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Departament de Matemàtica Aplicada III, E.T.S. de Ingenieros de Caminos
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Abstract. Solution of multiphase problems shows discontinuities across the material inter-
faces, which are usually weak. Using the eXtended Finite Element Method (X-FEM), these
problems can be solved even for meshes that do not match the geometry. The basic idea is to
enrich the interpolation space by means of a ridge function that is able to reproduce the discon-
tinuity inside the elements. This approach yields excellent results for linear elements, but fails
to be optimal if high-order interpolations are used.

In this work, we propose a formulation that ensures optimal convergence rates for bimaterial
problems. The key idea is to enrich the interpolation using a Heaviside function that allows the
solution to represent polynomials on both sides of the interface and, provided the interface is
accurately approximated, it yields optimal convergence rates. Although the interpolation is
discontinuous, the desired continuity of the solution is imposed modifying the weak form.

Moreover, in order to ensure optimal convergence, an accurate description of the interface
(which also defines an integration rule for the elements cut by the interface) is needed. Here, we
comment on different options that have been successfully used to integrate high-order X-FEM
elements, and describe a general algorithm based on approximating the interface by piecewise
polynomials of the same degree that the interpolation functions.
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1 INTRODUCTION

Although the eXtended Finite Element Method (X-FEM) was initially developed for solving
fracture problems, it is nowadays widely used in many other applications, such as material in-
clusions, phase change or contact problems (see, for instance, [1] for an overview of the method
and its applications). In particular, for problems involving several materials, discontinuities of
the solution across interfaces can be represented using X-FEM, by simply enriching the inter-
polation.

Problems involving material interfaces yield solutions with weak discontinuities, which are
usually reproduced in X-FEM using a ridge function as the ones described in [2] or [3]. These
enrichments provide very good results for linear elements, but fail to be optimal if high-order
interpolations are used. This problem has been recently addressed in two papers [4] and [5],
where two different methods to modify integration and several ridge enrichment functions are
proposed and analyzed. Both obtain optimal convergence rates for problems with voids, but not
for bimaterial problems involving weak discontinuities. The goal of this paper is defining an
X-FEM methodology ensuring optimal convergence for any degree.

The basic ingredients of an X-FEM method for the numerical treatment of voids or material
interfaces are (i) a numerical representation of interfaces, usually described by means of level
sets [6, 7] and (ii) an enrichment of the Finite Elements (FE) approximation space, to represent
weak or strong discontinuities along material interfaces.

A proper representation of the interface inside the elements cut by the interface is crucial.
Those elements are split by the interface in two subregions, corresponding to different materials
or voids, and a separate numerical quadrature has to be defined for each subregion; to integrate
only over the material domain in the case of voids, or to integrate with different material prop-
erties over each subdomain in the case of a material interface. The usual practice for first order
X-FEM computations [2] is considering a linear interface representation in each cut element.
This strategy provides optimal convergence rates for linear approximations, but it is clearly not
suitable for high-order computations. The geometrical error due to the low resolution represen-
tation of the interface leads to poor accuracy and convergence rates limited to order O(h3/2) in
H1 norm, see for instance [8].

