Validation of Schema Mappings with Nested
Queries

Guillem Rull, Carles Farré, Ernest Teniente, Toni Urpi

Departament d’Enginyeria de Serveis i Sistemes d’Informacio
Universitat Politécnica de Catalunya (UPC)—BarcelonaTech
1-3 Jordi Girona, 08034 Barcelona, Spain

{grull, farre, teniente, urpi}@essi.upc.edu

Abstract: With the emergence of the Web and the wide use of XML for
representing data, the ability to map not only flat relational but also nested data has
become crucial. The design of schema mappings is a semi-automatic process. A
human designer is needed to guide the process, choose among mapping candidates,
and successively refine the mapping. The designer needs a way to figure out whether
the mapping is what was intended. Our approach to mapping validation allows the
designer to check whether the mapping satisfies certain desirable properties. In this
paper, we focus on the validation of mappings between nested relational schemas, in
which the mapping assertions are either inclusions or equalities of nested queries. We
focus on the nested relational setting since most XML’s Document Type Definitions
(DTDs) can be represented in this model. We perform the validation by reasoning on
the schemas and mapping definition. We take into account the integrity constraints
defined on both the source and target schema. We consider constraints and mapping’s
queries which may contain arithmetic comparisons and negations. This class of
mapping scenarios is significantly more expressive than the ones addressed by
previous work on nested relational mapping validation. We encode the given mapping
scenario into a single flat database schema, so we can take advantage of our previous
work on validating flat relational mappings, and reformulate each desirable property
check as a query satisfiability problem.

Keywords: schema mapping, nested relational model, nested query, query
equality, query inclusion, validation

1 Introduction

Schema mappings are specifications that model a relationship between two
data schemas. They are key elements in any system that requires the
interaction of heterogeneous data and applications [23]. Such interaction
usually involves databases that have been independently developed and that
store the data of the common domain under different representations; that is,
the involved databases have different schemas. In order to make the
interaction possible, schema mappings are required to indicate how the data
stored in each database relates to the data stored in the other databases.
This problem, known as information integration, has been recognized as a
challenge faced by all major organizations, including enterprises and
governments [21, 7, 10].

With the emergence of the Web and the wide use of XML for representing
data, the ability to map not only flat relational but also nested data has

become crucial. A sign of this is the growing interest of the research
community during the last years on the topics of XML mappings—see, for
instance, [4, 5]—and mappings between nested relational schemas—e.g.,
[27, 20].

However, the mapping design process is not a fully automatic one. A
human designer is needed to guide the process, choose among mapping
candidates, and successively refine the mapping [27, 22, 29]. Intricate manual
work may actually be required to refine a particular mapping. Since manual
design is labor-intensive and error-prone, the designer needs a way to figure
out whether the mapping is what was intended.

In order to address this need of validation, we propose an approach that
allows the designer to ask questions about the mapping. In particular, it allows
the designer to check whether the mapping satisfies certain desirable
properties. In this paper, we focus on three properties that have been
identified as important properties of mappings in the literature: mapping
satisfiability [4], mapping inference [26], and mapping losslessness [30].

Our approach is based on reasoning on the schemas and the mapping
definition, and does not rely on specific schema instances, since that might
not reveal all the potential pitfalls.

In this paper, we focus on the application of this validation approach to
mapping scenarios in which nested data is involved. More specifically, we
address the validation of mapping scenarios in which the source and the
target schema are nested relational [27], and in which the mapping is a set of
assertions. Mapping assertions are in the form of either query inclusions, i.e.,
Qs < Qr, or query equalities, i.e., Qs = Qr, where Qs and Qr are queries over
the source and the target schema, respectively, and whose result is a nested
relation (i.e., Qs and Qt are nested queries). Note that a query inclusion
(equality) assertion holds for a given pair of mapped schema instances if and
only if the answer to Qs over the source instance is a subset of (equal to) the
answer to Qr over the target instance.

We focus on the nested relational setting since it covers the most common
class of the well-known Document Type Definitions (DTDs) [4], and also
because it is the model that is typically used in the data exchange context to
represent semi-structured schemas [27].

The class of schemas and mappings that we consider is quite expressive.
We consider schemas with integrity constraints, where these constraints are
in the form of disjunctive embedded dependencies [15] (this class of
dependencies is applied here to the nested relational setting instead of the
traditional flat relational one in the same way as tuple-generating
dependencies are applied to the nested relational setting in [27]). The integrity
constraints of the schemas and the queries of the mapping may contain
arithmetic comparisons and negations. Union of nested queries is also
allowed. This class of mapping scenarios subsumes those considered by
previous works on mapping validation [11, 9, 2], which also focus on the
nested relational setting but do not consider arithmetic comparisons nor
negation. Moreover, these previous works deal with a class of constraints and
mapping assertions—in the form of tuple-generating dependencies [18]—that

is known to be a particular class of the disjunctive embedded dependencies

that we consider [15].

To actually perform the validation, we propose a reformulation of each
desirable property check in terms of the query satisfiability problem over a
single flat relational database. Given a nested relational mapping scenario, we
encode it into a flat database and define a query over this database such that
the query is satisfiable if and only if the desirable property holds. This
encoding takes into account the nested structure of the schemas, their
integrity constraints, and the nested queries defined over them. Moreover, this
encoding rewrites the mapping assertions as integrity constraints over the
new flat relational database.

In this way, we extend our previous work on validating relational mappings
[30] and make it applicable to the nested case.

We solve the query satisfiability problem by means of the Constructive
Query Containment (CQC) method [19]. This method is able to deal with flat
relational databases in which queries and integrity constraints have no
recursion and may contain safe negation—on base and derived predicates—,
equality and inequality (#) comparisons, and also order comparisons (<, <, >,
>). To the best of our knowledge, the CQC method is the only query
satisfiability method able to handle this class of schemas and queries. The
use of the this method together with the encoding that we present in this
paper is what allows us to address nested relational mapping scenarios that
are more expressive than the ones addressed in the previous literature.

Reasoning on the class of mapping scenarios that we consider here is,
unfortunately, undecidable. However, extending the approach proposed by
[28], we studied in [32] a series of conditions that, if satisfied, guarantee the
termination of the CQC method for the current query satisfiability check. A
detailed performance evaluation of the CQC method has been done in [30,
32] for the case of flat relational mapping scenarios. This performance
evaluation showed that, for those scenarios in which termination is
guaranteed, the cost of the method is exponential with respect to the size of
the mapping scenario, as expected given the complexity of reasoning on such
an expressive language.

We would also like to remark that the reduction that we propose of each
desirable property in terms of query satisfiability is linear with respect to the
size of the given mapping scenario. Moreover, this reduction does not
increase the complexity of the problem, that is, checking query satisfiability is
not more complex than checking the desirable properties [30].

Summarizing, the main contributions of the paper are the following:

o We validate nested relational mappings by means of checking whether they
satisfy certain desirable properties. We focus on three properties that have
been identified as important properties of mappings: mapping satisfiability,
mapping inference, and mapping losslessness.

e We consider a class of mapping scenarios that is significantly more
expressive than those considered by previous works on nested relational
mapping validation.

e We propose an encoding of the nested relational schemas in the mapping
scenario into a single flat relational database.

e We propose a rewriting of the mapping assertions as integrity constraints
over the new relational database.

e We extend our previous work on validating relational mappings [30] to the
nested relational case. In particular, we propose a reformulation of each
desirable property of nested relational mappings in terms of the query
satisfiability problem over a flat relational database. Such a query
satisfiability check can be solved by means of the CQC method.

To better motivate the kind of validation that we propose, the next
subsection discusses detailed examples. The rest of the paper is structured
as follows. Section 2 introduces base concepts. Section 3 outlines our
approach for validating mappings with nested queries. Section 4 and Section
5 detail how to encode a given nested relational mapping scenario into a
single flat database schema. Section 6 explains how to reformulate the check
of each desirable property of mappings in terms of the query satisfiability
problem. Section 7 discusses some experiments that we performed in order to
show the feasibility of our approach. Section 8 reviews the related work.
Section 9 concludes the paper.

1.1 Examples of Mapping Validation

Consider a mapping scenario in which an airline company wants to publish
information about their flights and connecting flights into a certain flight-
searching Web site. Fig. 1 shows the source and the target schema of this
scenario, where dashed lines denote referential constraints and the
underlined attribute denotes a key.

Example 1

Let us assume the mapping designer has come up with two mapping
candidates. The first candidate is a mapping with two assertions: {m;, my}.
Assertion m; maps the information of individual flights available in the source
schema, independently of whether these flights have connecting flights or not.

airline: Red flightDB: Rcd
flights: Set of Rcd flights: Set of Rcd
v flight-id from
,z,'/ from to
%4 to departureTime
v 7) o
0 departureTime airline
AN ticketPrice ticketPrice
Yo~ connections: Set of Red connectsWith: Set of Rcd
N : ~flight flight-to
~connectingFlight departureTime
airline
(a)

(b)

Figure 1. Example source (a) and target (b) nested relational schemas.

