (winner
implementation) and the BDDC(c) and BDDC(ce) solvers for the 2D Poisson problem on HPC-FF.

d metric BDDC (c) BDDC (ce) BDDC (cef) BNN

2
nc P 3P - P
nz 9P 47P - 25P
ns P 1/2 2P 1/2 - 2P 1/2

3
nc - 4P 7P P
nz - 234P 462P 125P
ns - 3P 2/3 4P 2/3 2P 2/3

Table 6.1
Size (nc), non-zeros (nz) and optimal root separator size (ns) for the coarse-grid scalar problem

in the BDDC and BNN algorithms. A periodic structured mesh of a square (d = 2) or cube (d = 3)
with P = pd subdomains is assumed, with p the number of subdomains per cartesian direction.
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3D the number of hexahedra on each local cube is H
h
× H

h
× H

h
, and that of the global

mesh is given by 2m H
h
× 2m H

h
×m H

h
.

Figures 6.4 and 6.5 compare the weak scalability for the total computation time
and number of PCG iterations of the winner implementation of the multiplicative BNN
solver and those of the BDDC solver with Corner+Edges, and Corner+Edges+Faces
(coded as CEF on the legend of the figures) constraints. Hereafter, we will use the
term BDDC(cef) to refer to the latter algorithm. All algorithms exploit symmetric-
PD solvers for the solution of the local Neumann problems. We focus on the winner
implementation of the BDDC solver available in FEMPAR [4].

Figure 6.4 reveals the two components of the weak scaling curves. For suffi-
ciently “small” H

h
(e.g., H

h
= 10, 20), the total computational time is dominated by

computation and communication overheads related to the solution of the coarse-grid
system. To be more precise, it is dominated by the sparse Cholesky factorization of
the coarse-grid coefficient matrix; this can be seen by the fact that the shape of the
computational time curves resembles that of the order of arithmetic complexity of
the sparse Cholesky factorization in 3D. Therefore, the rate at which the computa-
tional time of the sparse Cholesky factorization of the coarse-grid problem increases
determines the rate at which the weak scalability of the methods degrade with the
number of cores. BNN turns to be the quickest method and the one with the smallest
rate, while BDDC(cef) the slowest and the one with the largest rate. This ranking
can be justified looking at Table 6.1 with d = 3. Although the BNN coarse-grid
sparse coefficient is denser, it is 4 and 7 times smaller than that of the BDDC(ce) and
BDDC(cef), respectively, and its optimal root separator is 1.5 and 2 times smaller
than that of the BDDC(ce) and BDDC(cef), respectively. The size of the optimal root
separator, which can be used (actually its cube) as a lower bound for the arithmetic
complexity of the sparse direct Cholesky factorization [14], accurately describes the
situation observed in Figure 6.4. When H

h
is increased gradually, it can be observed

just the opposite, i.e. BDDC(cef) is the quickest algorithm, while BNN is the slow-
est (although they are very close to each other). For large H

h
, the number of PCG

iterations (see Figure 6.5) determines the weak scalability of the method in terms of
total computational time. A crucial observation here is that in 3D dimensions, and
provided the rehabilitation that we propose for BNN, the BNN solver outperforms
BDDC(ce), one of the most successful sub-structuring DD solvers available in the
literature, as we increase the number of processors.

6.4. Weak scalability for 3D linear elasticity with structured meshes
on HPC-FF. In this section we evaluate the weak scalability of the solvers subject
of study when applied to the linear elasticity problem (3.3) on a cube Ω = [0, 1] ×
[0, 1]× [0, 1]. For the discretization, we consider a global conforming structured mesh
(partition) of Ω into hexahedra and trilinear FEs (i.e., Q1-elements). The mesh is
partitioned into rectangular grids of 2m × 2m × 2m cubic local meshes. For the
experiments, we use all the cores in a blade of the HPC-FF, with m = 1, . . . , 8. We
consider increasing values for H

h
= 10, 20 and 30. The largest problem size H

h
= 30 was

selected strategically to be the largest multiple-of-ten that fits into the machine given
a memory limit per core of 1.7 GBytes.

