Integrable birational maps on the plane: blending dynamics and algebraic geometry.

Guy Bastien¹, *Víctor Mañosa*², Marc Rogalski^{1,3}

 1 Université Paris 6 and CNRS, 2 Universitat Politècnica de Catalunya (DMA3–CoDALab), 3 Université de Lille 1.

Introduction

Some maps arising in mathematical physics are *birational planar* ones with *a rational first integral*. This means that they preserve a foliation of the plane given by *algebraic curves*. As a consequence of Hurwitz theorem if a planar birational map is *not globally periodic* then each irreducible invariant curve is of genus 0 or 1.

Theorem (Hurwitz)

The group of birational maps of a smooth algebraic curve of genus $g \geq 2$ to itself is finite of order at most $84(g - 1)$.

In the case that the invariant foliation is given (generically) by genus 1 curves (*elliptic curves*). *Then the group structure of the elliptic foliation characterizes the dynamics of any birational map preserving it*.

Theorem ([\[3\]](#page-0-0))

Any birational map F that leaves an elliptic curve $\mathcal E$ invariant can be expressed in terms of the group law as either $F : P \mapsto P + Q$ or $F: P \mapsto i(P) + Q$, where *i* is globally periodic of orders 2,3,4 or 6; and $+$ denotes the inner sum of \mathcal{E} .

Again $F^n(P) = P + nH$, so C_h is full of *p*-periodic orbits iff $pH = V$.

 $F_{b,a}$ extends to $\mathbb{C}P^2$ as $\widetilde{F}_{b,a}([x:y:t]) = [ayt + y^2:at^2 + bxt + yt:xy]$, and it preserves the foliation given by

Integrating the differential equation $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$ on [0, *u*]: $u =$ $\int^{+\infty}$ *℘*(*u*) d*s* √ 4*s* ³ − *g*2*s* − *g*³ = $\int^{+\infty}$ *℘*(*u*) d*s* $\sqrt{4(s-e_1)(s-e_2)(s-e_3)}$ *.* Since $G_{\vert_{\mathcal{E}_L}} : V \mapsto V + H = H$ is a rotation of angle $\Theta(L) \in$ \lceil 0*,* 1 2 $\overline{}$ *,* and *H* has *negative ordinate* there is a parameter $u = 2\omega_1 \Theta(L)$ such that $X(L) := \wp(2\omega_1 \Theta(L))$, and using that $e_1 = \wp(\omega_1)$, we obtain

Recall the group law of an elliptic curve

Observe that $F^{n}(P) = P + nQ$, so $\mathcal E$ is full of *p*-periodic orbits iff $pQ = 0$, that is, iff *Q* is in the *torsion* of $(\mathcal{E}, +)$.

- For each *h* s.t. \mathcal{C}_h is elliptic, then $F_{b,a|_{\mathcal{C}_h}}(P) = P + H$, where $+$ is the group law of \mathcal{C}_h taking the infinite point \overline{V} as the zero element. • If $a > 0$ and $b > 0$, then for all $h > h_c = \min_{Q^+}(V)$, the curves \mathcal{C}_h are elliptic.
- The rotation number function $\theta_{b,a}(h)$ is analytic in $[h_c, +\infty)$
- If $(a, b) \neq (1, 1)$, then $\exists p_0(a, b) \in \mathbb{N}$, generically computable, s.t. for any $p > p_0(a, b) \exists$ at least an oval \mathcal{C}_h^+ *h* filled by *p*–periodic orbits.

e_1 $\sqrt{(s-e_1)(s-e_2)(s-e_3)}$

Following the guidelines of Bastien and Rogalski [\[2\]](#page-0-2), to study the rotation number function we look for a normal form for \mathcal{C}_h instead of F :

Example: The rotation number function of 2**-periodic Lyness recurrences, [\[1\]](#page-0-1)**

We consider the 2-periodic Lyness' equations

$$
u_{n+2} = \frac{a_n + u_{n+1}}{u_n} \text{ where } a_n = \begin{cases} a \text{ for } n = 2\ell + 1, \\ b \text{ for } n = 2\ell. \end{cases}
$$

This equation can studied using the *composition map:*

 $F_{b,a}(x,y):=(F_b\circ F_a)(x,y)=\Big($ *a* + *y x ,* $a + bx + y$ *xy* \setminus where F_a and F_b are the Lyness maps: $F_\alpha(x, y) = (y, \frac{\alpha + y}{x})$ *x ,* since (u_1,u_2) *Fa* $\stackrel{\textit{ra}}{\longrightarrow} (u_2, u_3)$ *Fb* $\stackrel{F_b}{\longrightarrow} (u_3, u_4)$ *Fa* $\stackrel{\textit{ra}}{\longrightarrow} (u_4, u_5)$ *Fb* $\stackrel{F_b}{\longrightarrow} (u_5, u_6)$ *Fa* $\stackrel{\Gamma a}{\longrightarrow} \cdots$

Hence $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$, since $y^2 = 4x^3 - g_2x - g_3$. The oval \mathcal{C}_h^+ $h\overline{h}$ corresponds with the bounded branch of \mathcal{E}_L ; and $[0,\omega_1]$ is projected onto the unbounded semi-branch of E*^L* with *negative y–coordinates*

This expression gives the analyticity of the rotation number function and allows to prove that if $(a, b) \neq (1, 1)$, then the image of $\theta_{b,a}[h_c, +\infty)$ is an interval, by studying its asymptotic behavior. \Box

Some results

$$
\begin{array}{ccc}\n(C_h, +, V) & \xrightarrow{\cong} & (\mathcal{E}_L, +, V) \\
\widetilde{F}_{|_{\mathcal{C}_h}} : P \mapsto P + H \to G_{|_{\mathcal{E}_L}} : P \mapsto P + \widehat{H}\n\end{array}
$$

where E*^L* is the *Weierstrass Normal Form*:

 $\mathcal{E}_L = \{ [x:y:t], y^2t = 4x^3 - g_2xt^2 - g_3t^3 \},\$

Because $\exists \omega_1$ and ω_2 depending on a, b and L and a lattice in $\mathbb C$ $\Lambda = \{2n\omega_1 + 2m i\omega_2 \text{ such that } (n,m) \in \mathbb{Z}^2\} \subset \mathbb{C},$

such that the *Weierstrass* \wp *function relative to* Λ gives a parametrization of \mathcal{E}_L , given by

$$
\phi: \mathbb{T}^2 = \mathbb{C}/\Lambda \longrightarrow \mathcal{E}_L
$$

$$
z \longrightarrow \begin{cases} [\wp(z) : \wp'(z) : 1] \text{ if } z \notin \Lambda, \\ [0 : 1 : 0] = V \text{ if } z \in \Lambda. \end{cases}
$$

 $C_h = \{(bx + at)(ay + bt)(ax + by + abt) - hxyt = 0\}.$

References

- [1] G. Bastien, V. Ma˜nosa, M. Rogalski, *On the periodic solutions of* 2*-periodic Lyness difference equations*. Preprint, arXiv:1201.1027v1 [math.DS]
- [2] G. Bastien, M. Rogalski, *Global behavior of the solutions of Lyness' difference equation* $u_{n+2}u_n = u_{n+1} + a$, J. Difference Equations and Appl. 10 (2004).
- [3] D. Jogia, J.A.G. Roberts, F. Vivaldi, *An algebraic geometric approach to integrable maps of the plane*, Journal of Physics A 39 (2006).

Supported by MCYT grant DPI2011-25822 and Generalitat de Catalunya SGR program.