Assertion m,, maps the information about the connecting flights.

for f in airline.flights for f in flightDB.flights
my: return f.from, f.to, f.departureTime, | return f.from, f.to,
f.ticketPrice, “airlineXY” - f.departureTime,

f.ticketPrice, f.airline

for c in airline.connections,
f, in airline.flights,
f, in airline.flights
where c.flight = f,.flight-id and
c.connectingFlight = f,.flight-id
return f1.from, f;.to,
f;.departureTime,
“airlineXY”, f;.to,
f;.departureTime, “airlineXY”

for fin flightDB.flights,
c in f.connectsWith
return f.from, f.to,
f.departureTime,
f.airline, c.flight-to,
c.departureTime, c.airline

m,:

IN

The second candidate is a mapping with a single assertion: {mz}. Assertion
mz maps both the information of individual flights and of their connecting
flights at the same time. It uses nested queries to ensure that flights without
connecting flights are also mapped; that is, for each flight in the source, it
creates a tuple that contains not only the flight's data but also a set with the
corresponding connecting flights; a set that may be empty if the flight has no
connecting flights.

for fin airline.flights

return f.from, f.to, f.departureTime, __ -
“airlineXY", f.ticketPrice, for fin flightDB.flights .
for ¢ in airline.connections return f.from, f.to, f.departureTime,

f2 m alr“neﬂlghts f.airline, f.tiCketPrice,

ms. where c.flight = f.flight-id C for cin f.(_:onnectsWith
and c.connectingFlight = return c.flight-to,
f,.flight-id c.dgpartureTlme,
return f,.to, f,.departure Time, c.airline
“airlineXY”

The designer could think that both mapping candidates may be actually
equivalent and that in that case he would feel more inclined to choose
mapping {mgz} since it seems more compact. Let us suppose that the designer
wants to be sure before making the decision. He could then check whether m;
is actually inferred from {m;, m,}, and whether m; and m, are both inferred
from {mg}.

The check of the mapping inference property [26] would reveal that while
assertions m; and m, are indeed inferred from mapping {ms}, assertion ms is
not inferred from mapping {m;, my}. Fig. 2 shows an instantiation of the
mapping scenario that exemplifies the latter, i.e., it shows a source and a
target instance that satisfy {m;, m,} but not mz;. The example shows that
mapping {m;, my} does not ensure the correlation between a flight's ticket
price and the flight’'s connecting flights. Notice that there is one single flight
with connecting flights on the source instance, and that the data of that flight
is split in three tuples on the target instance: a first one with no connecting
flights but with the right ticket price, a second one with a wrong ticket price

(a) Source instance:

flights connections
flight-id | from | to | departureTime | ticketPrice | | flight | connectingFlight
1 A |B T, 50 2 3
2 A |C T, 70 2 4
3 C |[D T3 45 2 5
4 C |E Ty 60
5 C |F Ts 55
(b) Target instance:
flights
from | to | departureTime airline ticketPrice connectsWith
A B T1 airlineXy 50 %]
A C T, airlineXy 70 (%)
C D Ts airlineXy 45 %)
C E Tas airlinexXy 60 %]
C F Ts airlineXy 55 %)
flight-to | departureTime airline
A C T, airlineXyY 80 D Ts airlineXyY
E T, airlineXyY
- flight-to | departureTime airline
A C T, airlineXy 90 = T 2Tnexy

Figure 2: Example (a) source and (b) target instances.

and with only two of the three connecting flights, and a third one also with a
wrong ticket price and with the remaining connecting flight.

The designer could thus conclude that mapping {ms} is preferable not only
because is more compact but also because is more accurate than {my, my}.

Example 2
Let us assume now that, according to a new business rule, only the most
expensive connecting flights should be advertised by means of the flight-
searching Web site. Let us also assume that the Web site has a constraint t;
according to which, only flights with a ticket price no greater than 200 can be
published.

t1: for f in flightDB.flights then f.ticketPrice < 200

Taking into account the business requirement and target schema’s t;
constraint, the designer could decide to adapt mapping {ms} and introduce
and additional condition in the inner query block (shown in bold). The result is

mapping {ma}.

for fin airline.flights
return f.from, f.to, f.departureTime,
“airlineXY”, f.ticketPrice, for fin flightDB.flights
for c in airline.connections, return f.from, f.to, f.departureTime,
f, in airline.flights f.airline, f.ticketPrice,
my; where c.flight = f.flight-id C for c in f.connectsWith
andc.connectingFlight = return c.flight-to,
f,.flight-id c.departureTime,
and f,.ticketPrice = 200 c.airline
return f,.to, f,.departureTime,
“airlineXY”

Let us also assume that another business rule was introduced, which the
designer thinks has no effect on the mapping. The requirement is enforced by
a new constraint s; on the source schema, which requires that the connecting
flights must be cheaper than the initial flight.

s1: for c in airline.connections, f; in airline.flights, f, in airline.flights
where c.flight = f;.flight-id and c.connectingFlight = f,.flight-id
then fs.ticketPrice < fi.ticketPrice

In order to be sure that no further modifications to the mapping should be
made as a result of this new business requirement, the designer could check
the non-trivial satisfiability of mapping {m,} at all its levels of nesting. By doing
that, he would realize that m,’'s inner level of nesting never maps any data,
i.e., mapping {mg} is only mapping those flights with no connecting flights. The
problem is that there is a contradiction between source constraint s; and the
source query of my; in particular, since the source query of m, selects only
connecting flights with ticket price equal to 200 in its inner query block, and s;
requires these connecting flights to be cheaper than the initial flight selected
by the outer query block, that implies the initial flight should have a ticket price
greater than 200, which is not allowed by the target schema.

Example 3

Let us suppose that the designer decides to address the satisfiability problem
by replacing the comparison “f,.ticketPrice = 200” in m, with “f,.ticketPrice >
150”. Let us refer to the fixed mapping as {ms}.

Assume that the designer wants to make sure that, for each flight in the
source, all its connecting flights that depart between 8:00 and 10:00 are being
mapped by {ms}. To achieve that, he could check whether the mapping is
lossless [30] (i.e., whether it does not loose information) with respect to a
query Q that is defined over the source schema and selects, for each flight,
the info of that flight together with the info of its connecting flights whose
departure time is in the range of interest. Such a query could be formalized as
follows:

Q: for fin airline flights
return f.from, f.to, f.departureTime,
for c in airline.connections, f; in airline.flights
where c.flight = f.flight-id and c.connectingFlight = f,.flight-id
and fr.departureTime > 8:00 and f,.departureTime < 10:00
return fo.from, f,.to, f,.departureTime

The result of the mapping losslessness check would be negative, i.e., the
mapping is lossy with respect to query Q, which means that some piece of
information needed to answer Q is not being mapped by the mapping. The
problem is the following:

— Mapping {ms} looses, for those connecting flights with a ticket price lower
than 150, the knowledge that they are actually connecting flights of an
initial flight, and maps them as regular (non-connecting) flights.

— There is no guarantee that all connecting flights that depart between
8:00 and 10:00 have a ticket price greater than or equal to 150.

The designer could conclude that, in this case, the result of the check does
not point out an actual problem but just the fact that, when writing the query
Q, he did not express correctly what he had in mind. Most likely, what the
designer meant was that he wanted to be sure that, for each flight, all the
connecting flights that depart between 8:00 and 10:00 and have a ticket price
> 150 are being mapped. Mapping {ms} is indeed lossless with respect to this
new query definition.

2 Preliminaries

In this section, we introduce the basic concepts of nested relational mapping
scenarios and of flat relational databases. We also discuss the query
satisfiability problem and its solution by means of the CQC method.

2.1 Nested Relational Mapping Scenarios

A nested relation R(Ay, ..., A,) is a relation in which each attribute A; can be
defined either as a simple type (e.g., integer, real, string) or as another nested
relation. For instance, the nested relation flights on Fig. 1b has five simple-
type attributes: from, to, departureTime, airline and ticketPrice; and one
attribute that is also a nested relation: connectsWith.

A nested relational schema consists of a root record whose elements are
either simple types or nested relations. Nested relational model generalizes
the relational one. A flat relational schema can be modeled as a nested
relational schema in which the root record is a collection of flat relations, i.e.,
relations with all their attributes defined as simple types. Fig. 1a shows a flat
relational schema and Fig. 1b a truly nested relational one.

The nested relational model is also able to represent the most common
class of DTDs, which is referred as nested-relational DTDs in [4]. A nested-
relational DTD is a set of productions in the form of P —» P, ... P,,, where P; is
either L; or Li* or Li+ or L;?, and all L/'s are distinct labels. Recall that L*
denotes that label L; appears zero or more times, that Li+ denotes that L;
appears one or more times, and that L;? denotes that L; appears zero or one
times.

We consider nested relational schemas with integrity constraints. An
integrity constraint is a Boolean condition in the form (we adapt the XQuery-
like notation of [27]):

for variable; in relationy, ..., variable, in relation, where condition; then condition,

The variables in the for clause are bound to tuples from the relation that
follows the in. A variable; can be used in relation;,...,relation,,, condition; and
condition,. The condition in the where and then clauses denotes a Boolean
expression that may include arithmetic comparisons (=, #, <, <, >, >) and
make use of conjunction, disjunction, and negation. As an example, see the
constraints s; and t; on the Example 2 of Section 1.1.

An instance of a nested relational schema is consistent if it satisfies all the
integrity constraints defined over the schema. Fig. 2 shows a consistent
instance for each of the two schemas in Fig. 1.

A nested query is a query whose answer is a nested relation. That is,
nested queries define derived nested relations. We use a notation similar to
that of the integrity constraints (also adapted from [27]):

for variable; in relationg, ..., variable, in relation;
where condition; return resulty, ..., result,

where each result; can be either a simple-type expression or another nested
query. See, for example, the queries on assertion mz in the Example 1 of
Section 1.1.

A mapping scenario is a triplet (S, T, M), where S is a source nested
relational schema, T is a target nested relational schema, and M is a set of
mapping assertions.