Two main strategies have been proposed in the literature to properly represent an interface
for integration purposes in p-th order computations, aiming to get rid of the effect of geometrical
errors: (i) a piecewise linear representation of the interface in each cut element [5, 10] or (ii) a
p-th order parametrization to approximate the interface [4] . In [5], an octree-like partition of the
element in integration cells is recursively defined to get a piecewise linear representation of the
interface, with segments of the desired size h̃. Special care has to be paid to the level of refine-
ment in order to get accurate results and optimal convergence rates. In fact, optimal asymptotic
convergence can not be obtained with a constant ratio h̃/h and, as noted in [5], further refine-
ment of the integration cells is necessary as the computational mesh is refined. Numerical tests
confirm the optimal convergence of this robust, and easy to implement, technique. Neverthe-
less, it has two important drawbacks for practical purposes: (i) the overhead in computational
cost, comparable to a linear h-refinement around the interface, and (ii) the strong dependence of
the solution accuracy on the integration cell size h̃. In practice, user decision and tuning of the
integration cells size h̃, or an strategy to estimate the geometrical error in each cut element, is
necessary to get a good performance for a given computational mesh. Alternatively a p-th order
parametrization for the representation of the interface in each element is proposed in [4], lead-
ing to accurate results and optimal convergence rates with little overhead in computational cost.
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However, the strategy proposed in [4] restricts to a simple situation, assuming that the interface
cuts the element boundary in only two points at different sides. Thus, this strategy may fail
in complicated situations, that can usually appear with a high-order level set, such as a bubble
inside one element, or an interface cutting more than two sides of an element. To overcome
this limitation, a robust and efficient strategy based on a piecewise p-th order parametrization
of the interface in each element – capable to handle with complicated situations, while keeping
high-order convergence rates and a low overhead in computational cost — is proposed here.

Regarding the functional approximation, when the 0-level set corresponds to a material in-
terface, the solution may present a strong discontinuity (i.e discontinuous solution) or a weak
discontinuity (i.e. continuous solution with discontinuous derivative), along the interface. In
this situation the approximation is enriched in all the elements cut by the interface – that is,
in the so-called reproducing elements– in order to reproduce the desired discontinuity. For the
approximation of functions with strong discontinuities, such as a crack or the pressure in a
bimaterial incompressible flow problem, the Heaviside function is widely used as enrichment
function [9, 10], with easy implementation and providing optimal results for any order.

On the other hand, the enrichment of the approximation for a weak discontinuity – that is con-
tinuous function with discontinuous derivative – has been typically based on a ridge function,
for which several definitions can be found in the literature [2, 3]. The first X-FEM proposal for
material inclusions [2] considers the interpolation of the distance as enrichment function. This
ridge function is different from zero in the whole domain and therefore the enrichment shape
functions, corresponding to nodes at elements cut by the interface, does not only affect these
enriched elements but also the neighboring ones, i.e the so-called blending elements. Aiming
to avoid blending elements, a ridge function whose support is included in the union of the re-
producing elements is proposed in [3]. This ridge function and the distance ridge function yield
similar interpolation spaces for linear elements, and are suitable for first order X-FEM computa-
tions providing optimal convergence rates. However, for different reasons, both approaches fail
in high-order computations, leading to clearly suboptimal convergence rates, see for instance
[4]. The oscillations of the modified ridge function, due to its piecewise high-order polynomial
definition, leads to highly oscillating enriched shape functions, which are far from being able to
reproduce piecewise polynomials of degree greater than one. On the other hand, although the
X-FEM approximation with the distance ridge function is able to reproduce high-order polyno-
mials in the elements cut by the interface, this is not the case in the blending elements, leading to
global poor accuracy results. Aiming to improve high-order X-FEM computations, alternative
definitions of the ridge function and the X-FEM approximation are proposed in [11, 4, 5].

A corrected X-FEM interpolation considering a complete FEM base –that is a partition of
the unity– for the enrichment also in the blending elements is proposed in [11],where a plateau
function is designed to keep the original enrichment in the elements cut by the interface while
maintaining a compact support. It is worth noting that this approximation has a small overhead
in number of degrees of freedom due to the extra enriched nodes. Although it is not theoreti-
cally justified, numerical experiments in [4] show that the corrected X-FEM approximation, in
combination a p-th order interface representation for numerical integration, leads to close to
optimal convergence rates up to 3rd degree. Alternative corrected X-FEM approximations with
low order FE basis for enrichment, and several enrichment terms following the philosophy of
a Partition of the Unity Method (PUM), are also considered in [4]. However, the conclusion is
that the multiple enrichment does not improve the convergence rate, despite requiring a higher
computational effort, and the corrected X-FEM approximation is finally recommended.

