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Abstract
Modelling absorbing materials with statistical energy analysis (SEA) is an open issue. They are neither  
reverberant subsystems nor conservative couplings.  The absorbing material layers located inside the  
cavities of double walls should be treated as non-conservative couplings between the wall  leaves.  
However, the standard SEA formulation cannot take into account non-conservative couplings. 

In this work, an equivalent circuit analogy is used to deduce how to introduce these couplings in an  
SEA-like system. Besides, a technique for obtaining the SEA-like factors associated to a double wall 
filled with absorbing material is presented. These factors are computed from numerical simulations of  
the vibroacoustic leaf-absorbing material-leaf system and applied for solving larger problems with 
SEA.

Keywords:  absorbing  materials,  double  walls,  statistical  energy  analysis,  computational 
vibroacoustics.

PACS no. 43.55.Ti, 43.58.Ta

1 Introduction

Modelling layers of absorbing materials with statistical energy analysis (SEA) is an open issue. These  
materials cannot be treated as reverberant subsystems, nor as conservative couplings. However, they 
are increasingly used in building design, as filling of double walls, and due to this, it is necessary to  
have models that can predict their acoustic behaviour.

Double walls can be approached either with statistical energy analysis or with deterministic models. In 
the deterministic approaches the vibroacoustic problem is modelled with partial differential equations  
and they are solved with the help of numerical techniques [1,2]. The wall leaves are usually modelled  
with the thin plate equation, and for the absorbing material different models can be used. 

One big group of models are the equivalent fluid models. They treat the absorbing material as a fluid  
(and model it with Helmholtz equation) with complex, frequency-dependent values of its wavenumber  
and  density,  related  to  the  material  microstructure  through  empirical  or  semi-phenomenologic 
expressions.  Different  models  exist,  depending  on  the  number  of  parameters  required  for  the 
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expression, such as the one suggested by Delany and Bazley [3] and later improved by Miki [4], which 
only depends on the flow resistivity, or the Johnson-Champoux-Allard model [5], which considers 5 
different parameters.

Another group of models for absorbing materials are the poroelastic models. They consider both the  
elastic behaviour of the solid part and the fluid propagation through the pores. The theoretical basis for 
the mechanical behaviour of poroelastic materials was established by Biot [6] and the adaptation to  
acoustic propagation was done by Allard [7].

In general, the deterministic approach can be used for modelling any type of structure, by means of  
choosing  the  appropriate  equations  and  numerical  techniques.  However,  it  has  an  unaffordable 
computational  cost  when  dealing  with  real  life  problems for  the  highest  frequencies  required  by 
regulations. 

Statistical energy analysis [8] is widely used in building acoustics due to its low computational cost  
and  simplicity,  but  its  application  is  restricted  to  domains  that  can  be  divided  into  reverberant  
subsystems and conservative couplings [9]. The effect of absorbing materials is considered with SEA 
as if they were located at the boundary of a room, providing a loss factor to it. However, modelling a  
layer of absorbing material is still a challenge for the classical SEA formulation.

When trying to  incorporate  the  absorbing material  located at  the  cavity of  double  walls  to  SEA,  
different problems arise. First of all, absorbing materials should not be treated as SEA subsystems 
because their behaviour is not reverberant and the energy density is not the same all over the material 
[10]. This leaves the only option of considering the absorbing layer as a connection. However, SEA is  
not  prepared  for  dealing  with  non-conservative  joints  [11].  Some  efforts  have  been  done  in  
considering non-conservative connections with SEA by Beshara and Keane [12] and Sheng et al. [13].  
They  reach  a  SEA-like  formulation  that  takes  into  account  dissipative  effects  in  the  couplings. 
However,  they  are  restricted  to  a  mechanical  approach,  and  do  not  apply  this  approach  to  any  
vibroacoustic problem, nor to modelling absorbing materials.

In this work an SEA-like model for non-conservative couplings is proposed and applied to the case of  
a double wall filled with a layer of absorbing material. Moreover, a systematic technique for obtaining  
the SEA-like parameters required by this approach is presented.

2 Non-conservative couplings with SEA

The  SEA  framework  divides  the  problem  domain  into  two  types  of  elements:  subsystems  and 
connections. An SEA subsystem is a part of the domain such that the energy associated to each of its  
modes is ideally the same. Every subsystem has its own modal density and an internal loss factor that  
characterises the fraction of energy dissipated in it.

