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Abstract. This work presents a new technique yielding computable bounds of quantities of
interest in the framework of linear visco-elastodynamics. A novel expression for the error rep-
resentation is introduced, alternative to the previous ones using the Cauchy-Schwarz inequal-
ity. The proposed formulation utilizes symmetrized forms of the error equations to derive error
bounds in terms of energy error measures. The practical implementation of the method is based
on constructing admissible fields for both the original problem and the adjoint problem asso-
ciated with the quantity of interest. Here, the flux-free technique is considered to compute the
admissible stress fields. The proposed methodology yields estimates with better quality than the
ones based on the Cauchy-Schwarz inequality. In the studied examples the bound gaps obtained
are approximately halved, that is the estimated intervals of confidence are reduced.
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1 INTRODUCTION

The pioneering works discussing error estimators for elliptic problems [1, 2, 3] introduced
techniques assessing the energy norm of the error in Finite Element Analysis. These tools are
essential to assess the reliability of numerical simulations and they are also a key ingredient for
subsequent strategies providing more meaningful error measures [4, 5, 6, 7]. The latter, aiming
at assessing arbitrary functional outputs of the solution describing some quantity of interest, are
referred as goal-oriented error estimators.

Error estimates for elliptic (steady state) problems have reached an amazing degree of matu-
rity, with different techniques providing excellent error estimates in an extensive collection of
model problems. The error estimation tools dealing with transient problems are not so popular,
especially in the case of structural dynamics. Some of the contributions on this last topic are, on
the one hand, the energy error estimates presented by Aubry et al. [8], Li and Wiberg [9, 10] and
Ladevèze et al. [11, 12, 13, 14] and, on the other hand, the goal-oriented estimates proposed by
Schleupen and Ramm [15], Fuentes et al. [16] and Ladevèze and co-workers [17, 18, 19, 20].

Interest has been paid also to the error assessment tools providing bounds, that is yielding
one-sided estimates (both lower bounds guaranteeing that the error is underestimated and upper
bounds guaranteeing that the error is overestimated) . This topic has been addressed recently
in many references, see for instance [5] where Parés et al. propose bounds of linear outputs
for the linear elastic case. The estimates providing bounds have also been extended to transient
problems, see for instance [21] where the transient convection-diffusion-reaction equation is
considered. To the best knowledge of the authors, the only references discussing bounds in a
quantity of interest for linear visco-elastodynamics are due to Ladevèze and co-workers [17, 18,
19, 20].

The present work aims at finding an alternative error representation improving the estimates
introduced in [18]. The strategy presented in [18] is briefly revisited, using an algebraic ratio-
nale without the requirement of any thermodynamic framework. In order to simplify the devel-
opments, a linear Kelvin-Voigt constitutive relation is considered here, instead of the Maxwell
model. This allows a simpler derivation, using only algebraic arguments, with no need of any
mechanical consideration. The key ingredient is the computation of admissible fields for both
problems. An other novelty with respect to [18] is the utilization of the flux-free technique [22]
in order to build the admissible stress fields.

The remainder of this article is organized as follows. Section 2 introduces the equations of
visco-elastodynamics and its numerical approximation with the Newmark method. Section 3 is
devoted to obtain upper bounds of energy error measures. Section 4 discusses how to obtain
bounds in quantities of interest following the error representation presented in [18]. Section 5
introduces the new error representation leading to better bounded estimates. Section 6 contains
the numerical examples. The paper is closed with some concluding remarks.

2 PROBLEM STATEMENT

2.1 Governing equations

A visco-elastic body occupies the open bounded domain Ω ⊂ Rd, d ≤ 3, with boundary
∂Ω. The boundary is divided in two disjoint parts, ΓN and ΓD such that ∂Ω = ΓN ∪ ΓD. The
time interval under consideration is I := [0, T ]. Under the assumption of small perturbations,
the evolution of displacements u(x, t) and stresses σ(x, t), x ∈ Ω and t ∈ I , is described by
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the visco-elastodynamic equations,

ρü−∇ · σ = f in Ω× I, (1a)
u = 0 on ΓD × I, (1b)