A mapping assertion m is a pair of nested queries related by a < or =
operator; the query on the left-hand side being defined over the source
schema, and the query on the right-hand side being defined over the target
schema: Qsource /= Quarget -

An instantiation of a mapping scenario (S, T, M) consists of an instance Is
of S and an instance I of T, such that Is and I satisfy all the assertions in M.

A mapping assertion Qsouce =/= Qarger IS Satisfied by instances Ig, I7 iff the
answer to Qseurce ON Is is included/equal to the answer to Qarget ON |1

We apply the definition of inclusion and equality of nested relations used in
[25].

The inclusion of two nested structures R;, R, of the same type T, i.e.,, R; <
R,, can be defined by induction on T as follows:

(1) fTisasimpletype, Ri c R, iff Ri = R,
(2) If T is a record type (i.e., a tuple), Ri=[R11,...,R1n] < Rx=[R24,...,R2] iff
RiitcRoiA ... ARinS Ran
(3) If T iS a set type, Rl:{Rl,la---aRl,n} c RZZ{RZ’]_,...,RZ’”} |ff Vl E'J Rl,i C RZ,]
Equality of nested structures, i.e., R; = R,, can be defined similarly:
(1) If Tis a simple type, R; = R,
(2) If Tis a record type, [R1,11"'!Rl,n] = [R2,1,---1R2,n] iff R1’1 = RZ,l VAN R]_’n =
Rz,n
(3) If T iS a set type, {Rl,la---aRl,h}:{Rz,la---1R2,n} |ff V| Elj R]_’i = R2,j A VJ E“ R2,j =
Ry
Note that, given the definitions above, Q; = Q, is not equivalent to Q; < Q»

A Q2 < Q1 [25].

2.2 Flat Relational Databases

A flat relational schema is a finite set of flat relations with integrity constraints.
We use first-order logic notation and represent relations by means of
predicates. Each predicate P has a predicate definition P(Ag,...,An), where
Ag,...,A, are the attributes. A predicate is said to be of arity n if it has n

attributes. Predicates may be either base predicates, i.e., the tables in the
database, or derived predicates, i.e., queries and views. Each derived
predicate Q has attached a set of non-recursive deductive rules that describe
how Q is computed from the other predicates. A deductive rule has the
following form (we use a Datalog-style notation [1]):

gX) (YDA o ALY) A =Tna(Z D) A oo A=I(Zs) ACL A ... AC,

Each C; is a built-in literal, that is, a literal in the form of t; op t,, where op e
{<,5 > 2 = #}and t; and t, are terms. A term can be either a variable or a
constant. Literals r,(Y;) and —r(Z;) are positive and negated ordinary literals,
respectively (note that in both cases r; can be either a base predicate or a
derived predicate). Literal q(X) is the head of the deductive rule, and the
other literals are the body. Symbols X, Y; and Z; denote lists of terms. We
assume deductive rules to be safe [33], which means that the variables in Z;,
X and C; are taken from Y, ..., Y, i.e., the variables in the negated literals,
the head and the built-in literals must appear in the positive literals in the
body. Literals about base predicates are often referred to as base literals and
literals about derived predicates are referred to as derived literals.

We consider integrity constraints that are disjunctive embedded
dependencies (DEDs) [15] extended with arithmetic comparisons and the
possibility of being defined over views (i.e., they may have derived predicates
in their definition). A constraint has one of the following two forms:

rl(Y_l) A e A I‘n(Y_n) —> Cl V..V Ct
YDA A(YDACLA o AC— IV MU V... vV rs(Us)

Each V; is a list of fresh variables (i.e., variables that have not been used
anywhere else before), and the variables in U; are taken from V; and Y, ...,
Y .. Note that each predicate r; (on both sides of the implication) can be either
base or derived. We refer to the left-hand side of a constraint as the premise,
and to the right-hand side as the consequent.

Formally, we write S = (PD, DR, IC) to indicate that S is a database
schema with predicate definitions PD, deductive rules DR, and integrity
constraints IC. We omit the PD component when it is clear from the context.

An instance D of a schema S is a set of facts about the base predicates of
S. Afact is a ground literal, i.e., a literal with all its terms constant. An instance
D is consistent with schema S if it satisfies all the constraints in IC. The
extension of the queries and views of S when evaluated on D is the
intensional database (IDB) of D, denoted IDB(D). The answer to a query Q on
an instance D, denoted Aq(D), is the set of all facts about predicate q in the
IDB of D, i.e., AQ(D) = {q(a) | g(@) < IDB(D)}, where a denotes a list of
constants.

2.3 Query Satisfiability and the CQC Method

A query Q is said to be satisfiable on a database schema S if there is some
consistent instance D of S in which Q has a non-empty answer, i.e.,
Aq(D) # & [12, 35, 24].

10

The CQC (Constructive Query Containment) method [19], originally
designed to check query containment, tries to build a consistent instance of a
database schema in order to satisfy a given goal (a conjunction of literals).
Clearly, using literal q(X) as goal, where X is a list of distinct variables,
results in the CQC method checking the satisfiability of query Q.

The CQC method starts by taking the empty instance and uses different
Variable Instantiation Patterns (VIPs) based on the syntactic properties of the
views/queries and constraints in the schema, attempting to generate only the
relevant facts that are to be added to the instance under construction. If the
method is able to build an instance that satisfies all the literals in the goal and
does not violate any of the constraints, then that instance is a solution and
proves the goal is satisfiable. The key point is that the VIPs guarantee that if
the variables in the goal are instantiated using the constants they provide and
the method does not find any solution, then no solution is possible.

The solution space that the CQC method explores is a tree, called the
CQC-tree. Each branch of the CQC-tree is what is called a CQC-derivation. A
CQC-derivation can be either finite or infinite. Finite CQC-derivations can be
either successful, if they reach a solution, or failed, if they reach a violation
that cannot be repaired. As proven in [19], the CQC method terminates when
there is no solution, that is, when all CQC-derivations are finite and failed, or
when there is some finite solution, i.e., when there is a finite, successful CQC-
derivation.

A series of sufficient conditions for the termination of the CQC method has
been studied in [32]. These conditions extend the ones proposed by [28].

A detailed performance evaluation of the CQC method has been done in
[30, 32] for the case of flat relational mapping scenarios. It showed that, for
those scenarios in which termination is guaranteed, the cost of the method is
exponential with respect to the size of the mapping scenario. This is expected
given the complexity of reasoning on such an expressive class of mapping
scenarios.

3 Validation by Means of Checking Desirable Properties

We understand mapping validation as checking whether the mapping being
designed meets the intended needs and requirements. To perform this
validation, we propose to allow the designer to check whether the mapping
has certain desirable properties.

We focus in this paper on three desirable properties of mappings (we will
provide the formal definition of these properties in Section 6): satisfiability,
inference, and losslessness.

As illustrated in the Example 2 of Section 1.1, mapping satisfiability allows
detecting contradictions either between the mapping assertions or between
the mapping assertions and the integrity constraints of the schemas. Mapping
inference allows to detect redundancies in the mapping, i.e., redundant
mapping assertions, and also to compare mapping candidates. Mapping
losslessness allows detecting whether certain source data, represented by

11

means of a given query, is being mapped by the mapping into the target, for
all consistent instantiation of the mapping scenario.

In order to actually check these desirable properties of mappings, we
propose to translate the mapping scenario from the nested relational setting
into the flat relational one. That implies flattening not only the nested relational
schemas, but also the nested queries on the mappings. Then, we propose to
take advantage of previous work on validating mappings in the relational
setting [30] and reformulate the desirable property checking on this new flat
relational mapping scenario in terms of the query satisfiability problem. To do
so, we firstly combine the relational versions of the two mapped schemas into
a single relational schema. Secondly, we rewrite the mapping assertions as
integrity constraints over this single relational schema. Finally, for each
mapping desirable property that we want to check on the original nested
mapping scenario, we define a query on the single relational schema in such
a way that this query will be satisfiable on this schema if and only if the
mapping desirable property holds on the original mapping scenario.

In the next sections we discuss in detail how to translate the nested
relational mapping scenario into the flat relational one (see Section 4 and
Section 5), and how to reformulate each desirable property check in terms of
a query satisfiability problem over this flat relational translation (see Section
6).

4 Flattening Nested Schemas and Queries

In this section, we detail how to encode the nested schemas and the nested
queries of a given nested relational mapping scenario into a single flat
database schema. Note that when we say nested queries we mean those in
the mapping assertions. We will later rely on this encoding of the nested
gueries to rewrite the mapping assertions as integrity constraints.

4.1 Nested Schemas

Our translation of nested relational schemas into flat relational ones is based
on the hierarchical representation used by Yu and Jagadish in [34]. They
address the problem of discovering functional dependencies on nested
relational schemas. They translate the schemas into a flat representation, so
algorithms for finding functional dependencies on relational schemas can be
applied.

The hierarchical representation assigns a flat relation to each nested table.
To illustrate that, consider the nested relational schema in Fig. 3a, which
models data about an organization, its employees, and the projects each
employee works on. The hierarchical representation, as defined in [34], of this
nested relational schema would be the following set of flat relations:

{org(@key, parent, org-name), employees(@key, parent, name, address),
projects(@key, parent, proj-id, budget)}

12

(b) Nested relational instance:

org
org-
name employees
name | address projects
proj-id budget
el A 1 1000
orgXY EZ 500
proj-id budget
e2 B p3 2000
(a) Nested relational schema (c) Elat relational instance:
org: Red org
org-name .
employees: Set of Rcd @Iiey/\ parllruelrt orgr n;\r(ne
name AN g
address _>—employees
projects: Set of Red || @key f parent name [address
proj-id N el A
budget ,\‘2‘:\ '\\ 1 a2 B
\
NN projects
@key'| pagent | proj-id budget
1 M S 10 pl 1000
2 Wi p2 500
3 23 p3 2000

Figure 3: A (a) nested relational schema, an (b) instance of this schema, and
(c) the translation of the instance into flat relations

Note that each flat relation keeps the simple-type attributes of the nested
relation, and has two additional attributes: the @key attribute, which models
an implicit tuple id; and the parent attribute, which references the @key
attribute of the parent table and models the parent-child relationship of the
nested relations. Fig. 3b shows an instance of the previous nested relational
schema, and Fig. 3c shows the corresponding instance of the flat relational
schema into which the previous nested schema is translated.