SEA connections are those elements connecting the subsystems. They have a conservative behaviour, 
transmitting  energy  from  one  subsystem  to  the  other  without  dissipating  any  energy.  They  are 
characterised by a coupling loss factor that relates the power across the connection with the energies of 
the subsystems connected by it.
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2.1 Modelling a double wall with SEA

Double walls consist of two leaves separated by a cavity (see Figure 1). This cavity may, or not, be  
filled with an absorbing material.

If the cavity between the leaves is only full of air, different authors do not agree on whether it should  
be treated as a subsystem or as a connection. An study on this particular is done in [14]. The main 
conclusion is that the air cavity can be considered just as a connection between the two subsystems 
(leaves), if the value of the coupling loss factor associated to it is estimated at each frequency band  
from the  energies  of  the  leaves.  These  energies  are  computed  solving  the  vibroacoustic  problem 
numerically. In this way, all the transmission phenomena are taken into account.

If the air cavity is considered as a conservative connection between the two leaves of the double wall,  
the physical approach is the same as if the cavity is considered as a spring with a frequency-dependent  
stiffness. The only difference is that the value of the equivalent stiffness has to be estimated from  
numerical simulations, in order to capture both the air stiffness and the coincidence phenomena in the 
cavity.

2.2 The absorbing material as an SEA connection

If  the  cavity  between  the  leaves  is  filled  with  an  absorbing  material,  it  is  neither  a  reverberant 
subsystem nor a conservative connection. The classical SEA approach is not prepared to consider this 
type of elements in a straightforward way. Therefore, an alternative SEA-like approach is suggested to  
deal with this problem.

Following with the spring analogy commented in Section 2.1, if the cavity is filled with absorbing 
material it cannot be assimilated to a spring anymore. The dissipation of energy that takes place at the  
absorbing material is more typical of a dashpot. However, the absorbing material also provides some 
stiffness to the connection. A combined connection, consisting of a spring and a dashpot in parallel  
(Figure 2) is a more suitable model for the absorbing material. An SEA-like approach to the effect of  
this new connection between the two leaves is presented. This approach will be extended to deal with  
absorbing materials in Section 3.

The effect of the connection in an SEA system is studied with the equivalent circuit approach. This  
technique is used by Hopkins [15] to compute the coupling loss factor caused by a spring connecting 
two leaves. For any connecting device between the two leaves of a double wall, the global system may  
be represented as a circuit like that of  Figure 3, where  Y1 and Y2 are the point mobilities of the two 
leaves (leaf 1 and leaf 2 respectively) forming the double wall and Yc  is the mobility of the connection.
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Figure 1: Parts of a double wall.
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The mechanical–electrical analogy is described in Table 1 and the assumptions of the analysis are:
 Leaf 1 has an external excitation and leaf 2 has none.
 v0  is  the  velocity  at  the  point  where  the  excitation  acts.  It  is  not  affected  by  the  (weak)  

connection.
 Any point of the unexcited leaf that is far enough from the connection point has a negligible  

velocity compared to v0.
 v1 and v2 are the velocities at the connecting point of leaves 1 and 2 respectively.

Applying electric criteria, the excitation force can be expressed in terms of the velocities and point  
mobilities as

F=
v0

Y 1 +Y 2 +Y c
 (1)

and the velocities of the leaves at the connecting point can be expressed as v1 = (Y2 +Yc) F and 
v2 = Y2 F. 

Table 1: Mechanical-electrical analogy.

Mechanics Electrics

Force F Intensity I

Velocity v Potential V

Admittance (point mobility Y) Impedance Z
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Figure 2: Connection consisting of a spring and a dashpot.

Figure 3: Circuit equivalent to a double wall.
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The power entering the connection (on the side of the connection closest to leaf 1)  is [15]

W 12
1=

1
2

ℜ {Fv1
* }=1

2

ℜ {Y 2 +Y c }∣v0∣
2

∣Y 1 +Y 2+Y c∣
2

 (2)

and the power leaving the connection (on side closest to leaf 2) is

W 12
2=

1
2

ℜ {Fv2
* }=

1
2

ℜ {Y 2 }∣v0∣
2

∣Y 1 +Y 2 +Y c∣
2

.  (3)

If the connector is a spring, the value of the mobility is  Yc = iω/K where  K is the spring stiffness, 

ω=2 f,π and f is the vibration frequency. In that case, ℜ {Y 2 +Y c }=ℜ {Y 2 } and, therefore W 12
(1)=W 12

(2) ,
verifying that there is no dissipation at the connection: the power entering the connection is the same 
as the power leaving it. However, if the connector consists of a spring and a dashpot, its mobility is

Y c=
1

C+K /iω
,

 
(4)

and therefore ℜ {Y 2 +Y c }≠ℜ {Y 2 } . The connector dissipates power.