Figures 6.6 and 6.7 compare the weak scalability for the total computation time
and number of PCG iterations of the winner implementation of the multiplicative
BNN solver and those of the BDDC(ce) and BDDC(cef). The winner implementa-
tion of the BNN solver is the one that, on the one hand, saves the solution of a
Dirichlet problem per iteration and, on the other hand, uses the proposed machinery
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Fig. 6.4. Weak scalability for the total computation time of the multiplicative BNN (win-
ner implementation) and the BDDC(ce) and BDDC(cef) solvers for the 3D Poisson problem on
Marenostrum.
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Fig. 6.5. Weak scalability for the number of PCG iterations of the multiplicative BNN and the
BDDC(ce) and BDDC(cef) solvers for the 3D Poisson problem on Marenostrum.
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for both kernel basis detection and subsequent identification of DoFs to obtain an
equivalent symmetric-PD Neumann problem. As can be observed in Figure 6.6, for
sufficiently “small” H

h
(e.g., H

h
= 10), the overall computational time is also dominated

by the sparse Cholesky factorization of the coarse-grid coefficient matrix. However,
the ranking of the methods has changed with respect to that of the 3D Poisson prob-
lem (see Figure 6.4). BDDC(ce) turns to be the quickest method and the one with
(by far) the slowest degradation with the number of cores, followed by the BNN and
BDDC(cef), which have almost coincident performance and scalability. A charac-
teristic of the linear elasticity problem that makes it more tough compared to the
Poisson one is that the coarse-grid problem has 3 and 6 highly coupled DoFs per
coarse-grid node for the BDDC and BNN methods, respectively. This leads not only
to larger coarse-grid problems, but with denser sparsity patterns. As a consequence,
higher memory/arithmetic complexities are expected when sparse direct solvers are
used for its solution. To give some figures, nc and ns in Table 6.1 are multiplied
by 6 and 3 for the BNN and BDDC, respectively, and nz by 36 and 9, respectively.
For H

h
= 30, the scalability significantly improves but, in contrast to the 3D Poisson

problem, the largest multiple-of-ten H
h

that fits into the memory of the machine is not
sufficient to strike a balance among the scalable/non-scalable components such that
the former dominates the overall computational time. This is because the root MPI
rank, which also has fine-grid duties, has to leave (relatively to the 3D Poisson) more
room to the coarse-grid problem. Anyway, the efficiency of the MPI implementation
is still reasonable within this range, with a moderate 23% and 38% degradation in
the computational time of the BDDC(ce) and BNN, respectively, from 512 to 4096
computational cores (i.e., global problem size multiplied by a factor of 8).

6.5. Strong scalability for 3D linear elasticity with a unstructured
mesh on HPC-FF. In this section we evaluate the strong scalability of the BDDC
and BNN solvers when applied to the linear elasticity problem (3.3) on a cube
Ω = [0, 1]×[0, 1]×[0, 1]. For the discretization, we consider a unique global conforming
unstructured mesh (partition) of Ω into tetrahedra and linear FEs (i.e., P1-elements).
This mesh was generated using a mesh generation code with a mesh diameter of
h = 0.015, which results in 2,916,260 tetrahedra and 509,064 nodes. The mesh was
partitioned into 32, 64, 128, 256 and 512 subdomains using the multilevel graph par-
titioning algorithms available in METIS [19]. We strategically selected small loads
per processor in order to reveal the effect of the serial solution of the coarse-grid prob-
lem on the strong scalability of the methods, but we stress that much better strong
scalability can be attained using larger loads per processor.

