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Abstract. In order to achieve a better characterisation of a whole failure process, models which
combine damage and fracture mechanics have recently been proposed. Here, a new combined
methodology is presented: in order to describe damage inception and its diffuse propagation,
a gradient-enhanced continuum model based on smoothed displacements is used, which is cou-
pled to a discontinuous one to describe the final stages of the process.
Special emphasis should be placed on the difficulties concerning the transition between con-
tinuous damage growth and fracture. On the one hand, and in order to conserve the energy
dissipation through the change of models, an appropriate cohesive law must be defined. In this
paper, the proposed technique to define this law is explained. On the other hand, the direction
of the crack path should be determined. Here, a new strategy is proposed: the discontinuity is
propagated following the direction dictated by the medial axis of the damaged domain. That is,
a geometric tool, widely used in the computer graphics field, is used here to locate cracks.
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1 INTRODUCTION

Simulation of failure of quasi-brittle materials requires either the description of strain local-
isation and the accumulation of damage or the possible formation of propagating cracks. In
order to deal with all these features, damage and fracture mechanics are the two typically used
approaches. The former, which belongs to the family of continuous models, is able to capture
damage inception and its diffuse propagation [1]. The latter, which falls in the family of dis-
continuous models, can be used to model the final stages of failure processes, when the body
is physically separated in two or more parts. Nevertheless, damage models cannot deal with
material separation, while discontinuous models cannot be used for modelling neither damage
formation nor its diffuse propagation [2].

As suggested by the above paragraph, in order to achieve a better characterisation of the
whole failure process, integrated strategies which combine these two traditional approaches
may be employed. These continuous-discontinuous strategies are characterised by the following
features:

• In order to describe the first stages of the failure process, damage models are used. As
shown in [3] these approaches are characterised by a strain softening phenomenon, which
leads to a physically unrealistic treatment of the energy dissipated during the failure pro-
cess. Therefore, combined approaches use any of the solutions proposed in the literature,
see [4] for details, to overcome this physically unrealistic behaviour thus leading to nu-
merical simulations that do not present mesh sensitivity.

• At the end of each time step, the approach checks if the transition criterion is fulfilled. In
such a case, a discrete cohesive crack is introduced into the model and the direction of its
propagation is determined. In order to characterise these propagating discontinuities, dif-
ferent techniques, mainly based on the cohesive crack concept [5], have been developed.
From a numerical viewpoint, their applications were first restricted, since the standard
finite element method (FEM), which performs well approximating smooth functions, is
not suited for the approximation of non-smooth solutions. Therefore, as reviewed in [6],
special techniques have to be used to deal with propagating cracks. Among these special
methods, the eXtended Finite Element Method (X-FEM) [7, 8] is the most employed.

• From that moment on, a discontinuous approach is used to model the final stages of the
failure process. Therefore, the numerical interaction between the separated parts of the
body ceases and realistic results may be obtained.

In the computational mechanics community, different integrated strategies have been pro-
posed. In [9], the combination of the smeared and embedded descriptions of cracking is anal-
ysed. Traction-free discontinuities are coupled to a softening viscoplastic bulk and to a gradient-
enhanced continuum damage model in [10] and [11] respectively. In [12], the non-local con-
tinuum damage approach used for modelling the early steps of failure process is coupled to a
cohesive crack model in order to describe the final stages of failure.

This paper addresses a new contribution in this direction, see Figure 1. In order to obtain
an objective description of the first stages of the failure process, a regularised damage model is
employed. Here, a formulation with regularised displacements is employed in order to obtain
physically realistic results. For the sake of simplicity, only elastic-scalar gradient damage mod-
els are considered. However, smoothed displacements can be used either in an integral or in a
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Figure 1: Proposed continuous-discontinuous model.

gradient version, as originally proposed by [13], and may be extended to other models such as
plasticity, as presented in [14].

When the transition criterion is fulfilled, the coupling to a discontinuous strategy is car-
ried out, thus introducing a propagating crack described by a cohesive law. The discontinuity
is propagated following the direction dictated by the θ−simplified medial axis of the already
damaged domain. Therefore, the geometric criterion introduced by [15], which is widely used
in the computer graphics field, is used here to locate propagating cracks. The cohesive law
is defined through an energy balance in order to conserve the energy dissipation through the
change of models.

1.1 Outline

An outline of this paper follows. The new continuous-discontinuous model is presented
in section 2. Section 3 deals with two important issues concerning the transition from the
continuum to the discrete strategy: the definition of the cohesive law (section 3.1) and the
determination of the crack path (section 3.2). The capabilities of this new technique to locate
cracks are illustrated by means of a benchmark test in section 4. The concluding remarks of
section 5 close the paper.