For simplicity, we skip the flat relation of the root record when it has only
set-type attributes and no simple-type ones. We also skip the parent attribute
of those relations that do not have a parent relation, and we skip the @key
attribute of those relations that do not have child relations. For example, we
would translate the source and target schema of the mapping scenario in Fig.
1 into flat relations as follows:

source = {flightss(flight-id, from, to, departureTime, ticketPrice),
connections(flight, connectingFlight)}
target = {flightst(@key, from, to, departureTime, airline, ticketPrice),
connectsWith(parent, flight-to, departureTime, airline)}

The semantics of the @key and parent attributes are made explicit by
means of adding the corresponding key and referential constraints to the flat

13

relational schema that results from the flattening process. As an example, the
flat version of the target schema in Fig. 1 (see above) would include the
following key and referential constraint:

key: flightst(@key, f, t, dt, a, tp) A flightsr(@key', f, t, dt, a, tp) —> @key = @key'
ref: connectsWith(parent, ft, dt, a) — flightsr(parent, f', t', dt’, @', tp’)

The integrity constraints that already exist on the original nested schemas
can be straightforwardly translated into constraints over the flat relational
version of the schema. For example, let us consider again the source and
target constraint s; and t; of the Example 2 of Section 1.1; the constraints
would be translated into the following:

s1": connections(f, cf) A flightss(f, frm, to, dt, tp) A flightss(cf, frm’, to', dt’, tp") »> tp' < tp
11" flightst(@k, frm, to, dt, a, tp) —> tp < 200

4.2 Nested Queries

Regarding the flattening of nested queries, we follow a variation of the
approach used in [25]. In this approach, each nested query is translated into a
collection of flat queries, one for each nested query block. For example, let us
consider the source schema from Fig. 1, and let us suppose that we have the
following nested query Q defined over this source schema, which selects the
flights with a ticket price of at least 50 and, for each of these flights, selects
the connecting flights that are cheaper than the original flight:

Q: for fin airline.flights where f.tp > 50
return f.from, f.to, f.departureTime, “airlineXY”, f.ticketPrice,
for c in airline.connections, f; in airline.flights
where c.flight = f.flight-id and c.connectingFlight = f,.flight-id
and f,.ticketPrice < f.ticketPrice
return f,.to, f,.departureTime, “airlineXY”

The nested query Q has two query blocks: the outer block Qqyer

Qouter: for f in airline.flights where f.tp > 50
return f.from, f.to, f.departureTime, “airlineXY”, f.ticketPrice

and the inner block Qjmer.

Qimner: for ¢ in airline.connections, f; in airline.flights
where c.flight = f.flight-id and c.connectingFlight = f,.flight-id
and f,.ticketPrice < f.ticketPrice
return f,.to, f,.departureTime, “airlineXY”

Since both query blocks are flat queries when considered independently,
and assuming we have already flattened the corresponding schema (the
source schema in this case), each of these blocks can be straightforwardly
translated into a query over the flat version of the schema. The only technical
detail, and the main difference with respect to [25], is the treatment of the
inherited variables—called indexes in [25]—, which are the variables defined
in the for clause of the outer block that are also used in the inner block. In
[25], the translation of both the outer and the inner block would be extended to

14

select the key attributes of the relations bound to the inherited variables; in the
case of the inner block, since it uses the inherited variables but does not
define them, that would require copying in the inner block’s translation those
literals from the outer block’s translation that correspond to the definition of
the inherited variables. In our example, the inherited variable “f’ is defined in
the translation of Quuer by the literal “flightss(fid, frm, to, dt, tp)”, where “fid”
corresponds to the key attribute and is selected by this translation. The
translation of Qiner Should thus contain a copy of this literal (shown below in
bold) and also select “fid”:

Qouter(fid, frm, to, dt, “airlineXY”) « flightss(fid, frm, to, dt, tp) A tp > 50
Qinner(fid, to’, dp’, “airlineXY”) «— connections(fid, cf) A flights(cf, frm’, to’, dp’, tp)
A flightss(fid, frm, to, dt, tp) Atp' <tp

Notice that without the literal in bold, Qjner Would not have access to
variable “tp” (i.e., f.ticketPrice) and could not make the required comparison.

The flat relational equivalent to answering the original nested query Q
would be making a left outer join of the translations of Qouer and Qjuner With
“fid” as the join variable.

In order to simplify the translation, not only that of the nested queries
themselves but specially the translation of the mapping assertions (see next
section), we use access patterns [14]; in particular, we consider derived
relations with “input-only” attributes in addition to the traditional “input-output”
ones. We use R<xj, ..., Xp>(Y1, .-, Yn) t0 denote that x,...,x, are input-only
terms bound to derived relation R, and y;,...,y, are input-output ones. As an
example, we would translate Qinner and Qquter as follows:

Qouter(fid, tp, frm, to, dt, “airlineXY”) « flightss(fid, frm, to, dt, tp) A tp > 50
Qinner<fid, tp>(to’, dp’, “airlineXY”) « connections(fid, cf) A flights(cf, frm’, to’, dp’, tp’)
Atp'<tp

Notice that we enforce the translation of Q.. to select the variables “fid”
and “tp”, which are then to be inherited by Qiner through its input-only
attributes. Note also that there is no need now to repeat the ordinary literal of
Qouter in Qinner-

In order for a deductive rule to be safe, the variables that appear as input-
only terms of some literal in the body of the rule must either appear as input-
output terms of some other positive ordinary literal in the same body, or
appear in the head of the rule as input-only terms. Similarly, the variables that
appear in a negated or built-in literal in the body of a rule must either appear
as input-output terms of some other positive ordinary literal in the same body,
or appear in the head of the rule as input-only terms. See for instance,
variable “tp” in Qinner @above, which appears in the body of the rule in a built-in
literal, and in the head of the rule as an input-only term.

5 Rewriting Mapping Assertions As Integrity Constraints

A nested relational mapping scenario consists of two nested relational
schemas and a mapping with nested queries that relates them. We have

15

already discussed how to translate each nested schema into the flat relational
formalism. In order to complete the translation of the nested relational
mapping scenario into the flat relational setting, we must see now how to
translate the mapping assertions. We assume the queries in both sides of the
mapping are part of each schema’s definiton and have already been
translated along with them.

To translate a mapping assertion Qsource /= Qtarget We Will make use of the
definition of inclusion/equality of nested structures from [25] (see Section 2.1),
and we will rely on the flat queries that result from flattening Qsource @Nd Qtarget-
As an example, consider the mapping assertion mz from Example 1 (see
Section 1.1). Let us assume the source and target query—let us call them Q°
and Q'—are translated into the flat queries Q%ouer, Q%inner aNd Qouters Q inners
respectively, as follows:

Qsouter(fid, frm, to, dt, “airlineXY”, tp) « flightss(fid, frm, to, dt, tp)
Qsmner<fid>(to, dt, “airlineXY”) <« connections(fid, cf) A flightss(cf, frm, to, dt, tp)

Qouter(@K, frm, to, dt, a, tp) « flightst(@k, frm, to, dt, a, tp)
QTinner<@k>(to, dt, @) «<— connectsWith(@k, to, dt, a)

According to the semantics of query inclusion, two schema instances |ls and
I+ satisfy ms if and only if the answer to Q%onls,ie., AQ3(lg), is included in the
answer to Q' on I, i.e., AQ'(ly). Recall that, as defined in [25], a nested
structure such as AQ(ls) is included in another nested structure such as
AQ'(l7) if and only if each tuple a in AQ%(ls) “matches” some tuple b of AQ'(ly),
where “matches” means that each simple-type attribute on b (e.g., the from
attribute) must have the same value than the corresponding attribute of a, and
that the value of each set-type attribute on b (e.g., the connectsWith attribute)
must be a set that recursively includes the set bound to the corresponding
set-type attribute of a. Notice that this is a recursive definition, where simple-
type attributes are the base case and set-type ones are the recursive case.

We can express the above definition as a Boolean condition over the flat
translations of the mapped schemas. The condition will be true if the given
schema instances satisfy the mapping assertion, and false otherwise. The
condition begins with the requirement that for all tuple a returned by the outer
query block of Q° there must be a matching b on the result of the outer query
block of Q" with the same value on the simple-type attributes:

vfid,frm,to,dt,a,tp (Q%uer(fid, frm , to, dt, a, tp) — I@K (Q ouer(@K, frm, to, dt, a, tp) ...