Table 6.2 reports the strong scalability for the total computation time (in sec-
onds) and number of PCG iterations for the multiplicative BNN and the BDDC(ce)
and BDDC(cef) solvers; the size (nc) and non-zeros (nz) in the coarse-grid sparse
coefficient matrix are also provided in the table. In the case of unstructured meshes
and non-overlapping partitions (i.e., those provided by METIS), the BDDC method
has to be supplied with a corner detection algorithm that ensures the well-posedness
of the local Neumann problems and that of the global coarse-grid problem. Follow-
ing the approach described in [29], our MPI implementation meets this requirement
by identifying three non-colinear corners per each pair of subdomains that share a
face. In general, this strategy implies the addition of more corners than those that
are readily available on the underlying unstructured non-overlapping partition. Ta-
ble 6.2 reveals than the BNN coarse solver is significantly lighter than that of the
BDDC(ce) and BDDC(cef). While for the BNN method the number of coarse-grid
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Fig. 6.6. Weak scalability for the total computation time of the multiplicative BNN (winner
implementation) and the BDDC(ce) and BDDC(cef) solvers for the 3D Elasticity problem on HPC-
FF.
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Fig. 6.7. Weak scalability for the number of PCG iterations of the multiplicative BNN and the
BDDC(ce) and BDDC(cef) solvers for the 3D Elasticity problem on HPC-FF.
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Solver
#subdomains = #cores

32 64 128 256 512

BNN

Time 19.4 6.87 2.66 1.48 1.35
#iter 35 37 41 52 51
nc 192 384 768 1,536 3,072
nz 28,872 81,216 207,216 493,200 1,154,664

BDDC(ce)

Time 19.8 8.03 3.90 4.72 13.8
#iter 25 24 24 26 25
nc 807 2,013 4,527 10,182 21,828
nz 223,263 700,209 1,758,429 4,253,436 9,602,370

BDDC(cef)

Time 20.6 8.93 5.21 8.39 24.2
#iter 23 23 23 24 24
nc 1,203 2,937 6,468 14,346 30,060
nz 387,603 1,165,185 2,841,876 6,766,092 14,775,876

Table 6.2
Strong scalability for the total computation time (Time) and number of PCG iterations (#iter)

for the multiplicative BNN and the BDDC(ce) and BDDC(cef) solvers for the 3D Elasticity problem
on HPC-FF. The size (nc) and non-zeros (nz) in the coarse-grid sparse coefficient matrix are also
provided.

DoFs per processor is constant independently of the geometrical properties of the un-
derlying partition, the BDDC method is strongly dependent, and for this particular
irregular underlying partition, results in much larger dimension coarse-grid subspaces.
The situation is even more severe for the Elasticity problem, because additional cor-
ners have to be added to ensure the well-posedness of the preconditioner. Although
this larger BDDC coarse-grid problem results in increased preconditioning robustness
(#iter hardly degrades with the number of cores), the extra overhead associated with
the solution of the coarse-grid problem results in a higher degradation of the strong
scalability of the method. Indeed, on the range 32-512 cores, the BNN method is still
effective in the reduction of the computational time with the number of cores, while
that of the BDDC method even increases beyond 128 cores.

7. Implementation issues. The well-posedness of BDDC and FETI-DP pre-
conditioners requires sets of corners (one per subdomain) such that, after enforced to
zero, lead to PD local problems [9]. Unfortunately, the geometrical corners associated
to the partition do not satisfy this in general. But this requirement is not enough.
Since the coarse space is non-conforming, i.e. H0 6⊂ H, the coarse solver is not a
Galerkin projection of the original global problem. As a result, the non-conforming
coarse problem can have a nontrivial kernel. In other words, the partition can induce
the appearance of mechanisms (see [29] for a nice illustration). As a result, BDDC
and FETI-DP methods require an automatic algorithm to extract enough nodes from
edges and vertices to be treated as corners such that both local and coarse problems
become nonsingular [9, 12,29].

The introduction of this type of algorithm has two undesirable effects. On the
one hand, the modification of the geometrical objects at the preconditioner level
unquestionably complicates the implementation of the preconditioner and causes harm
to software modularity. On the other hand, it increases the number of coarse DoFs
and deteriorates scalability, as observed in the previous section.