2 MODEL FORMULATION

2.1 Discontinuous displacements

Consider the domain Ω bounded by Γ = Γu ∪ Γt ∪ Γd, as shown in Figure 2. Prescribed
displacements are imposed on Γu, prescribed tractions are imposed on Γt and the boundary Γd
consists of the boundary of the crack.

Then, and by means of the X-FEM, the standard u and the auxiliary displacement field ũ
can be decomposed as

u (x) = u1 (x) + ψ (x)u2 (x) in Ω̄ = Ω ∪ Γ (1)
ũ (x) = ũ1 (x) + ψ (x) ũ2 (x) in Ω̄ = Ω ∪ Γ (2)
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Figure 2: Notations for a body with a crack subjected to loads and imposed displacements.

where ui (x), ũi (x) (i = 1, 2) are continuous fields and ψ (x) is the enrichment function (e.g.
the sign function) centred at Γd.

2.2 Governing equations

The strong form of the equilibrium equation and boundary conditions for the body Ω̄ without
body forces is given by

∇ · σ = 0 in Ω (3)
σ · n = t̄ on Γt (4)
σ ·m = t̄d on Γd (5)

u = u∗ on Γu (6)

where σ is the Cauchy stress tensor, u∗ is a prescribed displacement, t̄ is the load on the
boundary and t̄d is the load on the discontinuity surface. Note that n is the outward unit normal
to the body andm is the inward unit normal to Ω+ on Γd, see Figure 2.

To complete the strong form of the mechanical problem, an isotropic damage model

σ (x) = [1−D (x)]C : ε (x) (7)

is considered, where ε (x) = ∇su (x) is the small strain tensor, C is the fourth-order tensor of
elastic moduli and D is the isotropic damage parameter (0 ≤ D ≤ 1 and Ḋ ≥ 0).

In order to regularise the problem, the second-order diffusion partial differential equation

ũ− `2∇2ũ (x) = u (x) in Ω \ Γd (8)

is coupled with the mechanical equations. Both for the standard and the enhanced displacement
fields, combined boundary conditions

ũi · n = ui · n
∇ (ũi · t) · n = ∇ (ui · t) · n

}
on Γ

ũi ·m = ui ·m
∇ (ũi · t) ·m = ∇ (ui · t) ·m

}
on Γd (9)

where i = 1, 2, are proposed: Dirichlet boundary conditions are prescribed for the normal
component of the displacement field whereas non-homogeneous Neumann boundary conditions
are imposed for the tangential one. These combined conditions satisfy the necessary properties
for regularisation, see [16] for details: (a) reproducibility of order 1 (u = ũ if u is a linear
field), (b) displacement smoothing along the boundary and (c) volume preservation.
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2.3 Variational formulation

The space of trial standard displacements is characterised by the function defined in Eq. (1),
where

u1,u2 ∈ Uu =
{
u | u ∈ H1(Ω) and u |Γu = u∗

}
(10)

with H1(Ω) a Sobolev space. Analogously, the space of admissible displacement variations is
defined by the weight function ω (x) = ω1 (x) + ψ(x)ω2 (x) with

ω1,ω2 ∈ Wu,0 =
{
ω | ω ∈ H1(Ω) and ω|Γu = 0

}
(11)

Following standard procedures, the equilibrium Eq. (3) can be cast in a variational form,
thus leading to ∫

Ω
∇sω1 : σ dΩ =

∫
Γt

ω1 · t̄ dΓ ∀ω1 ∈ H1(Ω) (12)∫
Ω
ψ∇sω2 : σ dΩ + 2

∫
Γd

ω2 · t̄d dΓ =
∫

Γt

ψω2 · t̄ dΓ ∀ω2 ∈ H1(Ω) (13)

where at the discontinuity Γd,

˙̄td = f (Ju̇K) (14)

with f relating traction rate ˙̄td and displacement jump rate Ju̇K.
Similarly to the equilibrium equation, the regularisation PDE (8) is also cast in a weak form.