On a parallel path, a ridge function fitting a piecewise linear representation of the interface is
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considered in [5] to improve high-order X-FEM computations in triangular meshes. The ridge
in each cut element is a piecewise linear function whose definition is based on the same octree-
like partition in cells used for numerical integration, plus a bubble whose definition depends on
the number of cut edges. This ridge function introduces the desired weak discontinuity along
the piecewise linear interface, but unfortunately it also introduces many other discontinuities
in the interior of the element. Thus, the resulting X-FEM approximation is clearly not able
to reproduce a polynomial in each one of the two subdomains. Numerical experiments in [5]
exhibit clearly suboptimal convergence rates for bimaterial problems.

In conclusion, although improved ridge functions require a non-negligible overhead in com-
putational cost and a difficult programming in some cases, none of them is able to ensure high-
order optimal convergence rates.

Here, a Heaviside enrichment is considered for both strong and weak discontinuities. High-
order convergence rates for any interpolation degree p are ensured thanks to the fact that the
enriched approximation is able to reproduce high-order polynomials on both sides of a dis-
continuity. The approximation is then discontinuous along the interface, and in the case of
weak discontinuities, C0 continuity is to be imposed. A weak form introducing a consistent
penalty parameter, following the ideas of Nitsche’s method in the context of boundary condi-
tions [12, 13], the Interior Penalty Method in the context of DG [14, 15], or the method for
unfitted meshes in [16], is stated in Section 2.

The proposed approximation and formulation leads to optimal high-order convergence rates
provided that a proper numerical integration is considered. Thus, the proposed method is com-
pleted with a robust and efficient strategy for numerical integration, based on the p-th order
parametrization of interfaces introduced in [11], but able to handle complicated situations, see
Section 3.

Finally, some numerical results show the optimal behavior of the method.

2 X-FEM DISCRETIZATION

Let us consider a domain Ω ∈ Rnsd split by an interface Γ in two disjoint subdomains, that
is Ω = Ω1 ∪ Ω2 and Γ = Ω1 ∩ Ω2. The X-FEM approximation is defined as

uh(x) =
∑
i∈I

Ni(x)ui +
∑

i∈Ienr

H(x)N enr
i (x)ai. (1)

The first term in (1) is the standard FE approximation: Ni are the standard FE shape functions of
degree p, I is the set of all FE nodes in the computational mesh and ui are the nodal coefficients.
The second term corresponds to the interpolation’s enrichment, characteristic of an X-FEM
formulation: N enr

i are FE shape functions for the enrichment contribution and Ienr ⊂ I is the
subset of the enriched nodes (that is nodes in the reproducing elements), H is the so-called
enrichment function and ai are the enrichment nodal coefficients . The shape functions used for
the enrichment N enr

i can be different from the basic FE basis Ni, and they are only required to
be a partition of the unity in the elements cut by the interface. Here, the enrichment function H
is a Heaviside function, that can be for instance defined as

H(x) =

1 for x ∈ Ω1

−1 for x ∈ Ω2.
(2)

The X-FEM approximation is then discontinuous along the interface and, in the case of a weak
discontinuity, C0 continuity is imposed introducing a consistent penalty parameter in the weak
form.
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Remark 1 It is worth noting that the enriched approximation (1) can be expressed in an alter-
native way as two separated approximations in each region of the computational domain, just
considering a duplication of the nodes in the reproducing elements. That is, two approximations

uhk(x) =
∑
i∈Ik

Ni(x)ui in Ωk, k = 1, 2

can be defined based on two meshes that overlap in the reproducing elements, with sets of nodes
I1 and I2. For instance, assuming that the duplicated reproducing elements are used for the
approximation in Ω2, I1 would be the set of the nodes in the union of Ω1 and the blending ele-
ments, and I2 would be (I\I1)∪I∗, where I∗ is the new set of duplicated nodes. Obviuosly, the
computational cost in terms of number of degree of freedom is the same for both approaches,
since the size of the set of duplicated nodes, I∗, coincides with the number of enrichment coef-
ficients ai in (1). This alternative is not as natural as (1) for its introduction in an X-FEM code,
but gets rid of blending elements in the numerical integration.