σ · n = g on ΓN × I, (1c)
u = u0 at Ω× {0}, (1d)
u̇ = v0 at Ω× {0}, (1e)

where ρ = ρ(x) > 0 is the mass density and an upper dot indicates partial derivation with
respect to time, that is ˙(•) := d

dt(•). The body force is denoted by f , g is the traction acting on
the Neumann boundary ΓN × I and n is the outward unit normal to ∂Ω. Functions u0 = u0(x)
and v0 = v0(x) are the initial conditions for displacements and velocities respectively. For
the sake of simplicity and without any loss of generality, Dirichlet conditions (1b) are taken as
homogeneous. The set of equations (1) is closed with the constitutive law,

σ := s(u) = sE(u) + sν(u), (2)

where

sE(w) := C : ε(w), (3a)
sν(w) := τC : ε(ẇ). (3b)

corresponding to the Kelvin-Voigt linear visco-elastic model. The parameter τ > 0 is a char-
acteristic time related with the amount of viscosity of the medium. The introduction of this
parameter is fundamental in obtaining bounds. For τ = 0 the bounding properties are lost. The
tensor C is the standard 4th-order elastic Hooke tensor. The kinematic relation (correspond-
ing to small perturbations) ε(w) := 1

2
(∇w + ∇Tw) is considered. The following notation is

introduced for the elastic and viscous part of the stress σ respectively:

σE := sE(u), (4a)
σν := sν(u). (4b)

Remark 1. The following analysis can be generalized for other more sophisticated linear
Kelvin-Voigt models. These models can be introduced taking alternative expressions for sν

in equation (3b).

The subsequent analysis requires introducing a variational version of problem (1). To this
end, the following spaces are introduced

W :=

w :

w(x, ·) ∈ [H2(I)]d ∀x ∈ Ω

w(·, t) ∈ [H1(Ω)]d ∀t ∈ I
w = 0 at ΓD × I

 ,

and

U :=

{
w ∈W :

w = u0 at Ω× {0}
ẇ = v0 at Ω× {0}

}
.
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Functions in U are said to be kinematically admissible or K-admissible. They are continuous in
space-time with continuous time derivative and they fulfill the initial and Dirichlet conditions.
The variational version of (1) reads: find u ∈ U such that

B(u,w) = L(w) ∀w ∈W , (5)

where

B(v,w) :=

∫
I

(ρv̈, ẇ) dt+

∫
I

a(v + τ v̇, ẇ) dt, (6a)

L(w) :=

∫
I

l(ẇ) dt, (6b)

l(w) := (f ,w) + (g,w)ΓN , (6c)

(v,w) :=

∫
Ω

v ·w dΩ, (6d)

(v,w)ΓN :=

∫
ΓN

v ·w dΓ, (6e)

a(v,w) :=

∫
Ω

ε(v) : C : ε(w) dΩ. (6f)

A numerical solution of the original problem (1) may be found without using this time-space
variational setting. Nevertheless, the variational formulation is useful in the following to assess
the error and, in particular, in order to obtain error bounds.

3 NUMERICAL APPROXIMATION

The well known Newmark method [23] is considered for the numerical approximation of
problem (1). The Newmark method is chosen because it is commonly used in practical ap-
plications and commercial codes. Note however that the present study is straightforwardly
generalizable to space-time formulations, for instance those introduced by Hughes and Hulbert
[24, 25].

Note that the Newmark approximation to displacements, velocities and accelerations, namely
uH,∆tn , vH,∆tn , aH,∆tn , for n = 0, . . . N is not defined in the whole time interval I , but only at the
time points 0 = t0 < t1 < . . . < tN = T . However, it can be extended to the interior of the
time steps using a simple linear interpolation furnishing the fields uH,∆t, vH,∆t, aH,∆t.

4 CONSTITUTIVE RELATION ERROR: UPPER ENERGY BOUNDS

4.1 Discretization error

Note that the numerical solution provided by the Newmark method, namely uH,∆t,vH,∆t

and aH,∆t, is such that the velocities are not the time derivatives of the displacements and
accelerations are not the time derivatives of the velocities. Moreover, Their time dependence is
not regular enough to fit in the variational setup described in equation (5), that is uH,∆t 6∈ U . A
new displacement field û ∈ U is introduced as a postprocess of the Newmark solution in order
to analyze the corresponding error using the variational setup. The detailed construction of û
is described in section 4.5. In the remainder of the paper, the error analysis is referred to the
approximate solution û.