Characterising the space of trial smoothed displacements ũ by the function defined in Eq. (2),
with u1,u2 ∈ Uu, one obtains∫

Ω
ω1 · (ũ1 + ψũ2) dΩ + `2

∫
Ω
∇ω1 :

(
∇ũ1 + ψ∇ũ2

)
dΩ + 2`2

∫
Γd

ω1
t

(
∇
(
u2 · t

)
·m

)
dΓ =

=
∫

Ω
ω1 · (u1 + ψu2) dΩ + `2

∫
Γ\Γd

ω1
t

(
∇
(
u1 · t

)
· n+ ψ∇

(
u2 · t

)
· n
)

dΓ (15)

∫
Ω
ω2 · (ψũ1 + ũ2) dΩ + `2

∫
Ω
∇ω2 :

(
ψ∇ũ1 +∇ũ2

)
dΩ + 2`2

∫
Γd

ω2
t

(
∇
(
u1 · t

)
·m

)
dΓ =

=
∫

Ω
ω2 · (ψu1 + u2) dΩ + `2

∫
Γ\Γd

ω2
t

(
ψ∇

(
u1 · t

)
· n+∇

(
u2 · t

)
· n
)

dΓ (16)

∀ω1,ω2 ∈ Wu,0.

2.4 Finite element discretisation

Employing an extended finite element strategy to prevent remeshing and other kinds of tech-
niques, Eq. (1) and (2) read, in the domain of an element with enhanced nodes,

u(x) = N(x)u1 + ψ(x)N(x)u2 (17)
ũ(x) = N(x)ũ1 + ψ(x)N(x)ũ2 (18)

where N is the matrix of standard finite element shape functions, u1, ũ1 are the basic nodal
degrees of freedom and u2, ũ2 are the enhanced ones. The discrete format of the problem fields
leads to the four discrete weak governing equations∫

Ω
BTσ dΩ =

∫
Γt

NT t̄ dΓ (19)

5



Elena Tamayo-Mas, Antonio Rodrı́guez-Ferran

∫
Ω
ψBTσ dΩ + 2

∫
Γd

NT t̄d dΓ =
∫

Γt

ψNT t̄dΓ (20)

(M + `2D)ũ1 + (Mψ + `2Dψ)ũ2 = (M + `2CΓ\Γd,n)u1 + (Mψ + `2(CΓ\Γd,n
ψ − 2CΓd,m))u2 (21)

(Mψ + `2Dψ)ũ1 + (M + `2D)ũ2 = (Mψ + `2(CΓ\Γd,n
ψ − 2CΓd,m))u1 + (M + `2CΓ\Γd,n)u2 (22)

where B is the matrix of shape function derivatives and

M =
∫

Ω
NTN dΩ D =

∫
Ω
∇NT∇N dΩ (23)

Mψ =
∫

Ω
ψNTN dΩ Dψ =

∫
Ω
ψ∇NT∇N dΩ (24)

CΓ,n =
∫

Γ
NT ttT

[
∂N

∂x
nx +

∂N

∂y
ny

]
dΓ CΓ,n

ψ =
∫

Γ
ψNT ttT

[
∂N

∂x
nx +

∂N

∂y
ny

]
dΓ(25)

Some remarks about the discretisation:

• Eq. (19) is the standard non-linear system of equilibrium equations, while Eq. (20) deals
with the contribution of the crack, which is multiplied by a factor of two due to the fact
that the enrichment function is the sign function (ψψ = +1).

• Matrices M and D are the constant mass and diffusivity matrices already obtained in [13].
The enriched matrices Mψ and Dψ are also constant, once the finite element is cracked.

• MatricesCΓ\Γd,n,CΓ\Γd,n
ψ andCΓd,m contain contributions from the combined boundary

conditions, Eq. (9). Since Dirichlet boundary conditions are prescribed for the normal
component of the displacement field on Γ, the normal component of the weight function
ω vanishes on the boundary thus leading to∫

Γ
ω∇ũ · n dΓ =

∫
Γ
ωt∇ (ũ · t) · n dΓ =

∫
Γ
ωt∇ (u · t) · n dΓ (26)

Again, CΓd,m is multiplied by a factor of two because of the sign function.

3 TRANSITION

When dealing with the transition from a continuous model to a discontinuous approach, dif-
ferent issues concerning the properties of the crack should be defined. Here, special emphasis is
placed on two of these issues. On the one hand, the technique to define the cohesive law is ex-
plained. On the other hand, the proposed strategy to determine the crack direction is presented.

3.1 Cohesive model

When introducing a discontinuity in the bulk, the properties of the cohesive crack should be
defined. The strategy here used is based on the idea that the energy which would be dissipated
by a continuum approach is conserved if a combined strategy is used, see [12, 20].