The condition must also include the requirement that the set-type attributes
of a must be included in the corresponding set-type attributes of b, i.e., the
recursive case:

o A VIO, (QSiner<fid>(t0', dt', @) = Q imer<@k>(t0’, dt’, @)))

By making the union of the flat mapped schemas and introducing this
Boolean condition as an integrity constraints over this union, we will get that
each consistent instance of the resulting flat database schema will correspond
to a consistent instantiation of the mapping scenario (i.e., an instantiation in
which the mapping assertions are true), and vice versa. The only problem is

16

that the above condition does not fit the syntactic requirements of the class of
constraints we consider, i.e., disjunctive embedded dependencies (DEDSs),
which are expressions of the form VX (¢(X) — 3Y 1 y1i(X, Y1) v ... v 3Y,
vn(X, Y1) in which V quantifiers are not allowed inside wy,...,y,. Fortunately,
we can take advantage of the fact that we are able to deal with negation and
get rid of that inner Vv quantifier. We can introduce a double negation —— in
front of the V quantifier, and move one of the negations inwards:

FRVAN —EItO’,dt’,a’ (Qsinner<fid>(t0’, dt’, a') A —|QTinner<@k>(t0'a dt’1 a’))))

There are only two details remaining now. The first is that we only allow
direct negation of single literals and not of conjunction of literals. However, we
do allow negation of derived literals, so we can just fold the conjunction into a
new derived relation:

vfid,frm,to,dt,a,tp (Q%uer(fid, frm | to, dt, a, tp) — I@k (Q ouer(@k, frm, to, dt, a, tp)
A —|Qsinner'n0t'inCIuded'in‘ QTinner<fid, @k>()))
where

QZinner-not-included-in- Q inner<fid, @k>() « Qimner<fid>(to’, dt', a")
A —Q inner<@k>(t0’, dt', a")

The second detail is that we do not allow the explicit use of negation in the
integrity constraints, i.e., the literals in ¢ and in yq,...,y, cannot be negated.
We do however allow constraints in which the consequent is a contradiction,
e.g., 1 = 0. With that and the introduction of double negation in front of the
remaining vV quantifier, we can rewrite the expression as follows. First, we

introduce the double negation and move one of the negation inwards just as
we did before:

—3fid,frm,to,dt,a,tp (Q%ouer(fid, frm, to, dt, a, tp) A 3@k (Q ouer(@k, frm, to, dt, a, tp)
A =Q%inner-not-included-in- Qinner<fid, @k>()))

To get rid of the inner —3 quantifier, we fold the conjunction into a new
derived relation:

—3fid,frm,to,dt,a,tp (Qsouter(fid, frm, to, dt, a, tp) A
—aux- Q%uuter-not-included-in-Q ouer<fid, frm, to, dt, a, tp>()
where

aux- Q ouer-not-included-in-Q oyer<fid, frm, to, dt, a, tp>() «
Q ouer(@K, frm, to, dt, a, tp) A —Q%inmer-not-included-in- Q ine<fid, @k>()

We still make an additional folding to get rid of the remaining —3 quantifier,
and we get:

—Q%uter-not-included-in-Q outer()
where

Q%outer-not-included-in-Q outer() « Q ouer(fid, frm, to, dt, a, tp) A
—aux- Q%uter-not-included-in-Q ouer<fid, frm, to, dt, a, tp>()

17

Finally, we can get rid of the — by stating that the atom implies a
contradiction:

Qsouter'not-inC|Uded-in-QT0uter() —>1=0

This constraint, together with the deductive rules that define the new
derived relations that we just introduced, enforces the mapping assertion ms.

In a more generic way, the rewriting of a query inclusion mapping assertion
can be formalized as follows.
Let Q* and Q® be two generic (sub)queries with compatible answer:

Q’;:@ vary in rely, ..., var,, in rel,, where cond return Ay, ..., Am, By, ..., Bk
Q :forvar,'inrel,..., vary' in rel,,' where cond ' return A,', ..., An', B4',..., B¢

where each A; and A/ are simple-type expressions, and each B; and By’ are
subqueries. Let us assume the outer block of Q" is translated into the derived
relation QAouter(xl, ey Xk)(V1, oy Vias f1, ..., 'm), Where Xg,....Xxq denote the
variables inherited from the ancestor query blocks, vi,...v, denote the
additional variables to be inherited by the inner query blocks of QAouter, and
r,...,I'm denote the simple-type values returned by the block. Similarly, let us
also assume the outer block of Q® is translated into Q%edXs, ..., Xkp)(V1', ...,
Vib's M1’ ceey Tm').

We use T-inclusion(Q*, Q%, {iy, ..., ir}) to denote the translation of Q" = Q°,
where {i, ..., in} is the union of the variables inherited by Q* and Q® from their
respective parent blocks (if any):

T-inclusion(Q”*, Q%, {i1,....i}) = =Q"*-not-included-in-Q%(i,...,in)
where

A . . B,. . A
Q"-not-included-in-Q™(i1,...,in) <= Q outer{X1s+++1Xka)(V1s++-sVhay Myeeeslm) A
—aux-Q*-not-included-in-Q%is,...,in, V1,....Vna, I1,....Tm)

aux-Q*-not-included-in-Q%(ix,...,in, V1,....Vna, I1,....Tm) <
QP outer(X1 - Xkt Y(V1', - Vi, T1reeesfm) A
T-inclusion(By1, By1', {i1,« - sihy Vi,--esVina, Meesfmy V1'see Vb }) A e A
T-inclusion(By, B/, {i1,--+sihsy V1s---sVnas Mseeeslmy V1'eesVip'})

If Q" and Q° are not subqueries but full queries, then the following
constraint is to be introduced:

—T-inclusion(Q?, Q®, {i1,....ix)) > 1=0
Similarly, the rewriting of a generic query equality assertion Q* = Q® as a
set of integrity constraints can be formalized as follows:

—T-equality(Q?, Q°, {i1, ..., i) > 1=0
—T-equality(Q®, Q* {i1, ..., i) > 1=0

where

T-equality(Q®, QF, {iy,....in}) = =Q"-not-eq-to-Q%ir,...,in)

18

and

Q*-not-eq-to-Q%(iy,....in) < QuterX1,- - Xia)(V1,eeVnas Freeeslm) A
—aux-Q"-not-eq-to-Q%iy,....in, Vi,....Vna I1eeeslm)

aux-Q"-not-eq-t0-Q%ir,....in, V1,..,Vnas I1.esfm) <
QP outer{X1 e+ Xkt DV1's v Vi's T1yee0,Tm) A
T-equality(By, B1', {i1,---)ihy Vise-3Vnay Myeeeslmy V1'seer)Vip'}) A
T-equality(B1', By, {i1,---sihy Visee3Vna Myeeoslms Vi'seeesVin'}) A oo A
T-equality(By, By, {i1,---sinsy Vise--sVnas M1seeeslms V1'heeesVip'}) A
T-equality(By', Bk, {i1s---sihy ViseesViay Myeeeslms V1'seeesVip'})

The two constraints above, together with the deductive rules of the
corresponding derived relations, enforce the definition of query equality as
defined in [25] (see Section 2.1).

Intuitively, T-equality(Q”, QF, {is,...,in}) denotes the condition that, for each
instantiation of the mapping scenario, each tuple in the answer to Q* must
have an equal tuple in the answer to Q®. Notice that in order to fully express
the definition of query eqéjalit , we need to enforce both T-equality(Q”, Q°,

{i1,....in}) and T-equality(Q~, Q", {ix,-.-,in}).

6 Reformulating Desirable Properties in Terms of Query
Satisfiability

In this section, we show how three desirable properties of mappings—
satisfiability, inference, and losslessness—can be reformulated as a query
satisfiability check over the flat relational translation of mapping scenarios we
have presented in Section 4 and Section 5.

6.1 Mapping Satisfiability

We say a mapping is satisfiable if there is a pair of schema instances that
make all the mapping assertions true in a non-trivial way. An example of trivial
satisfaction would be a pair of empty schema instances, which is not the case
we are interested in here. We distinguish two kinds of satisfiability: strong and
weak.

Intuitively, a mapping is strongly satisfiable if all its mapping assertions can
be non-trivially satisfied at the same time at all their levels of nesting, e.g., the
inner query block of mapping assertion m4’s source query from the Example 2
of Section 1.1 never maps any data (i.e., always provides an empty answer);
therefore, although the outer query block does map some data, mapping {m,}
is not strongly satisfiable.

Definition 1 (Strong Satisfiability). A mapping M is strongly satisfiable iff
there exist Is, |+ instances of the source and target schema, respectively, such
that Is and | satisfy the assertions in M, and for each assertion Qsource OP
Qtarget IN M, the answer to Qseurce iN Is is & strong answer. We say R is a strong
answer iff

19

(1) R is a simple type value,
(2) Risarecord [Ry, ..., Ryj] and Ry, ..., R, are all strong answers, or
(3) Ris a non-empty set {Ry, ..., R,} and Ry, ..., R, are all strong answers.

Intuitively, we say a mapping is weakly satisfiable if at least one mapping
assertion can be satisfied at least at its outermost level of nesting. As an
example, mapping {mg} is indeed weakly satisfiable.

Definition 2 (Weak satisfiability). A mapping M is weakly satisfiable iff
there exist Is, I+ instances of the source and target schema, respectively, and
some mapping assertion M: Qsouce =/= Quarget I M, such that Is, It make m
true and the answer to Qsource ON Is iS NOt empty, i.€., AQuuc(ls) # .