The error associated with û, namely

ê := u− û, (7)
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lives in the space

U0 :=

{
w ∈W :

w = 0 at Ω× {0}
ẇ = 0 at Ω× {0}

}
,

and fulfills the variational residual equation: find ê ∈ U0 such that

B(ê,w) = R̂(w) ∀w ∈W , (8)

where
R̂(w) := L(w)−B(û,w).

Note that the residual R̂ does not verify the Galerkin orthogonality property because in gen-
eral for arbitrary û ∈ U and w ∈W , B(û,w) 6= L(w).

4.2 Energy measures

The first step to achieve bounds of the error ê in a quantity of interest is obtaining bounds of
this error in a suitable energy measure. The measure to be used is associated with the following
symmetric bilinear form

Bν(v,w) := τ

∫
I

a(v,w) dt. (9)

It is useful defining equivalent versions of forms a and Bν taking stresses as arguments:

ā(τ 1, τ 2) := (τ 1,C−1 : τ 2), (10a)

B̄ν(τ 1, τ 2) :=
1

τ

∫
I

ā(τ 1, τ 2) dt. (10b)

The relations a(v,w) = ā(sE(v), sE(w)) and Bν(v,w) = B̄ν(sν(v), sν(w)) hold for all v and
w. The bilinear forms Bν and B̄ν lead to the energy measures:

|||w|||2 := Bν(w,w) = τ

∫
I

||ẇ||2 dt,

|||τ |||2σ := B̄ν(τ , τ ) =
1

τ

∫
I

||τ ||2σ dt,

where ||w||2 := a(w,w) and ||τ ||2σ := ā(τ , τ ). Note that the notation introduced above is such
that norms with subscript “σ” and bilinear forms with upper bar take stresses as arguments.

4.3 Admissible fields

The construction of an admissible pair (σ̂, û) ∈ S(û) × U is the key ingredient in order to
obtain upper bounds of the energy of ê. The space of admissible stresses S(û) is defined for a
given û ∈ U as follows

S(û) :=

{
τ ∈ Z :

∫
I

(τ , ε(ẇ)) dt = L(w)−
∫
I

(ρ¨̂u, ẇ) dt ∀w ∈W
}
, (12)

where
Z :=

{
τ : [τ ]ij ∈ L2(Ω× I) i, j ≤ d

}
,
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and for τ , ε ∈ Z

(τ , ε) :=

∫
Ω

τ : ε dΩ.

The space S(û) contains the dynamically admissible or D-admissible stresses. These stress
tensors are in dynamic equilibrium with respect the external loads and with the inertia forces
related to the admissible acceleration ¨̂u. They can be discontinuous between mesh elements but
the vector σ̂ · n has to be continuous across element edges. Note that the definition of S(û)
requires the previous selection of a field û ∈ U . This is a particularity of the dynamic case. A
method to build a D-admissible field σ̂ from the numerical solution û is shown in section 4.6.

In the following, it is usefull to introduce the notations

σ̂E := sE(û), (13a)

σ̂ν := σ̂ − σ̂E, (13b)

which are a decomposition of the admissible stress σ̂ into elastic and viscous parts, i.e. σ̂ =
σ̂E + σ̂ν .

4.4 Global error representation and computable error bounds

The admissible pair (σ̂, û) ∈ S(û)× U defines the following error in stresses

σ̂e := σ̂ − s(û). (14)

This error corresponds to the non verification of the constitutive relation (2) associated with
the admissible pair. The value |||σ̂e|||σ is the so called constitutive relation error (following
the terminology by Ladevèze and co-workers) and it is computable once the fields σ̂ and û
available. Note that, |||σ̂e|||σ = 0 if and only if σ̂ = σ and û = u. Consequently, |||σ̂e|||σ is
adopted as a pertinent error measure. Moreover, the value |||σ̂e|||σ is also meaningful because it
is related with the unknown error ê.