To illustrate the methodology, the weak form with consistent penalty parameter is stated next
for a bimaterial elliptic problem, whose solution presents a weak discontinuity. The bimaterial
elliptic problem is stated as

∇ · (µ∇u) = −s in Ω̂
u = uD on ∂Ω

JuK = 0 on Γ
Jµ∇uK · n = 0 on Γ

(3)

where Ω̂ = Ω1∪Ω2 is the union of the interior of both subdomains, µ is the viscosity (discontin-
uous across the interface), s is a source term, uD are prescribed values, n is the unitary outward
normal vector to Ω1 on Γ, and the jump J·K operator is defined along the interface, using values
from both subdomains

JuK = u
∣∣
Ω1
−u
∣∣
Ω2

on Γ.

Following for instance [16], the weak form for the bimaterial problem reads: find u ∈ H1(Ω̂)
such that u = uD in ∂Ω and

a(u, v) = l(v) ∀v ∈ H1
0(Ω̂) (4)

with

a(u, v) =
(
µ∇u,∇v

)
Ω̂
− 〈{µ∇u} · n, JvK〉Γ

− 〈JuK, {µ∇v} · n〉Γ + 〈γJuK, JvK〉Γ
l(v) =

(
v, s
)

Ω̂
,

(5)

where
(
·, ·
)

Ω̂
and 〈·, ·〉Γ denote the L2 scalar product in Ω̂ and Γ, and γ is a sufficiently large

parameter of order O(h−1), to ensure coercivity of the symmetric bilinear form a(·, ·) (see
Remarks 2 and 3). The following definitions of functional spaces are used:

H1(Ω̂) :=
{
v ∈ L2(Ω) | v|Ωi

∈ H1(Ωi) for i = 1, 2
}

H1
0(Ω̂) = {v ∈ H1(Ω̂) | v = 0 on ∂Ω}.
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Finally, the mean {·} operator is defined along the interface, using values from both subdomains

{u} = κ1u
∣∣
Ω1

+κ2u
∣∣
Ω2

on Γ,

where κ1 and κ2 are two scalars satisfying κ1 + κ2 = 1, the simplest choice being κ1 = κ2 =
1/2.

The weak imposition of the continuity of the solution JuK = 0 along the interface Γ can be
clearly seen in the last term of the bilinear form a(·, ·) in (5), but it is also used in the derivation
of the weak form adding the third term, which also recovers the symmetry of the bilinear form.
The continuity of the normal flux Jµ∇uK ·n = 0 on Γ is also used in the derivation of the weak
form canceling terms.

Remark 2 For γ large enough, the IPM bilinear form a
(
·, ·
)

defined in (5) is continuous and
coercive, that is

a(u, v) ≤ 9u 9 9v 9 ∀v ∈ H0(Ω̂) (6)

and

m 9 v9 ≤ a(v, v) ∀v ∈ H0(Ω̂) (7)

for some constant m > 0 independent of the mesh size h, where

9 v92 = ‖∇v‖2
Ω̂

+ ‖h1/2n · {∇v}‖2
Γ + ‖h−1/2JvK‖2

Γ (8)

and ‖·‖ denotes the standard L2 norms. These properties can be proved following standard
arguments, see [17, 18] for details.

Remark 3 Parameter γ in (5) is a consistent penalty, in the sense that the solution of the origi-
nal problem (3) is solution of the weak form (4) and therefore, in practice moderate values of the
constant parameter γ, of order O(h−1) for any p, provide accurate and optimally convergent
results. Thus, the formulation with a consistent parameter does not suffer the ill-conditioning
problems that typically arise with non-consistent penalty techniques.

The extension of the formulation for other multimaterial problems is straightforward follow-
ing the same rationale, see for instance the application of Nitsche’s method for linear elasticity
problems in [19].