Let us assume M is a mapping with assertions {Q% op Q', ..., Q%, op Q".}.
Let S = (PDs, DRs, ICs) be the flat translation of the source schema, and T =
(PD+, DRy, ICy) be the flat translation of the target schema. Let us also
assume that ICy, and DRy, are the constraints and deductive rules that result
from the rewriting of the assertions in M. The flat database schema that
encodes the mapping scenario is:

DB = (PDsUPDT, DRSUDRTUDRM, |C3U|CTU|CM)

The reformulation of strong satisfiability of M as a query satisfiability check
over DB is the following:

Qstrongsat < StrongSat(Q®, @) A ... A StrongSat(Q®,, @)

where StrongSat is a function generically defined as follows. Let Q be a
generic (sub)query:

Q: for var, inrely, ..., vars in rels where cond return Aq, ..., Am, By, ..., Bk

where Ag,...,A, are simple-type expressions and B,,...,.Bx are inner query
blocks. Let predicate Qquer be the translation of the outer query block of Q.
Then,

StrongSat(Q, inheritedVars) = Qouter{X1,-,Xr)(V1,..-,Vsy [1,00,fm) A
StrongSat(B;, inheritedVars U{vy,...,Vs, I1,...,fm}) A oo A
StrongSat(By, inheritedVars «{vy,...,Vs, I1,....,'m})

where {Xy,...,X;} ¢ inheritedVars.

Boolean query Qsyongsar IS Satisfiable over DB if and only if mapping M is
strongly satisfiable.

Intuitively, if we can find an instance of DB that satisfies Qsiyongsa, W€ can
obtain from that database instance a source and a target instance for the
mapping scenario. These two instances will be consistent with their respective
schemas and with the mapping assertions because DB includes the
corresponding integrity constraints. The strong satisfiability property will hold,
because Qsongsat IS €ncoding its definition.

20

As an example, let us assume the outer query block of mapping assertion
m,’s source query in Example 2 is translated into derived relation Qsouter(flight-
id, from, to, departureTime, airline, ticketPrice), and the inner query block into
derived relation Qsinner<flight-id>(to, departureTime, airline). Then, strong
satisfiability of {m,} would be reformulated as follows:

Qstrongsat < Q ouer(fid, frm, to, dt, a, tp) A Q%ne<fid>(to’, dt’, a’)

The reformulation of weak satisfiability of M as a query satisfiability check
over DB is the following:

s —
QweakSat <~ Q 1,outer(X l)

s —
QweakSat <~ Q n,outer(x n)

where Qslyouter,...,QS,,,(,uter are the translations of the outermost query blocks of
the source mapping’s queries.

Boolean query Queaksat IS Satisfiable over DB if and only if mapping M is
weakly satisfiable.

The intuition is that Queaxsat Can only be if some of the outermost blocks of
the source mapping’s queries is not empty. Therefore, if Queaksat IS true, we
can extract from the corresponding instance of DB an instantiation of the
mapping scenario that exemplifies the property.

As an example, weak satisfiability of mapping {m,} would be reformulated
as follows:

Queaksat < Qsouter(ﬁdv frm, to, dt, a, tp)

Notice that there is only one deductive rule for Queaksa: bDecause the
mapping has only one assertion.

6.2 Mapping Inference

The mapping inference property [26] checks whether a given mapping
assertion is inferred from a set of others assertions. It can be used, for
instance, to detect redundant assertions in a mapping, or to test equivalence
of candidate mappings. As an example, recall mapping {m;, m,} from
Example 1. Assertions m;, m, are each one inferred from mapping {ms}, but
assertion mgz is not inferred from {my, my}.

Definition 3 (Mapping Inference). Let M be a mapping from schema S to
schema T. Let F be an assertion from S to T. We say F is inferred from M iff
Vls, |t instances of schema S and T, respectively, such that Is and I; satisfy
the assertions in M, then Is and |1 also satisfy assertion F.

As with the previous property, the flat database schema that encodes the
mapping scenario is:
DB = (PDS UPDT , DRS UDRT UDRM y ICS UICT UICM)
In order to reformulate mapping inference in terms of query satisfiability, we
must get rid of the universal quantifier that appears in the property’s definition.

21

The reason is that by means of query satisfiability we can check whether
there exists an instance that satisfies the property encoded by the query, but
not whether all instances satisfy that property. We can address this situation
by checking the negation of the property instead of checking the property
directly; that is, we will check whether there is a pair of schema instances that
satisfy the mapping but not the given assertion.

If the assertion to be tested is a query inclusion, i.e., Qsource < Qtarget, then
the query to be tested satisfiable on DB is defined by a single deductive rule:

Qnotlnferred <~ _'T'inCIUSion(Qsourcey Qtargety @)

If the assertion to be tested is a query equality, i.e., Qsource = Qtarget, then the
query to be tested satisfiable on DB is defined by two deductive rules:

Qnotlnferred <~ _'T'equa”ty(Qsourcev Qtargetv Q)
Qnotlnferred <~ _'T'equa“ty(Qtargety Qsourcev Q)

Boolean query Qnounterred IS Satisfiable over DB if and only if the given
assertion F is not inferred from mapping M.

Fig. 2 shows an instantiation of the example mapping scenario in Example
1 which satisfies mapping {m;, m,} but not assertion mg, i.e., the instantiation
is an example that illustrates mg is not inferred from {my, my}.

6.3 Mapping Losslessness

The mapping losslessness property [30] allows the designer to provide a
guery on the source schema and check whether all the data needed to
answer that query is mapped into the target, for all consistent instantiation of
the mapping scenario. The aim of the property is to know whether a mapping
that may be partial or incomplete suffices for the intended task. As an
example, mapping {ms} on Example 3 was lossy because it was not mapping
all the intended connecting flights.

Definition 4 (Mapping Losslessness). Let Q be a query posed on the
source schema. Let M be a mapping with assertions: {Qsl op Q' ..., Q°, op
Q'.}. We say M is lossless with respect to Q iff VI°;, I%, instances of the
source schema, the following two conditions:

(1) 31" instance of the target schema such that 1°; and 1°, are both mapped
into I", and

2) for each mapping assertion Q° op Q' from M, the answer to Q° on I5; is
(pping p
equal to the answer to Q° on 1%,

imply that the answer to Q on I°; is equal to the answer to Q on I°,.

The intuition behind the property’s definition is that for those instantiations
of the mapping scenario that are consistent with the mapping, the answer to
the given query Q on the source instance must be determined by the answer
to the source mapping’s queries. In Example 3, given any consistent
instantiation of the mapping scenario, the answer to Q includes all flights with
a departure time inside a specific range, while the answer to the source query

22

of mapping {ms} includes those flights with a ticket price above a certain
minimum, which are not necessarily all the flights departing at the time of
interest; therefore, mapping {ms} is not mapping all the data in the answer to
Q, and since that is true for any consistent instantiation of the mapping
scenario, the conclusion is that the mapping is lossy with respect to Q.

As with the previous property, the definition of mapping losslessness has a
universal quantifier that we must get rid of. To do that, we check the negation
of the property instead of checking the property directly.

Checking the negation of the property implies, in this case, that we must try
to find two source instances and one target instance that exemplify the
mapping’s lost of information. In order to be able to extract these three
instances from the instance that exemplifies the satisfiability of the query that
results from the reformulation, we must extend the flat database schema that
encodes the mapping scenario with an additional copy of the source schema.
Let S'= (PDs', DRs', ICs') be a copy of the source schema S in which each
relation R has been renamed R'. The flat database schema over which we are
going to check query satisfiability is now the following (the extension with
respect to the previous properties is shown in bold):

DB = (PDSUPDS'UPDT, DRsuDRS'UDRTUDRM, ICSUICS'UICTUICM)

Let Q be the given query we want to know whether the mapping is lossy
with respect to it or not. Let Q' be the copy of Q on schema S'. The query that
encodes the desirable property and that is to be tested satisfiable on DB is
defined by the following deductive rule:

Quossy < —T-equality(Q, Q' @)

Boolean query Qussy is satisfiable over DB if and only if mapping M is not
lossless with respect to the given query Q.

The intuition behind this reformulation is that the three instances required to
exemplify that the mapping is lossy must not only be consistent with their
respective schemas and with the mapping, but also must be so that the two
instances of the source schema (i.e., the instance of S and the instance of S’
must not have the same answer to query Q (i.e., either the answer to Q has a
tuple that is not equal to any tuple in the answer to Q' or vice versa). Notice
that since the instance of S and the instance of S’ are exchangeable, it
suffices with requiring that one of them (e.g., the instance of S) provides an
answer to Q in which there is a tuple that has no equal in the answer provided
by the other instance.

7 Experiments

To show the feasibility of our approach to validate mappings with nested
gueries, we perform a series of experiments and report the results in this
section. We perform the experiments on an Intel Core2 Duo machine with
2GB RAM and Windows XP SP3.

23

Source Target Target

Reference [0..*] Publication [0..¥] Source Period [0..%]
tite ——— > Title Reference [0..*] Year
year ——————— Year title Author [0..%]
publishedin ———— PublishedIn year Name

Publication [0..*]
Title

Author [y Name publishedIn
name name

() Unnesting (i) Nesting Publishedin
Target
Source
Gene [0..7] Gene [0..7]
name — Name o
type Protein * ~
protein Synonym [0..%]>
Name _?
(iii) Self joins WID ---

Figure 4: Mapping scenarios taken from the STBenchmark.

strong map. mapping inference mapping
satisfiability losslessness
#constraints #rules #constraints #rules #constraints | #rules
unnesting 50 28 50 43 78 62
nesting 51 33 51 37 76 57
self joins 46 30 46 38 68 66

Table 1. Size of the flat database schemas that result from the translation of
the mapping scenarios in Fig. 4.

The mapping scenarios we use in the experiments are adapted from the
STBenchmark [3]. From the basic mapping scenarios proposed in this
benchmark, we consider those that can be easily rewritten into the class of
mapping scenarios described in Section 2.1 and that have at least one level of
nesting. These scenarios are the ones called unnesting and nesting. We also
consider one of the flat relational scenarios, namely the one called self joins,
to show that our approach generalizes the relational case. These mapping
scenarios are depicted in Fig. 4.