Theorem 1. Given an admissible pair (σ̂, û) ∈ S(û)×U , the errors defined in equations (14)
and (7), σ̂e and ê, fulfill

|||σ̂e|||2σ = | ˙̂e|2t=T + ||ê||2t=T + |||ê|||2 + |||σν − σ̂ν |||2σ. (15)

being σν and σ̂ν defined in (4b) and (13b).

Theorem 1 furnishes the relation |||σ̂e|||2σ ≥ | ˙̂e|2t=T + ||ê||2t=T + |||ê|||2 and, in particular, the
following upper bound

|||σ̂e|||σ ≥ |||ê|||. (16)

Expression (16) is particularly important because it is used to bound the quantity of interest.

4.5 Construction of K-admissible fields

The firs step to build an admissible pair (σ̂, û) ∈ S(û)×U is to define the K-admissible field
û ∈ U . The method of the linear accelerations [26, Ch. 7] is considered in the present case.
This method is preferred because it simplifies the subsequent construction of the D-admissible
field.

6



F. Verdugo and P. Dı́ez

The basic idea is to take the admissible acceleration equal to aH,∆t and then integrate in time
to obtain the admissible velocity and the admissible displacement:

¨̂u(x, t) := aH,∆t(x, t), (17a)

˙̂u(x, t) :=

∫ t

0

¨̂uH,∆t(x, ξ) dξ + vH,∆t0 (x), (17b)

û(x, t) :=

∫ t

0

˙̂uH,∆t(x, ξ) dξ + uH,∆t0 (x). (17c)

4.6 Construction of D-admissible fields

Once the field û ∈ U is available, the D-admissible field is built such that σ̂ ∈ S(û).
The construction of σ̂ is more involved than the one for û. The reason is that the admissible
stress has to be equilibrated in a dynamic sense. Under certain circumstances, this dynamic
equilibration is reduced to static equilibration at each time t ∈ T . This allows using the standard
equilibration techniques for the static problem that are well studied in the literature [26, 27, 28,
22].

The methods allowing to compute a D-admissible stress field with an affordable compu-
tational cost require using domain decomposition. The two main approaches for domain de-
composition are the hybrid-flux [26] and the flux-free methodologies [22], using respectively
as local subdomains the elements and patches of elements centered in one node (stars). Other
approaches furnish D-admissible fields solving global dual problems (having stresses as un-
knowns) on the original finite element mesh, see for instance [29, 30]. Here, the asymptotic
flux-free approach is selected.

5 BOUNDS OF LINEAR FUNCTIONAL OUTPUTS

5.1 Quantity of interest

The present study aims at obtaining bounds for some given quantity of interest of the solu-
tion, denoted by LO(u), being LO a linear form such that

LO : U −→ R
w 7−→ LO(w).

The structure of LO is restricted to be as follows:

LO(w) :=

∫
I

(fO, ẇ) dt (average of velocities in Ω× I)

+

∫
I

(gO, ẇ)ΓN dt (average of velocities on ΓN × I)

+ (ρvO, ẇ(T )) (average of velocities at Ω× {T})
+ a(uO,w(T )) (average of strains at Ω× {T}),

(18)

where fO, gO, vO and uO are the data characterizing the quantity of interest. The interpreta-
tion of each term of the previous equation is indicated inline, being w a displacement. This
functional is rewritten in a more compact form:

LO(w) = Ld(w) + (ρvO, ẇ(T )) + a(uO,w(T )), (19)
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where

Ld(w) :=

∫
I

ld(ẇ) dt,

ld(v) := (fO,w) + (gO,w)ΓN .

5.2 Adjoint problem

The adjoint or dual problem of equations (1) associated with the quantity of interest given
in (18) consists in finding ud such that

ρüd −∇ · σd = fO in Ω× I, (21a)

ud = 0 on ΓD × I, (21b)

σd · n = gO on ΓN × I, (21c)

ud = −uO at Ω× {T}, (21d)

u̇d = −vO at Ω× {T}, (21e)

with the constitutive law
σd := C : ε(ud − τ u̇d). (22)

The external loads and final conditions of the adjoint problem are determined by the definition
of quantity of interest in equation (18). The adjoint problem has not the same form as the
original one because it has final conditions instead of initial ones and negative damping.