3 NUMERICAL INTEGRATION

Level sets are widely used to describe interfaces, such as material interfaces, voids or moving
boundaries, inside a computation domain Ω [6, 7]. An interface Γ ⊂ Ω is represented as the
iso-zero values of a level set function ϕ : Ω→ R, that is

Γ = {x ∈ Ω|ϕ(x) = 0}. (9)

As usual in X-FEM computations, here the level set function ϕ is assumed to be given by its
nodal values in the computational mesh, that is

ϕ(x) =
∑
i∈I

ϕiNi(x), (10)
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where, here, the nodal values of the level set function ϕi correspond to the signed distance of
the i-th node to the interface Γ.

An accurate description of the interface inside each element cut by the interface is needed to
define a proper numerical integration and maintain high-order convergence.

In [4], Cheng and Fries consider a p-th order polynomial parametrization for the representa-
tion of the interface in one triangular element, splitting the element in a triangle and quadrilateral
integration cells. First, p+ 1 points on the interface are to be found, including the intersections
(assumed to be two) of the interface and the element boundary . The p + 1 points are used
as base points for a p-th degree polynomial parametrization approximating the interface, and
dividing the element in two integration cells sharing one curved side (see figure 1).

A
B

A
B

Figure 1: A quadratic triangle cut by the interface is divided in two integration cells (a triangle and a quadrilateral)
sharing one curved edge.

A transformation from a straight-sided element can then be used to define the numerical
quadrature in each integration cell. To avoid generating all the nodes necessary for the use of
the standard isoparametric transformation, which would require a proper location of interior
nodes [20], the use of specially designed transformations for elements with only one curved
side is recommended here, see for instance [21]. In particular, in an element cut by an interface,
parametrized by φ(s) for s ∈ (−1, 1), the following parametrizations can be used in each
subdomain:

(ξ(s, t), η(s, t)) =
1− t

2
C +

1 + t

2
φ(s), s, t ∈ (−1, 1)

for a triangular subdomain corresponding to the convex hull of the curved side and node C, and

(ξ(s, t), η(s, t)) =
1− t

2

[
1− s

2
C +

1 + s

2
D

]
+

1 + t

2
φ(s), s, t ∈ (−1, 1)

for a curved quadrilateral corresponding to the convex hull of the curved size and nodes C and
D (for a quadrilateral {φ(−1), φ(1), D , C} being properly oriented, or switching C and D
otherwise).

It is worth noting that, in the case of a composite triangle quadrature, the quadrilateral curved
cell can be first split, for instance, joining an intersection of the interface and the element bound-
ary with the vertexes of the quadrilateral. A similar procedure can be defined for a quadrilateral
element, that in the simpler situation, can be split by an interface in two quadrilaterals, or in one
triangle and a pentagon. As in the previous case, quadrilateral or pentagonal subregions can
be split in triangles or a combination of triangles and quadrilaterals, paying attention to avoid
crossing of the curved side with the new sides, see Figure 2.

Numerical examples in Section 4 illustrate how the approximation of the interface with a
piecewise p-th order parametrization in each element leads to optimal convergence rates, that
is, errors of order O(hp+1) in the L2 norm and errors of order O(hp) in theH1 seminorm.

7



E. Sala-Lardies, S. Fernández-Méndez, and A. Huerta

Figure 2: Two different situations for a quadrilateral split by an interface: (left) the element is divided in two
triangular cells plus a quadrilateral cell, (right) the element is divided in two quadrilateral cells.

Nevertheless, the assumption of an interface cutting the element boundary in two points at
different sides is too restrictive for high-order computations, and hampers the robustness of
the method. High-order level sets may lead to very complex interfaces, see some examples in
Figure 3, that are not contemplated in [4]. In a more general context, an interface can split an
element in more that two regions. Moreover, even if it is split in only two regions, casuistic
(interior buble, two cuts in the same side, etc) may difficult the implementation of a unique p-th
order polynomial parametrization.

Figure 3: Some examples of interfaces described by a 4-th order level set. Nodes with different sign of the level
set function are plotted with different colors.

Here a simple idea is proposed: divide and conquer. That is, any element intersected by
the interface in a complex manner is recursively divided in integration cells until all cells can
be considered either basic cells – i.e. cells whose boundary is cut by the interface twice in
two different sides – or not intersected by the interface. Nodal values of the level-set function
are projected from the original element to get nodal values in the integration cells. Then, the
strategy considering a p-th order parametrization of the interface is applied for all basic cells,
leading to a piecewise p-th order interface representation in the element.