For the SEA-like analysis of two leaves connected with the connection of Figure 2, two parameters are 
defined. On the one side, the factor governing the amount of power leaving the excited leaf:

β ij=
ℜ {Y j +Y c }

ωM i∣Y i+Y j +Y c∣
2

, i≠ j  (5)

and, on the other hand, the factor governing the amount of power reaching the unexcited leaf

ηij=
ℜ {Y j }

ωM i∣Y i +Y j +Y c∣
2

, i≠ j  (6)

where  Mi is the mass of leaf  i. The power balances of the two leaves are P1
in=P1

dissW 12
1 for the 

excited leaf and  P2
diss=W 12

(2)
 for the unexcited one respectively, where P1

in is the power incoming to 

leaf 1, P i
diss=ω η ii 〈E i〉 is the power dissipated at leaf  i and  ηii   is the internal loss factor of leaf  i. 

Assuming that 〈E1〉=M1∣v0∣
2 /2  and W 12

(1)=ωη12 〈E1〉 , these balances can be rewritten in terms of 

ηij and βij as

P1
in /ω = η 11 〈E1 〉+β 12 〈E1 〉  (7)

and

η22 〈E2 〉= η12 〈E1〉 .  (8)
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Following the same procedure in a more general case, with excitations on both subsystems, the global 
system yields

P1
in /ω= η11〈E1〉+β 12 〈E1 〉−η21 〈E2 〉

P2
in
/ω= η22〈E2 〉+β 21〈E2 〉−η12〈E1〉

,  (9)

which has the same shape as the system shown by Sheng et al. [13]. Eq. (9) can be written in matrix 
form as

ω[ η11+β 12 −η12

−η21 η22+β 21 ]{
〈E1 〉

〈E2 〉 }={P1
in

P2
in }  (10)

or, equivalently, as

ω[ η11+η12+α 12 −η12

−η21 η22+η21+α 21 ]{
〈E1〉

〈E2〉 }={P1
in

P2
in },  (11)

where the parameter αij is defined as a coefficient that governs the amount of power dissipated at the 
connection

α ij=β ij−ηij=
ℜ {Y c }

ω Mi∣Y i +Y j +Y c∣
2

.  (12)

The effect  of  the  non-conservative joint  leads to  a  SEA-like system with two new factors in  the  
diagonal. If an analogy to the classical SEA is done, they would play the role of extra internal loss  
factors of the subsystems connected by the joint. However, since the value of ηij also depends on the 
properties of the absorbing material, this analogy is only referred to the shape of the system but not to  
the  values  of  the  parameters  involved.  These  values  should  be  estimated  from  experiments  or  
simulations.

3 Estimation of SEA parameters with numerical simulations

3.1 Estimation of the parameters

The values of ηij and αij defined in Eqs. (6) and (12) respectively cannot be computed with analytical 
expressions for a generic  absorbing material.  Therefore,  the best  option to model  a vibroacoustic  
problem  consisting  of  double  walls  and  other  building  elements  like,  for  instance,  rooms,  is  to 
compute these parameters from the numerical simulation of smaller parts of the problem, as done in  
[14]. The difference here is that, besides the computation of the coupling loss factors, extra parameters  
are required by the new SEA-like model for characterising double walls.

The obtention of parameters  ηij and  αij  associated to a double wall filled with absorbing material is 
performed computing them from the results of a numerical simulation of the double wall with an 
excitation on one of the subsystems. Assuming that  ηii  is known for every subsystem and that, for a 
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given excitation,  both the input  power  P1
in and the averaged energies of the leaves 〈E i〉 can be 

computed solving the  vibroacoustic  problem numerically,  the  rest  of  the  SEA parameters  can be 
isolated from the SEA system (11). 