Remark 2. The adjoint problem (21) has the same form as the original (1) if integrated back-
wards in time. That is to say, introducing the change of variables t? := T − t.

A variational setting for the adjoint problem (21) is required in the following. To this end,
the adjoint trial space is defined as

U d :=

{
w ∈W :

w = −uO at Ω× {T},
ẇ = −vO at Ω× {T}

}
.

The set U d contains the adjoint kinematically admissible or adjoint K-admissible displacements.
These functions have the same regularity constrains and boundary conditions as the ones in U
and the final conditions of the adjoint problem (21).

With this notation, the weak form of the adjoint problem (21) reads: find ud ∈ U d such that

Bd(ud,w) = Ld(w) ∀w ∈W , (23)

where for v,w ∈W

Bd(v,w) :=

∫
I

(ρv̈, ẇ) dt+

∫
I

a(v − τ v̇, ẇ) dt.

5.3 Error representation in the quantity of interest

Bounds of the quantity of interest LO(u) are obtained combining admissible pairs for both
the original and the adjoint problem, (σ̂, û) and (σ̂d, ûd). These admissible pairs allow to
express the error in the quantity of interest LO(ê) in terms of energy products, see theorem 2
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below. Moreover, bounds for the quantity of interest are obtained from energy estimates, using
equation (16) or similar variations.

The admissible pair for the the adjoint problem (21) is obtained such that (σ̂d, ûd) ∈ S(ûd)×
U d. The space of adjoint dynamically admissible or adjoint D-admissible fields is defined for a
given ûd ∈ U d as follows

Sd(ûd) :=

{
τ ∈ Z :

∫
I

(τ , ε(ẇ)) dt = Ld(w)−
∫
I

(ρ¨̂ud, ẇ) dt ∀w ∈W
}
.

The space Sd(ûd) contains stress tensors in dynamic equilibrium respect to the loads of the
adjoint problem and the inertia related to the acceleration ¨̂ud.

The admissible pair (σ̂d, ûd) ∈ S(ûd) × U d determines the error in stresses for the adjoint
problem:

σ̂d,e := σ̂d − sE(ûd) + sν(ûd),

which corresponds to the non verification of the constitutive relation of the adjoint problem (22).
The constitutive relation error of the adjoint problem is the value |||σ̂d,e|||σ.

The errors σ̂e and σ̂d,e are seen as the solutions of the residual error equations

B̄ν(σ̂e, sν(w)) = R̂(w) ∀w ∈W , (24a)

B̄ν(σ̂d,e, sν(w)) = R̂d(w) ∀w ∈W , (24b)

where the residual for the adjoint problem is defined by

R̂d(w) := Ld(w)−Bd(ûd,w).

The previous relations are easily derived from the definition of D-admissibility. For instance,
equation (24a) follows from the property included in the definition of S(û) in equation (12) by
simply subtracting

∫
I
a(û + τ ˙̂u, ẇ) dt at each hand side. The proof for (24b) is analogous.

Theorem 2. If (σ̂, û) ∈ S(û) × U and (σ̂d, ûd) ∈ Sd(ûd) × U d are two admissible pairs for
the original and adjoint problems, then the following error representation holds

LO(ê) + α̂ = R̂d(ê), (25)

or alternatively
LO(ê) + α̂ = B̄ν(σ̂d,e, sν(ê)), (26)

where α̂ is the following correcting term

α̂ := R̂(ûd) = B̄ν(σ̂e, sν(ûd)).

As previously said, this result relatesLO(ê) with the energy-like quantities R̂d(ê) and B̄ν(σ̂d,e, sν(ê)).
Note that α̂ accounts for the lack of Galerkin orthogonality of residual R̂ and it is computable
once the admissible fields are available.
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5.4 Bounds based on the Cauchy-Schwarz inequality

Bounds based on the Cauchy-Schwarz inequality are already introduced for visco-elastodynamics
in reference [18]. These bounds are derived from the error representation in equation (26) along
with the Cauchy-Schwarz inequality:

|LO(ê) + α̂| ≤ |||σ̂d,e|||σ|||sν(ê)|||σ = |||σ̂d,e|||σ|||ê|||. (27)

Note that the last factor in the latter expression is not computable because involves the unknown
error ê. An upper bound estimate for this factor is the error in the constitutive relation of
the original problem, see equation (16). Introducing this estimate in the previous equation a
computable bound for the error in the quantity of interest is readily recovered:

|LO(ê) + α̂| ≤ |||σ̂d,e|||σ|||σ̂e|||σ.