Remark 4 The recursive division in cells must be done using the same type of element – for
instance, a p-th order quadrilateral element should be split in p-th order quadrilateral cells and
not triangular cells – so that the resulting level set is exactly the same polynomial level set, and
no information is lost during the process.

Remark 5 The recursive division in cells is done only for integration purposes –that is, to
define a numerical quadrature in the original p-th order element – and it does not represent any
change in the computational mesh and the corresponding number of degrees of freedom.

For an easy implementation, the decision of splitting an element or cell can be based in the
changes of sign of the level-set nodal values, first looking to nodal values at sides and then
looking to interior nodal values. An element or cell is to be split if:

(i) one of its sides is cut more than once by the interface (there are more than one changes of
sign of the nodal values of the level set in the side), or
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(ii) it has more than two sides cut by the interface, or

(iii) its boundary is not intersected by the interface, but it has one or more interior nodes with
sign of the level set different to the boundary sign (interior bubble or void).

Figure 4 shows an example of recursive division and the corresponding numerical quadrature
for a second order finite element. Nodal values with different sign are marked with different
colors.

Figure 4: An element intersect by a level-set in a complex manner is divided in basic cells, which are used for
integration purposes only.

The strategy considering a piecewise p-th order parametrization to approximate the interface
provides optimal convergence rates for any order, in a robust manner. Moreover, in practical
applications most of the elements cut by the interface will be in the basic situation, and paying
little attention to the casuistic for the recursive division in the complex elements, they will
usually be divided in few integration cells, with little overhead in computational cost.

4 NUMERICAL RESULTS

The behavior of the proposed methodology is analyzed in the following examples. First,
a Laplace equation defined in a domain with a hole is solved to show the performance of the
numerical integration strategies. Then, a bimaterial elliptic problem, with a weak discontinuity
across the material interface, is solved using the Heaviside enrichment, to show that conver-
gence is optimal for any interpolation degree.

4.1 Laplace equation in a domain with a hole

A Poisson problem in a domain with a hole is considered to test two different alternatives for
numerical integration: the piecewise p-th order parametrization presented in Section 3, and the
approach based on an octree-like partition proposed in [5]. The problem statement is

−∆u = f in Ω = (−1, 1)2\B(0, 0.4)
u = g on ∂((−1, 1)2)
∇u · n = 0 on ∂B(0, 0.4)

(11)

where B(0, 0.4) is the ball of radius 0.4 centered at 0, and the source term f and prescribed
values g are such that the analytical solution is u(x, y) = (

√
x2 + y2 − 0.4)2(sin(πx) + 1), see

Figure 5.
Figure 6 shows a convergence test using the piecewise p-th order approximation of the in-

terface, for order p = 1, 2, 3, 4. The approximation of the interface with a piecewise p-th order
parametrization in each element leads to errors of order O(hp+1) in the FE solution, ensuring
the preservation of optimal convergence rates for both L2 andH1 norms, in a robust manner.
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Figure 5: Example of computational mesh (left) and analytical solution for the Poisson problem in a domain with
a hole (11)
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Figure 6: Convergence test with a p-th order approximation of the interface in each subelement.

Optimal convergence can also be attained with a fine enough piecewise linear approximation
of the interface, based for instance in the octree-like partition in integration cells proposed in
[5]. However, special care has to be paid to the level of refinement in order to get accurate
results and optimal convergence rates. As noted in [5], further refinement of the integration
cells is necessary as the computational mesh is refined Figure 7 shows the evolution of the error
for the solution of the Poisson problem (11) in a computational mesh with 25 × 25 nodes and
order p = 2, 3, 4, for decreasing integration cell size h̃. The accuracy in the solution strongly
depends on the integration cell size h̃. This example illustrates that, in practice, user decision
and tuning of the integration cells size h̃, or an strategy to estimate the geometrical error in
each cut element, is necessary to get a good performance for a given computational mesh.
Therefore, this strategy has two important drawbacks for practical purposes: (i) the overhead
in computational cost, comparable to a first order h-refinement along the interface, and (ii) the
selection of the integration cells’ size for a given problem and computational mesh.
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Figure 7: Evolution of the error for the solution of the Poisson problem (11) in a computational mesh with 25× 25
nodes and order p = 2, 3, 4, with increasing number of subelements for the piecewise linear representation of the
interface in each element. The refinement level can be defined as the ratio between the element size h and the
integration cell size h̃.