For each one of these three mapping scenarios we validate the three
properties discussed in Section 6, i.e., mapping satisfiability, mapping
losslessness and mapping inference. In order to do this, we apply the
translation presented in Section 4 and Section 5 to transform each mapping
scenario into a flat database schema and the mapping validation into a query
satisfiability check over the flat schema.

Since we have not yet implemented the automatic nested-to-flat translation,
we perform the translation of the mapping scenarios manually. The number of
constraints and deductive rules in the resulting flat schemas are shown in
Table 1.

To execute the query satisfiability checks, we use the implementation of the
CQC method that is the core of our existing relational mapping validation tool
MVT [31]. We would like to remark that we use the CQC method’s engine
implemented in this tool, but not the tool itself, which so far focuses on flat

24

=

00 4

10 -

running time {secs) (log. scale)

01 -

unnesting nesting self joins

‘ M strong mapping satisfiability mapping inference lmappmgloss\essness‘

Figure 5: Experiment results when the mapping properties hold.

relational mapping scenarios. We plan to implement the results presented in
this paper in MVT in the future.

We perform two series of experiments, one in which the three properties
hold for each mapping scenario, and one in which they do not. The results of
these series are shown in Fig. 5 and Fig. 6, respectively.

Since the mapping inference and mapping losslessness properties must be
checked with respect to a user-provided parameter, and given that we want
the mappings to satisfy these properties, we check in Fig. 5 whether a
“strengthened” version of one of the mapping assertions is inferred from the
mapping in each case, and whether each mapping is lossless with respect to
a strengthened version of one of its mapping queries. These strengthened
qgueries and assertions are built by taking the original ones and adding an
additional arithmetic comparison. Similarly, in Fig. 6, we strengthen the
assertions/queries in the mapping and use one of the original ones as the
parameter for the mapping inference and mapping losslessness test,
respectively. Regarding mapping satisfiability, we focus on the strong version
of the property, and introduce two contradictory range restrictions, one in each
mapped schema, in order to ensure the property will “fail”.

We can see in Fig. 5 that the three properties are checked fast in the
unnesting and self joins scenarios, while mapping inference and mapping
losslessness require much more time to be checked in the nesting scenario.
This is not unexpected since the mapping queries of the nesting scenario
have two levels of nesting, while those from the other two scenarios are flat.
To understand why mapping inference and mapping losslessness are the
most affected by the increment of the level of nesting, we must recall how the
properties are reformulated in terms of query satisfiability. In particular, the
query to be checked for satisfiability in both mapping losslessness and
mapping inference encodes the negation of a query inclusion assertion that
depends on the parameter query/assertion, as shown in Section 6. Therefore,

25

0,25 4

0,2 -

0,15

0,1 -

running time {secs)

0,05

unnesting nesting self joins

‘ M strong mapping satisfiability mapping inference B mapping losslessness |

Figure 6: Experiment results when the mapping properties do not hold.

an increment of the level of nesting of the mapping scenario is likely to cause
an increment of the level of nesting of the query being checked, which is what
happens in the nesting scenario; and a higher level of nesting means a more
complex translation, involving multiple levels of negation, as shown in Section
5.

In Fig. 6, we can see that all three properties run fast and that there is no
much difference between the mapping scenarios. It is also remarkable the
performance improvement of the nesting scenario with respect to Fig. 5. To
understand these results we must remember that mapping inference and
mapping losslessness are both checked by means of searching for a
counterexample. That means the check can stop as soon as a
counterexample is found, while, in Fig. 5, all relevant counterexample
candidates have to be evaluated. The behavior of strong mapping satisfiability
is exactly the opposite; however, the results of the property in this series of
experiments are very similar to those in Fig. 5. The intuition is that strong
satisfiability requires all mapping assertions to be non-trivially satisfied, and,
as soon as one of them cannot be so, the query satisfiability checking process
can stop.

8 Related Work

In this section, we compare our approach with the previous works on nested
relational mapping validation and on translating nested queries into the flat
relational setting.

8.1 Mapping Validation on Nested Scenarios

Previous work on mapping validation on the nested relational setting has
mainly focused on instance-based approaches: the Routes approach [11], the
Spicy system [9], and the Muse system [2]. These approaches rely on specific

26

source and target instances in order to debug, refine and guide the user
through the process of designing a schema mapping, which do not
necessarily reflect all potential pitfalls.

The Routes approach requires both a source and a target instance in order
to compute the routes. The Spicy system requires a source instance to be
used to execute the mappings, and a target instance to compare the mapping
results with. The Muse system can generate its own synthetic examples to
illustrate the different design alternatives, but even in this case the detection
of semantic errors is left to the user, who may miss to detect them.

All these approaches can therefore benefit from the possibility of checking
whether the mapping being designed satisfies certain desirable properties.
For instance, such a checking can complement the similarity measure used to
rank the mapping candidates in the Spicy system; for the sake of an example,
the designer might be interested on the mapping candidates with a better
score in the ranking that preserve some information that is relevant for the
intended use of the mapping. Similarly, in the Muse system, the check of
desirable properties may be a complement to the examples provided by these
systems in order to help choosing the mapping candidate that is closest to the
designer’s intentions.

Routes, Spicy and Muse allow both relational and nested relational
schemas with key and foreign key-like constraints—typically formalized by
means of tuple-generating dependencies (TGDs) and equality-generating
dependencies (EGDs)—, and mappings expressed as source-to-target TGDs
[27]. Muse is also able to deal with the nested mapping formalism [20], which
allows the nesting of TGDs. Comparing with our setting, the class of
disjunctive embedded dependencies (DEDs) with derived relation symbols
and arithmetic comparisons that we consider includes that of TGDs and
EGDs. That is easy to see since it is well-known that traditional DEDs already
subsume both TGDs and EGDs [16]. Similarly, our mapping assertions go
beyond TGDs in two ways: (1) they may contain negations and arithmetic
comparisons, while TGDs are conjunctive; and (2) they may be bidirectional,
i.e., assertions in the form of Q= Qg (which state the equivalence of two
gueries), while TGDs are known to be equivalent to global-and-local-as-view
(GLAV) assertions in the form of Qa < Qg [18].

Outside the nested relational setting, other works have proposed and
studied desirable properties for different classes of XML mappings.

In [4], the authors study the consistency checking problem for XML
mappings that consist of source-to-target implications of tree patterns
between DTDs. Such a mapping is consistent if at least one tree that
conforms to the source DTD is mapped into a tree that conforms to the target
DTD. This work extends the previous work of [5], where mapping consistency
is addressed for a simpler class of XML mappings.

The mapping consistency property of [4] is very similar to our notion of
mapping satisfiability; the main difference is that we introduce the requirement
that mapping assertions have to be satisfied in a non-trivial way, that is, a
source instance should not be mapped into the empty target instance. We
introduce this requirement because the class of mapping scenarios we

27

consider—with integrity constraints, negations and arithmetic comparisons—
makes likely the existence of contradictions either in the mapping assertions,
or between the mapping assertions and the schema constraints, or between
the mapping assertions themselves; which may result in mapping assertions
that can only be satisfied in a trivial way.

Information preservation is studied by [8] for XML mappings between
DTDs. A mapping is information preserving if it is invertible and query
preserving. A mapping is said to be query preserving with respect to a certain
query language if all the queries that can be posed on a source instance in
that language can also be answered on the corresponding target instance.

Query preservation is related to our mapping losslessness property, but is
a different property. Query preservation is checked with respect to an entire
guery language, while mapping losslessness is checked with respect to a
particular query. Moreover, mapping losslessness is aimed at helping the
designer to determine whether a mapping that is partial or incomplete—and
thus not query preserving—suffices to perform the intended task [30].

Information preservation is also addressed in [6] for XML-to-relational
mapping schemes. Such mapping schemes are mappings between the XML
and the relational model, and not mappings between specific schemas as are
the mappings we consider.

The notion of lossless mapping scheme defined in [6] corresponds to that
of query preservation in [8], but not to our mapping losslessness property.

8.2 Translation of Assertions with Nested Queries into Flat Relational
Setting

Since our mapping assertions are in the form of query inclusions and query
equalities, the problem of translating these assertions into the flat relational
setting matches the problem of reducing the containment and equivalence
check of nested queries to some other property check over flat relational
queries. The works in this latter area that are closer to ours are those of [25,
17, 13].

In [25], Levy and Suciu address the containment and equivalence of COQL
queries (Conjunctive OQL queries), which are queries that return a nested
relation. They encode each COQL query as a set of flat conjunctive queries
using indexes. An indexed query Q is a query hose head is in the form of Q(l;
... 1g; Vi, ..., V1)), where 15, ..., 4 denote sets of index variables, and variables
Vi, ..., V, denote the resulting tuple. For example, consider the following
COQL query, which computes for each project the set of employees that work
on it:

Q: select [p.proj-name, (select e.name from Employee e
where e.project = p.proj-id)]
from Project p

This query would be encoded by the following two indexed queries:

Q1(proj-id; proj-name) < Project(proj-id, proj-name, budget)
Qz(proj-id; emp-name) < Employee(emp-name, address, proj-id)

28

In the case of Qg, it associates the index proj-id to each project name; the
intuition is that this index denotes the set of employees computed by the inner
guery. Query Q, indicates which employees are associated with each index. It
is worth noting that the idea of index variable has inspired us the concept of
inherited variable, which we introduce in our translation in order to avoid the
repetition of the outer query blocks in the inner query blocks.