The quantities defined as

ζC–S
U := LO(û) + |||σ̂d,e|||σ|||σ̂e|||σ − α̂,
ζC–S

L := LO(û)− |||σ̂d,e|||σ|||σ̂e|||σ − α̂,

are indeed upper and lower bounds of LO(u), that is

ζC–S
L ≤ LO(u) ≤ ζC–S

U . (29)

6 Alternative error bounds

6.1 Alternative error representation and (non-computable) bounds

Alternative error bounds are often used in the literature to improve the poor quality of the
bounds based on the Cauchy-Schwarz inequality. For instance, the parallelogram rule is applied
in works [7, 31, 22] in the context of linear elasticity. Similar strategies based on algebraic
identities are also applied to problems with non-symmetric bilinear forms as the case of the
steady and transient convection-diffusion-reaction equations, see reference [21]. However, to
the best knowledge of the authors, these kind of approaches have not been used in the framework
of linear visco-elastodynamics.

In the following, an alternative error representation is used to derive error bounds for quan-
tities of interest in the context of visco-elastodynamics. The derivation of the basic rationale
requires introducing symmetrized equations for the original and adjoint errors. Note, however,
that the actual implementation of these strategies does not require solving the auxiliary sym-
metrized problems because the upper bound estimates are computed using only the admissible
fields introduced above. These ideas are similar to those used in [21].

Consider the following symmetrized error equations: find êν ∈ U0 and êd,ν ∈ U d
0 such that

Bν(êν ,w) = R̂(w) ∀w ∈W , (30a)

Bν(êd,ν ,w) = R̂d(w) ∀w ∈W , (30b)

where
Bν(v,w) := τ

∫
I

a(v,w) dt,

and

U d
0 :=

{
w ∈W :

w = 0 at Ω× {T}
ẇ = 0 at Ω× {T}

}
.

10
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Equations (30) resemble the residual equation (8) for the error ê. Note that the difference is that
the bilinear form B is replaced by the symmetric one Bν .

Theorem 3. If êν and êd,ν are solution of equations (30a) and (30b) then, for any κ ∈ R, κ 6= 0,

−1

4
|||κêν − 1

κ
êd,ν |||2 ≤ LO(ê) + α̂ ≤ 1

4
|||κêν +

1

κ
êd,ν |||2. (31)

Equation (31) allows bounding LO(ê) by computing |||z±|||2, where z± := κêν± 1
κ
êd,ν . These

two functions are solutions of

Bν(z±,w) = R̂±(w) ∀w ∈W , (32)

where
R̂±(w) := κR̂(w)± 1

κ
R̂d(w).

Functions z± are solutions of the infinite dimensional problems (32). Therefore, the error
bounds proposed in (31), corresponding to the values of |||z±|||2, are not computable. In the
following, computable bounds are obtained from an auxiliary field σz± , in the same fashion as
the energy-like bounds described in section 4.

6.2 Computable error bounds

As shown in section 4 the standard approach to obtain a computable error bound is to find a
D-admissible stress. The admissible stress associated with z± is denoted by σz± which fulfills
the stress-version of equation (32), i.e.

B̄ν(σz± , s
ν(w)) = R̂±(w) ∀w ∈W . (33)

Comparing equation (33) and the residual representation of equations (24), one concludes that
the following linear combination of σ̂e and σ̂d,e

σz± := κσ̂e ± 1

κ
σ̂d,e, (34)

is solution of (33). The value |||σz±|||σ is indeed an upper bound of |||z±|||. Thus, using expres-
sion (34) for σz± , an upper bound of |||z±|||2 is computed as

|||κσ̂e ± 1

κ
σ̂d,e|||σ ≥ |||z±|||. (35)