Let us remark that the BNN method has a fixed number of coarse DoFs per sub-
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domain (using the definition in (3.7)) and local problems are always nonsingular by its
definition. Moreover, the coarse problem is of Galerkin-type and cannot be singular,
due to the well-posedness of the global problem. As a result, BNN is insensitive to
unstructured partitions in terms of implementation (no corner detection algorithm is
required) and coarse DoFs per subdomain.

Moreover, the local BDDC problems are indefinite and the constraints related to
edge or face coarse DoFs cannot easily be eliminated. In order to transform the indef-
inite local problems into definite ones, an explicit assembly of the Schur complement
with respect to these coarse DoFs has been proposed in [9]. The implementation of
this task in an acceptable way is involved and requires as many PD local solvers (of
Dirichlet type) as edge and face coarse DoFs per subdomain; see also [4] for a detailed
discussion on this topic. Its effect on the CPU cost of the preconditioner set-up is
specially dramatic for unstructured partitions.¶ On the contrary, the approach de-
veloped in Section 4 for the BNN method is simple and with an almost negligible
associated CPU cost.

8. Conclusions. In this work, we have proposed some enhancements and ex-
tensions of the BNN preconditioner:

• A novel and very simple approach to deal with the nonsingular pure Neumann
local problems, which is based on the projection of the local matrix into the
potential kernel space (rigid body motions in linear elasticity) and a kernel
basis extraction using a SVD. At the end of the process, it provides us with
the DoFs to be fixed in the standard FE way such that we recover the same
overall solution as when dealing with pseudo-inverses. This algorithm is very
simple to implement, leads to PD linear systems and allows us to use out-of-
the-box sparse direct solvers.

• A modification of the PCG algorithm that allows us to reduce the compu-
tational load per PCG iteration to only one Dirichlet, Neumann and coarse
solver, as in additive preconditioners as BDDC, while keeping the most stable
version of the preconditioner in terms of rounding error effects and perturba-
tions, A-DEF2 in [31].

• An additive version of the BNN preconditioner which opens the door to in-
exact BNN algorithms.

Further, we have carried out a detailed comparison of the enhanced BNN imple-
mentation proposed herein against the very effective BDDC preconditioner initially
proposed in [9]. The comparison has been performed for the Poisson and linear elas-
ticity problems in 2D and 3D. The first problem is of special interest in computational
fluid dynamics, for the so-called pressure Poisson problem, whereas the second is the
core of computational solid mechanics.

As a result, the enhanced BNN preconditioner has been proved to be superior to
BDDC preconditioning for large-scale computations of 3D Poisson large-scale prob-
lems (about 0.3 billion DoFs in 4,000 processors) because its associated coarse system
is lighter. For the 3D linear elasticity problem, we have observed that the BDDC
method outperforms the BNN preconditioner for structured meshes and partitions,
with the largest simulation involving about 0.4 billion DoFs on 4,096 processors.
However, the situation changes when we consider unstructured meshes and parti-
tions. While the number of coarse functions per processor remains constant in the

¶This is due to the fact that the number of geometrical objects of edge and face type is larger
for unstructured partitions than for structured ones.
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BNN preconditioner for unstructured partitions, the BDDC preconditioner requires
to introduce additional degrees of freedom in order to keep well-posed local and coarse
problems, making the method less effective than BNN for real applications.

It is not the aim of this work to conclude the superiority of one preconditioner
over the other one. More precisely, the aim of this comparison is to rehabilitate
the BNN preconditioner for large-scale computations, demonstrating that it is (at
least) as effective as BDDC (and extensively FETI-DP) preconditioning in many
situations. Further, with the experience we have gained by the implementation of
these preconditioners in optimized software packages, we can confidently state that
the implementation of the BNN preconditioner is much simpler than the one of the
other methods, since the number of coarse functions per subdomain is constant, no
global and local mechanism detection is required and there is no need to modify the
geometrical objects (corners, edges and faces) in order to make the local and coarse
solvers well-posed (see [9,12,29]). Further, the approach proposed in this work to end
up with PD local problems is also simpler and less CPU intensive than the one used
for BDDC preconditioners in [9] (see also [4]).
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