4.2 Bimaterial elliptic problem

The second example corresponds to the bimaterial elliptic problem (3) with Ω1 = (−1, 1)2\B(0, 0.4)
and Ω2 = B(0, 0.4). The diffusion parameter is piecewise constant

µ =

{
1 in Ω1

5 in Ω2

and the boundary conditions and source term are defined so that the exact solution is

u(x) =

Ar2 +
B

r2
if x ∈ Ω1

r2 if x ∈ Ω2

where r =
√
x2 + y2, A =

a(2µ1 + µ2)

2µ2

and B =
a3(µ2 − 2µ1)

2µ2

and a = 0.4 is the radius of

the circular inclusion (see Figure 8).
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Figure 8: Exact solution for a bimaterial elliptic problem.
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Figure 9 shows the convergence plots for L2 norm obtained with 3-rd and 4-th order tri-
angular elements, using different enrichment options: the ridge function proposed in [2], the
modified ridge that avoids blending elements [3], the corrected X-FEM proposed in [11] and
the Heaviside enrichment proposed in Section 2. It can be seen that the Heaviside enrichment
provides better results than the other formulations, which are found to be sub-optimal for the
4-th degree interpolation. Numerical tests show similar results if the H1 norm or quadrilateral
elements are considered.
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Figure 9: Convergence plot for different X-FEM enrichments, using triangular elements of degree three (left) and
four (right).

Figure 10 shows the convergence plots obtained using the Heaviside formulation described
in Section 2, for triangular elements up to degree p = 4. Convergence is optimal for any degree,
as the same convergence rates than for standard finite elements are achieved, that is, errors of
order O(hp+1) for the L2 and of order O(hp+1) for theH1 norm.

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6

−7

−6

−5

−4

−3

−2

−1

0

1
1 

1
2 

1

3 

1

 4

log(h)

lo
g(

e H
1)

 

 

p=1
p=2
p=3
p=4

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1
2 

1
3 

1

4 

1

 5

log(h)

lo
g(

e L 2)

 

 

p=1
p=2
p=3
p=4

Figure 10: Convergence plots in energy and L2 norms for a bimaterial elliptic problem solved using X-FEM with
a Heaviside enrichment, on a uniform mesh of triangular elements.

5 CONCLUDING REMARKS

An optimally convergent X-FEM formulation for solving bimaterial problems is proposed
in this work. The two basic ingredients of the method are (i) an accurate representation of
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the interface and (ii) a suitable enrichment function, which allows reproducing polynomials on
both sides of the interface. The interface is approximated inside each element by a p-th degree
polynomial parametrization. If the element is cut by the level-set in a complex manner, it can
be divided until a basic situation is obtained and, in this case, the interface is approximated
by a piecewise polynomial inside the element. This approximation of the interface divides the
element in cells, which are used to build a composite quadrature. Regarding the interpolation,
the FE space is enriched using a Heaviside function. In the case of weak discontinuities, the
weak form can be modified, using a consistent penalty parameter, to impose that the solution
is C0 continuous. Numerical experiments show that the proposed method provides optimally
convergent solutions, for any interpolation degree, in problems involving holes and materials
inclusions.
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[2] N. Sukumar, D.L. Chopp, N. Moës, T. Belytschko: Modeling holes and inclusions by level
sets in the extended finite-element method. Computer Methods in Applied Mechanics and.
Engineering, 190 (2001), 6183–6200.
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