As previously announced, expression (35) allows computing bounds for LO(ê) without any
use of the symmetrized error equations (30). In fact, the introduction of the symmetrized error
equations is only a mathematical artifact that allows deriving an alternative bounding expres-
sion. The final bounds for LO(u) are derived substituting expression (35) in equation (31):

ζU := LO(û) +
1

4
|||κσ̂e +

1

κ
σ̂d,e|||2σ − α̂,

ζL := LO(û)− 1

4
|||κσ̂e − 1

κ
σ̂d,e|||2σ − α̂,

where ζU and ζL are such that
ζL ≤ LO(u) ≤ ζU. (37)
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Note that σ̂e and σ̂d,e are eventually computed using asymptotic techniques, for instance the
flux-free strategies. In this case, the upper bound properties (37) hold only asymptotically, that
is if the size of the reference mesh is small enough. In practice, due to the overestimation
introduced in the subsequent approximations, the estimates obtained are upper bound of the
error in all the examples. The parameter κ is determined such that it minimizes |||κσ̂e± 1

κ
σ̂d,e|||2σ.

7 NUMERICAL EXAMPLE

The second numerical example illustrates the performance of the bounds in a full 2D prob-
lem. This example is inspired in one from [32]. It consists of a rectangular plate initially at rest
which is loaded with two impulsive tractions, see figure 1. This action generates elastic waves
propagating along the plate and reaching to the region of interest ΩO. The quantity of interest
is an average of velocities in this region during a time interval (selected such that the wave is
noticeable in this region, see figure 2). This quantity is defined as

LO(w) :=

∫
I

α(t)lO(ẇ(t)) dt,

where
lO(w) := (fO,w),

and

fO(x) :=


−e2

meas(ΩO)
x ∈ ΩO

0 else
.

Vector e2 is the unit vector in the y–axis and α(t) is defined in figure 1(c). All the parameters
involved in the problem are specified in table 1.

(a) Problem geometry (b) Time dependence of external
load

(c) Time dependence of the quan-
tity of interest extractor

Figure 1: Example 2: Problem statement and quantity of interest.

The problem is solved with three different meshes with decreasing element size, see table 2.
In all cases linear triangles are considered. The time step is chosen such that ∆t = 0.8H/c. The
reference mesh for the flux-free method is taken as h := H/4. The value of the exact solution
u displayed in some figures and tables correspond to the reference solution obtained with the
finer mesh (mesh 3) Other parameters related with the discretization are given in table 2.

Several snap shots of the numerical solution of the original and adjoint problems are shown
in figures 3, 4 and 5 for the three values of the viscosity under consideration. The damping
factors ξ associated with the values of the viscosity parameter, 10−4s, 10−3s and 10−2s, are
0.0247%, 0.247% and 2.47% respectively. Note that for the original problem the elastic waves
propagate forward in time, and backward in time for the adjoint.

12
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Table 1: Example 2: Parametrization

Geometry Material properties

Ω (−0.5, 0.5)× (0, 0.5) m2 E 8/3 Pa
ΩO (−0.025, 0.025)× (0.1, 0.15) m2 ν 1/3
Γg [(0.075, 0.125) ∪ (−0.075,−0.125)]× (0.5) m ρ 1 kg/m3

T 0.25 s τ {10−4, 10−3, 10−2} s
ξ {0.0247, 0.247, 2.47} %

External load Quantity of interest

gmax 30 Pa εO 0.01 s
tg 0.005 s tO 0.2170 s

t [s]

[m
/s

]

0 0.05 0.1 0.15 0.2 0.25
−0.5

−0.2

0.1

0.4

0.7

0 0.05 0.1 0.15 0.2 0.25
0

25

50

75

100

125

[1
/s

]

Figure 2: Example 2: Time evolution of the of the average lO(u̇(t)) for three values of the viscosity (left y-axis)
and time evolution of the weighting function α(t) (right y-axis).

Table 2: Example 2: Space and time discretizations.