If the leaves of the double wall have different properties (which is the most common configuration, 
used in building design in order to avoid resonances), the structure is not symmetric and there are four  
parameters to compute: η12, η21, α12 and α21. To obtain them all, four equations are required. 

The four equations are obtained from the SEA formulation of two mutually independent problems. 
They correspond to the sound transmission through the double wall with two different excitations: one 
on leaf 1 and the other on leaf 2. For each different excitation, the vibration of the leaves is computed  
numerically,  as  well  as  their  averaged  energies.  These  energies  are  replaced  in  the  SEA-like  
formulation of each problem  (11) and,  with the information of the two problems,  a 4×4 linear 
system can be solved to obtain the four parameters desired

[
〈E1 〉 −〈E 2〉 〈E1〉 0

〈Ê 1〉 −〈Ê 2〉 〈 Ê 1〉 0

−〈E1〉 〈E2 〉 0 〈E2 〉

−〈 Ê 1〉 〈 Ê 2 〉 0 〈 Ê 2 〉
]{

η12

η21

α 12

α 21
}={

P1
in /ω−η11 〈E1 〉

−η11〈Ê 1〉

−η22 〈E 2〉

P2
in
/ω−η22 〈Ê 2〉

}.  (13)

In Eq. (13), those values of the energies without the hat correspond to the results of a simulation with  
the excitation applied to leaf 1, and those marked with a hat correspond to the simulation where the  
excitation is applied to leaf 2. If the two leaves are identical, the problem is symmetric and η12=η21, 
α12=α21. Therefore, only one simulation is required and the first and third equations of Eq.  (13) are 
enough for computing the parameters.

3.2 Numerical simulations

In this work, the SEA-like parameters associated to a double wall filled with absorbing material are 
obtained. The values of the powers and energies required in Eq. (13) are computed numerically. The 
deterministic analysis is based on modelling the wall leaves as thin plates 

D ∇4 u (x,y )−ω2 ρs u ( x,y )=q (x,y )  (14)

and the absorbing material as an equivalent fluid. In Eq.  (14),  D = E h3 /12 (1−ν2)  is the bending 
stiffness of the leaf (with h,  E and ν the thickness, Young’s modulus and Poisson’s ratio of the leaf 
respectively), ρs its mass per unit surface and u(x,y) the displacement of the leaf. The equivalent fluid 
is modelled with Helmholtz equation 

∇2 p x +k 2 p x =0,  (15)

and the complex values of the wavenumber and density suggested by Miki [4]. In Eq. (15), p(x) is the 
pressure field and k is the wavenumber in the absorbing material.

The vibration field in the plates is expressed with modal analysis and the pressure field inside the 
absorbing material is discretised with the finite layer method, as described in [16]. The equilibrium 
and continuity at the leaf-absorbing material interface are imposed weakly.
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Once  the  displacement  field  u(x,y)  in  the  plates  is  known,  their  velocity  is  obtained  as  v(x,y)  = 
iωu(x,y), where i = −1 . Then, the averaged energy of each plate is computed as [15]

〈E 〉=M 〈vRMS
2 〉 ,  (16)

where M is the mass of the leaf and 〈vRMS
2 〉 is the spatial mean square value of its velocity.

The excitation of the system is a pressure wave impinging on one of the plates, modelled as

p x =p0 e
−i k x x+k y y+k z z  ,  (17)

where k x=k sin ϕ  cosθ , k y=k sinϕ  sin θ , and k z =k cosϕ .

This  wave  may have several  orientations,  defined  by  angles θ and ϕ as  shown in  Figure  4.  Four 

different values of θ , equispaced between θ  = 0 and θ  = 45o due to the symmetry of the problem, 
are considered. Also ten different values of ϕ  have been considered, equispaced between ϕ  = 0 and

ϕ  = 90o . The final values of the energies are averaged throughout all these angles.

4 Application examples

4.1 Effect of the flow resistivity on  α12

The technique described in Section 3.1. has been used for studying the influence of the flow resistivity 
of  the  absorbing  material  on  the  parameter α12  between  two  leaves  of  plasterboard.  Since  this 
parameter brings the information of the amount of energy dissipated by the absorbing material, it is 
expected to be intimately related to the value of the flow resistivity. The vibroacoustic problem is  
solved numerically for a double wall with plasterboard leaves of 2.4 m×2.4 m and a thickness of 13 
mm. The absorbing layer is 70 mm thick and four values of the flow resistivity have been simulated: 

=σ 1000 ,  4000 ,  8000 , and 10 000 N s m-4. 