Consider first the continuous approach and a damaged band λD. Then, in this zone of the
structure, the dissipated energy can be expressed as

ΨC =
∫
λD

ψC dΩ =
∫
λD

∫ tf

0
σC · ε̇C dt dΩ (27)

where the subscript C stands for Continuous strategy and ε̇C is the strain rate tensor.
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Consider now the combined approach. In λD, the dissipated energy can be decomposed into
two contributions

ΨCD = Ψbulk
CD + Ψcrack

CD =
∫
λD

∫ tf

0
σCD · ε̇CD dtΩ + Ψcrack

CD (28)

where the subscript CD stands for Continuous-Discontinuous strategy, Ψbulk
CD is the dissipated

energy of the bulk and Ψcrack
CD is the fracture energy.

Hence, imposing energy balance
ΨC = ΨCD, (29)

see Figure 3, the fracture energy

Ψcrack
CD = ΨC −Ψbulk

CD (30)

is computed and can be transferred to the crack at the moment of the transition.

Figure 3: Energy balance.

In order to estimate the fracture energy, different techniques can be employed. In [12], an
analytical estimation of Ψcrack

CD , and thus, of the crack stiffness, is computed. Nevertheless, with
this procedure, the fracture energy is overestimated. Indeed, by means of these assumptions, in
all points across the damage band λD, the energy ΨC−Ψbulk

CD depicted in Figure 4a is transferred
to the crack. However, in some of these points, the continuous strategy would dissipate less
energy, see Figure 4b.

As suggested by this discussion, we propose to employ a new methodology which takes into
account, for each point across the damage band λD, the unloading behaviour (both softening
and secant) of the continuous bulk. Since the continuous unloading branch is only known up
to the activation of the continuous-discontinuous strategy, we propose to approximate it by the
tangent to the transition point. By means of this strategy, the dissipated energy Ψcrack

CD is more
accurately estimated, although it cannot be exactly computed. Again, as in [12], the accuracy of
this strategy increases considerably if the crack is activated at a later stage of the failure process.

3.2 Crack direction

There are many models which allow to predict the direction of crack growth, mainly based on
the stress intensity factors. Nevertheless, since linear elastic fracture mechanics cannot be used
in a regularised continuum, different strategies should be developed. Some of these strategies
are the ones employed in [11] and [12]. In the former approach, the discontinuity propagates
according to the direction of maximum accumulation of the non-local equivalent strain. In the
latter, the crack follows the direction of maximum curvature of the damage profile. That is,
mechanical criteria are used to define the crack growth.

Here, a new strategy to determine the crack direction is proposed: the discontinuity is prop-
agated following the direction dictated by the medial axis of the damaged domain.
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(a) (b)

Figure 4: Energy not yet dissipated in the damage band which is transmitted to the cohesive crack and is dis-
sipated by the continuous-discontinuous model, considering that by the continuous strategy, (a) all the points of
λD download following the softening branch and (b) points of λD download following both softening and elastic
branches.

3.2.1 The medial axis (MA) and the θ−simplified medial axis (θ−SMA)

The medial axis (MA) of a solid was first proposed by Blum [17] as a geometric tool in image
analysis. Intuitively, the MA of an object can be thought of as its skeleton. Mathematically, the
MA of a 2D polygon (or the medial surface in a 3D object) may be defined as the loci of centres
of bi-tangent interior circles (or spheres), see Figure 5(a).

(a) (b)

Figure 5: (a) MA of a 2D object; (b) θ−SMA of a 2D object with θ = 2π
3 .

Although this geometric tool is widely used in computer image analysis or for mesh gen-
eration purposes, the computation of the MA is a difficult task due to its instability, since it is
heavily sensitive to details in the boundary of the object. In order to overcome this main draw-
back, different simplified and stable versions of the MA can be found in the literature, see [18]
for a detailed survey.

One of these stable criteria is based on the separation angle, see [15]. For a point P , the
separation angle of this point S(P ) may be computed as

S(P ) = max( 6 P1PP2) (31)

where P1 and P2 are the points of tangency of the circle with centre at P to the object, see
Figure 6.

Therefore, and given an angle θ ∈ [0, π], the θ−SMA of an object is defined as the set of
points of the MA with separation angle greater than θ, see Figure 5(b).
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Figure 6: Separation angle S(P ) of a point P : adapted from [15].

3.2.2 The θ−SMA as a tool to locate cracks

Once the transition criterion is fulfilled, a propagating crack should be introduced. The
proposed strategy consists of different steps:

• Crack initiation: as done in [19], we will assume that a crack may start only from the
boundary of the structure. Therefore, once the transition criterion is reached, the boundary
element with a highest damage value (Dcrit) is cracked, thus fixing the damage parameter
in this element to Dcrit and unloading the bulk material, see Figure 7a.