Relying on the concept of indexed query, Levy and Suciu define in [25] the
property of query simulation. Let Q and Q' be two indexed queries, Q
simulates Q’if for every database instance the following condition holds:

VI 3l .. Vg 3lg YVq . YWVL [QUL; o Ta; Vi, ooy Vi) = QU1 s T Va, oy V)]
They reduce containment of COQL queries to an exponential number of
guery simulation conditions between the indexed queries that encode them.

Levy and Suciu also define the property of strong simulation [25]. Q
strongly simulates Q'if:

Vi3l ... Vg 3ly' Yy ... YV, [Q(4 . g Vi, oy Vi) &
Q4" .. 14" V1, ooy V)]

They reduce equivalence of COQL queries which cannot construct empty
sets to a pair of strong simulation conditions (equivalence of general COQL
queries is left open).

In [17], Dong et al. adapt the technique proposed by Levy and Suciu [25] to
the problem of checking the containment of conjunctive XQueries. They also
encode the nested queries into a set of indexed queries, and also reduce the
containment checking to a set of query simulation tests between the indexed
gueries. They show that the reduction of COQL query containment proposed
by Levy and Suciu is insufficient, since it only considers a subset of the query
simulations that should be checked. Dong et al. also propose some
extensions to the query language, such as the use of negation and the use of
arithmetic comparisons. They however do not consider both extensions
together as we do, and they do not consider the presence of integrity
constraints in the schemas.

In [13], DeHaan addresses the problem of checking the equivalence of
nested queries under mixed semantics (i.e., each collection can be either set,
bag or normalized bag). The idea is to follow the approach proposed by Levy
and Suciu [25], that is, encode the nested queries into flat queries and then
reduce the equivalence problem to some property checking over the flat
gueries. DeHaan shows that the reduction of nested query equivalence to
strong query simulation proposed by Levy and Suciu is not correct. He
proposes a nhew encoding for the nested queries into flat queries that captures
the mixed semantics, and proposes a new property: encoding equivalence, to
which nested query equivalence under mixed semantics can be reduced to.
Notice that this approach is different with respect to ours in the sense that it
focus on mixed semantics while we focus on set semantics ([25, 17] focus on
set semantics too). We consider set semantics since it makes easier the
generalization of our previous results from the relational setting. DeHaan also
proposes some extensions to the query language, but he does not consider
the use of negation or arithmetic comparisons.

29

The main difference of the approach followed by these three works with
respect to ours is that we do not intend to translate the mapping assertions
into some condition over conjunctive queries. Instead, we propose a
translation that takes into account the class of queries and constraints the
CQC method is able to deal with, especially the fact that the CQC method
allows for the use of negation on derived atoms. We take advantage of this
feature and propose a translation that expresses the definition of query
inclusion and query equality into first-order logic, and then rewrites it into the
syntax required by the CQC method by means of algebraic manipulation. We
finally obtain a set of integrity constraints (DEDs) that model the semantics of
the mapping assertions and that allows us to encode the mapping when we
reformulate mapping validation in terms of query satisfiability.

9 Conclusion

We follow and approach to mapping validation that allows the designer to
check whether the mapping satisfies certain desirable properties. We focus in
this paper on how to apply this approach to the validation of nested relational
mapping scenarios in which mapping assertions are either inclusions or
equalities of nested queries. We perform the validation by reasoning on the
schemas and mapping definition. We take into account both the source and
target integrity constraints. We are able to deal with a class of queries and
constraints that allows for arithmetic comparisons and negation, and that can
be defined over other derived relations. This class of mapping scenarios
subsumes those considered by previous works on validating nested relational
mappings.

We encode the given nested relational mapping scenario into a single flat
database schema. That includes the flattening of the mapped schemas and
the mapping’s queries, and the encoding of the mapping assertions as
integrity constraints. Then, we take advantage from our previous work on
validating flat relational mappings [30] and reformulate each desirable
property check in terms of a query satisfiability problem over the flat database
schema. The idea is that the nested relational mapping will satisfy a certain
desirable property if and only if the query that results from the reformulation is
satisfiable on the flat database schema.

To solve the query satisfiability problem, we apply the CQC method [19],
which, to the best of our knowledge, is the only method able to deal with the
class of scenarios that we consider here.

References
1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley.
(1995)

2. Alexe, B., Chiticariu, L., Miller, R. J., Tan, W. C.: Muse: Mapping Understanding
and deSign by Example. In: Proc. ICDE, 10-19. (2008)

3. Alexe, B.,, Tan, W. C., Velegrakis, Y.: STBenchmark: towards a benchmark for
mapping systems. PVLDB 1(1), 230-244. (2008)

4. Amano, S., Libkin, L., Murlak, F.: XML schema mappings. In: Proc. PODS, 33-42.
(2009)

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Arenas, M., Libkin, L.: XML data exchange: Consistency and query answering. J.
ACM 55(2). (2008)

Barbosa, D., Freire, J., Mendelzon, A. O.: Information Preservation in XML-to-
Relational Mappings. In: Proc. XSym, 66-81. (2004)

Bernstein, P. A., Haas, L. M.: Information integration in the enterprise. Commun.
ACM 51(9), 72-79. (2008)

Bohannon, P., Fan, W., Flaster, M., Narayan, P. P. S.: Information Preserving
XML Schema Embedding. In: Proc. VLDB, 85-96. (2005)

Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema
mapping verification: the spicy way. In: Proc. EDBT, 85-96. (2008)

Cate, B. t.,, Kolaitis, P. G.: Structural characterizations of schema-mapping
languages. Commun. ACM 53(1), 101-110. (2010)

Chiticariu, L., Tan, W. C.: Debugging Schema Mappings with Routes. In: Proc.
VLDB, 79-90. (2006)

Decker, H., Teniente, E., Urpi, T.: How to Tackle Schema Validation by View
Updating. In: Proc. EDBT, 535-549. (1996)

DeHaan, D.: Equivalence of nested queries with mixed semantics. In: Proc.
PODS, 207-216. (2009)

Deutsch, A., Ludascher, B., Nash, A.: Rewriting queries using views with access
patterns under integrity constraints. Theor. Comput. Sci. 371(3), 200-226. (2007)
Deutsch, A., Tannen, V.: Optimization Properties for Classes of Conjunctive
Regular Path Queries. In: Proc. DBPL, 21-39. (2001)

Deutsch, A., Tannen, V.. XML queries and constraints, containment and
reformulation. Theor. Comput. Sci. 336(1), 57-87. (2005)

Dong, X., Halevy, A. Y., Tatarinov, I.: Containment of Nested XML Queries. In:
Proc. VLDB, 132-143. (2004)

Fagin, R., Kolaitis, P. G., Miller, R. J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89-124. (2005)

Farré, C., Teniente, E., Urpi, T.: Checking query containment with the CQC
method. Data Knowl. Eng. 53(2), 163-223. (2005)

Fuxman, A., Hernandez, M. A., Ho, H., Miller, R. J., Papotti, P., Popa, L.: Nested
Mappings: Schema Mapping Reloaded. In: Proc. VLDB, 67-78. (2006)

Haas, L. M.: Beauty and the Beast: The Theory and Practice of Information
Integration. In: Proc. ICDT, 28-43. (2007)

Haas, L. M., Hernandez, M. A., Ho, H., Popa, L., Roth, M.: Clio grows up: from
research prototype to industrial tool. In: Proc. SIGMOD, 805-810. (2005)

Halevy, A. Y.: Technical perspective - Schema mappings: rules for mixing data.
Commun. ACM 53(1), 100. (2010)

Halevy, A. Y., Mumick, I. S., Sagiv, Y., Shmueli, O.: Static analysis in datalog
extensions. J. ACM 48(5), 971-1012. (2001)

Levy, A. Y., Suciu, D.: Deciding Containment for Queries with Complex Objects.
In: Proc. PODS, 20-31. (1997)

Madhavan, J., Bernstein, P. A., Domingos, P., Halevy, A. Y.: Representing and
Reasoning about Mappings between Domain Models. In: Proc. AAAI/IAAIL, 80-86.
(2002)

Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A., Fagin, R.: Translating
Web Data. In Proc. VLDB, 598-609. (2002)

Queralt, A., Teniente, E.: Decidable Reasoning in UML Schemas with Constraints.
In: Proc. CAISE, 281-295. (2008)

Rahm, E., Bernstein, P. A.: A survey of approaches to automatic schema
matching. VLDB J. 10(4), 334-350. (2001)

Rull, G., Farré, C., Teniente, E., Urpi, T.: Validation of mappings between
schemas. Data Knowl. Eng. 66(3), 414-437. (2008)

31

31.

32.

33.

34.

35.

Rull, G., Farré, C., Teniente, E., Urpi, T.: MVT: a schema mapping validation tool.
In: Proc. EDBT, 1120-1123. (2009)

Rull, G.: Validation of Mappings between Data Schemas. Ph.D. Thesis.
Universitat Politecnica de Catalunya, Barcelona.
http://hdl.handle.net/10803/22679. (2011)

Ullman, J. D.: Principles of Database and Knowledge-Base Systems, Volume I,
Computer Science Press. (1989)

Yu, C., Jagadish, H. V.: XML schema refinement through redundancy detection
and normalization. VLDB J. 17(2), 203-223. (2008)

Zhang, X., Ozsoyoglu, Z. M.: Implication and Referential Constraints: A New
Formal Reasoning. IEEE Trans. Knowl. Data Eng. 9(6), 894-910. (1997)

32