8

Figure 4: Incidence angles.



                                                     Acústica 2012, 1 a 3 de Outubro, Évora, Portugal                                                       

In  Figure  5 the value of  α12  for the different  flow resistivities is  depicted.  The behaviour  is  the 
expected one: the larger the value of σ ,  the larger the value of α12 . The differences between the value 
of α12 for =σ  8000  and =σ  10 000 N s m-4 are almost negligible. This behaviour coincides with the 
conclusions reached by Royar [17]  regarding the lack of  improvement in the sound insulation of  
lightweight structures with absorbing materials with a flow resistivity larger than 5000 N s m-4.

4.2 Effect of the flow resistivity on the sound reduction index

In order to study the influence of the flow resistivity on a real-life problem, the SEA-like approach 
suggested in this work is used to simulate the sound reduction index between two rooms separated by 
a double wall filled of absorbing material. The four double walls studied in Section 4.1 are compared  
with one without absorbing material inside. The rooms have dimensions 2  m × 3 m × 5 m .

For the simulation, the system is divided into four SEA subsystems: sending room, leaf 1, leaf 2 and 
receiving  room.  The  absorbing  material  is  considered  as  a  non-conservative  connection  between 
subsystems 2 and 3. Therefore, the SEA-like system to be solved is 

ω[
η11+η12 −η21 0 0

−η12 η21+η22 +η23+α 23 −η32 0

0 −η23 η32 +η33+η34 +α32 −η43

0 0 −η34 η43+η44
]{

〈E1 〉

〈E2 〉

〈E3 〉

〈E4 〉
}={

P1
in

0
0
0

}.  (18)

The internal loss factors of subsystems 2 and 3 are the loss factors of the leaves (ηii = η = 0.03) and 
the internal loss factors of subsystems 1 and 4 are computed as 

9

Figure 5: Effect of the flow resistivity on αij 
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η ii=
c S cav α

8 π f V cav

,  (19)

where Scav is the surface of the room boundary, α is the absorption coefficient at that boundary and Vcav 

is the volume of the room. The excitation is a sound source in one of the rooms (subsystem 1).

To obtain all the parameters ηij and αij  required by the SEA-like approach, three small deterministic 
problems have been solved. On the one hand, the double wall itself has been simulated, in order to  
obtain the values of ηij and αij between the two leaves as described in Section 3. On the other hand, the 
coupling loss factors between each leaf and its adjacent room have been computed from the numerical  
simulation of a system consisting of a room in contact with a leaf (see Figure 6).

In Figure 7 the effect of the flow resistivity on the sound reduction index between the two rooms is  
analysed. Lower frequencies are not depicted because the coupling is too strong and therefore the  
SEA-like results are not reliable. The insulating effect of filling the cavity with an absorbing material  
is remarkable. However, different values of the flow resistivity only provide different values of the 
sound reduction index for high frequencies. This behaviour was also reported by Stani et al. in [18].

10

Figure 6: Small problems required for obtaining the SEA CLFs.



                                                     Acústica 2012, 1 a 3 de Outubro, Évora, Portugal                                                       

5 Conclusions

The main conclusions drawn from this work are the following:

 Modelling absorbing materials with an SEA-like analysis should be done treating them as  
non-conservative connections. 

 Non-conservative connections can be taken into account in the SEA formulation adding extra 
terms in the diagonal. These terms play the role of extra internal loss factors of the subsystems 
connected by the absorbing material.

 Factors ηij and αij required for modelling non-conservative couplings cannot be obtained with 
analytical expressions. Numerical simulations of a system consisting of 2 subsystems are a 
useful tool for estimating them. Once these factors are computed, they can be used to solve  
larger problems with SEA.

 An increment  in  the  flow resistivity  causes,  as  expected,  an  increment  on  the  parameter 
governing the dissipation at the connection αij. However, beyond a certain value of σ  (5000 
N s m-4), increasing it does not involve significant changes on the  αij factor.

 Double walls filled with absorbing materials have a more insulating behaviour than those with 
an air cavity. However, the influence of the flow resistivity of the absorbing material filling a  
plasterboard double wall is only relevant for high frequencies .
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