• θ−SMA computation: in order to define the direction of this crack, the θ−SMA of the
already damaged domain is computed, see Figure 7b. Note that θ should be large enough
in order to avoid the spurious cracks emanating from the main crack (with θ > 2π

3
only

the main path is typically obtained).

• Crack propagation: once the crack tip is located and the θ−SMA is computed, the crack
propagation may be defined. The discontinuity goes from the crack tip following the
direction dictated by the θ−SMA until D > Dcrit is no longer satisfied, see Figure 7c.
Note that in order to preserve the robustness of the Newton-Raphson method, this crack
is introduced in each finite element as a straight segment at the end of a time step.

• Finite element enrichment: to model a crack tip, the displacement jump at the discontinu-
ity tip is set to zero. In order to prevent crack opening and sliding at the current crack tip,
only standard degrees of freedom for the nodes of the edge containing the crack tip are
considered, see Figure 7d. As soon as the discontinuity is extended to the next element,
nodes behind the crack tip are enriched.

4 APPLICATION TO A THREE-POINT BENDING TEST

A benchmark test such as a three-point bending test has been considered to check the pro-
posed methodology. The test geometry is shown in Figure 8. As seen, a weakened region is
considered in order to cause localisation.

9
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(a) (b)

(c) (d)

Figure 7: The θ−SMA as a tool to locate cracks: (a) Crack initiation; (b) θ−SMA computation; (c) Crack propa-
gation; (d) Finite element enrichment.

Figure 8: Three-point bending test: problem statement.

A simplified Mazars model with the trilinear softening law

D =


0 if 0 ≤ Y ≤ Y0

Yf

Yf−Y0

(
1− Y0

Y

)
if Y0 ≤ Y ≤ Yf

1 if Yf ≤ Y

(32)
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are assumed. Based on this damage evolution, the linear traction-separation law

t̄d =

{
t̄n
t̄s

}
= T

{
JuKn
JuKs

}
+

{
tcrit
0

}
=

(
T 0
0 0

){
JuKn
JuKs

}
+

{
tcrit
0

}
(33)

is prescribed, where imposing energy balance, T is obtained.
The geometric and material parameters for this test are summarised in Table 1.

Table 1: Three-point bending test: geometric and material parameters.

Meaning Symbol Value
Length of the specimen L 3 mm
Width of the specimen h 1 mm

Young’s modulus E 30 000 MPa
Idem of weaker part EW 27 000 MPa
Damage threshold Y0 10−4

Final strain Yf 1.25× 10−2

Poisson’s coefficient ν 0.0

Results are shown in Figure 9. On the one hand, the force-displacement curves are plotted
in Figure 9(a). For comparison purposes, both the C and the CD results are shown. As can be
seen, the force-displacement curves are completely overlapped thus meaning that the transition
is made in such a way that the energy dissipation remains constant. On the other hand, the final
damage profile and the deformed mesh are plotted. As seen, the crack propagates following
the MA of the damaged domain. Since this profile is regularised, it does not depend on the
finite element mesh thus leading to a crack path which is completely independent of numerical
parameters.

(a) (b)

Figure 9: Three-point bending test: (a) Force-displacement curves obtained with C and CD models; (b) Damage
profile with deformed mesh (× 100).
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5 CONCLUDING REMARKS

A combined strategy to simulate failure is proposed. In order to simulate the first stages of
the process, a gradient-enriched formulation based on smoothed displacements is employed.
Combined boundary conditions are prescribed for the regularisation equation.

Once the transition criterion is fulfilled, this non-local model is enhanced with a discontinu-
ous interpolation of the problem fields in order to describe the final stages of the failure process,
where macroscopic cracks can arise. Here, and for consistency purposes, both mechanical and
smooth displacements are considered to be discontinuous.

When dealing with these combined strategies, special emphasis should be placed on the
transition:

• The cohesive law is defined through an energy balance: the energy remaining to be dissi-
pated by the continuum approach is transmitted to the cohesive zone.

• The evolving cracks propagate across the bulk according to the direction determined by
the already damage profile. Particularly, a geometric tool is used. Note that since the
damaged bulk is regularised, this profile does not depend on numerical parameters, this
leading to a crack path completely independent of the mesh.

By now, some benchmark tests such as a three-point bending test have been carried out and
more research is still needed in order to generalise the applicability of this new methodology.
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