D.O.F. H [mm] # elements N

mesh 1 24000 0.16 23596 325
mesh 2 95190 0.08 94384 650
mesh 3 379146 0.04 377536 1300

Figure 6 shows the computed value LO(û) and the bounds obtained for the three values
of the viscosity and decreasing element size. In addition, table 3 shows the effectivity of the
computed bounds. Note that in this case the bounds are also sharper for higher values of τ and
for smaller element sizes. In particular, for τ = 10−4s and τ = 10−3s the bounds are not sharp
at all, even for mesh number 3, which can be considered an overkill mesh. Note that, in these
two cases, the bounds do not allow identifying which is the sign of the quantity of interest. For
τ = 10−2s the bounds are much sharper. The proposed bounds reduce in approximately 50%

13
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Figure 3: Example 2: Magnitude of the original (left) and adjoint (right) velocities for τ = 10−4 s (ξ = 0.0247%).

the bound gap with respect to the ones based on the Cauchy-Schwarz inequality, in all cases.
Note however that for the small values of the viscosity, τ = 10−4s and τ = 10−3s, this reduction
is not sufficient to have bounds applicable in practical engineering examples.

8 CONCLUSIONS

• Bounds for linear functional outputs are derived for linear visco-elastodynamics. A new
bounding expression is presented which improves the quality with respect to the previ-
ous approaches based on the Cauchy-Schwarz inequality. The proposed new approach
is based on an alternative error representation, involving symmetrized error equations,

14
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Figure 4: Example 2: Magnitude of the original (left) and adjoint (right) velocities for τ = 10−3 s (ξ = 0.247%).

which is derived precluding the use of the Cauchy-Schwarz inequality.

• The key ingredient for the practical application of the method is the construction of ad-
missible fields for both the original and adjoint problems. The proposed formulation is
valid for any numerical method, provided that the numerical solution furnishes admissi-
ble fields (possibly after some post processing). Here, the K-admissible field is computed
as a post process of the Newmark solution. On the other hand, the D-admissible field
is computed with the asymptotic flux-free strategy. This method is based on a reference
mesh and therefore, the proposed bounds hold when the element size of the reference
mesh is fine enough. In practice, the numerical examples show that the computed values

15
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Figure 5: Example 2: Magnitude of the original (left) and adjoint (right) velocities for τ = 10−2 s ξ = (2.47%).

are indeed true bounds of the quantity of interest.

• All the developments in the paper require that the formulation includes a certain amount
of viscosity. In the present case, the linear Kelvin-Voigt model is considered. The quality
of the results obtained degenerate in the limit case of elasticity (zero or very small viscos-
ity). In materials with small amounts of viscosity, the bounds obtained are pessimistic.
The numerical tests reveal that when the meshes are refined the bound gap tends to be re-
duced and, correspondingly, the strategy provides sharp bounds for fine enough meshes.
Nevertheless, in practice, for low viscosity, the meshes providing accurate bounds are not
computationally affordable. Therefore, further research is needed to explore alternative
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(a) τ = 1 · 10−6 s (ξ = 0.0247%)
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(b) τ = 1 · 10−5 s (ξ = 0.247%)

(c) Legend
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(d) τ = 1 · 10−4 s (ξ = 2.47%)

Figure 6: Example 2: Convergence of the computed bounds for different values of element size and viscosity.

Table 3: Example 2: Convergence of the computed bounds. Results in [m/s].

τ [s] D.O.F. LO(û) LO(u)
ζU

LO(u)

ζL

LO(u)

ζC–S
U

LO(u)

ζC–S
L

LO(u)

1 · 10−4 24000 0.4937 0.4960 110.0524 -113.8099 224.8397 -222.8850
95190 0.4932 0.4960 32.1210 -31.5976 64.7088 -62.7284

379146 0.4960 0.4960 9.2333 -7.6063 17.8371 -15.8420

1 · 10−3 24000 0.2681 0.2697 6.5943 -4.8098 12.4183 -10.3898
95190 0.2681 0.2697 2.5800 -0.6352 4.2187 -2.2117

379146 0.2697 0.2697 1.4224 0.5637 1.8595 0.1422

1 · 10−2 24000 0.0668 0.0672 1.6457 0.3498 2.2953 -0.2967
95190 0.0668 0.0672 1.1867 0.8121 1.3745 0.6252

379146 0.0672 0.0672 1.0520 0.9477 1.1043 0.8956
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pertinent bounds for nearly elastic problems.
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