EU-Rent as an Artifact-Centric Process Model:
Technical Report

Montse Estanol, Anna Queralt, Maria Ribera Sancho, Ernest Teniente

September 2012

Abstract

Business process modeling using an artifact-centric approach has raised a signif-
icant interest over the last few years. This approach is usually stated in terms
of the BALSA framework which defines the four “dimensions” of an artifact-
centric business process model: Business Artifacts, Lifecycles, Services and As-
sociations. One of the research challenges in this area is looking for different
diagrams to represent these dimensions. Bearing this in mind, this technical re-
port shows how various UML diagrams can be used to represent all the elements
in the BALSA framework by applying them to the EU-Rent case study.

Contents

2

- 4

I Tntroduction]. 4
2.2 Business Artifacts] oo oL 4
2.3 Business Artitact Litecyclel.o 0oL 5
R4 Services 5
25 Assodations. Lo 6
2.6 Summary|o 6
| UML 7
BI Tntroduction]. 7
8.2 Assumptions|o Lo 8
3.3 Business Artitacts as a Class Diagram| 8

3.4 Litecycle of RentalAgreement as a State Machine Diagram| 18
13.5 Associations as Activity Diagrams and Services as Action Contracts| 20

Append 45
[A_Structural Schema 1 OCL| 46
JA.1 Class Diagram| o oo 46
IA.2 Integrity Constraints|, 46

Chapter 1

Introduction

Business process design is a key activity in organisations. Business process
models have been traditionally based on an activity-centric perspective and
thus specified by means of diagrams which define how a business process or
workflow is supposed to operate, but giving little importance (or none at all) to
the information produced as a consequence of the process execution. Therefore,
this approach under-specifies the data underlying the service and the way it is
manipulated by the process tasks [4].

Nearly a decade ago, a new information-centric approach to business process
modeling emerged [7] and it is still used today. It relies on the assumption that
any business needs to record details of what it produces in terms of concrete
information. Business artifacts, or simply artifacts, are proposed as a means
to record this information. They model key business-relevant entities which are
updated by a set of services (specified by pre and postconditions) that implement
business process tasks. This approach has been successfully applied in practice
and it provides a simple and robust structure for workflow modeling [2] [1J.

The artifact-centric approach to business process specification has been shown
to have a great intuitive appeal to business managers. However, further research
is needed with regards to the “best” artifact-centric model since none of the ex-
isting models can adequately handle the broad requirements of business process
modeling [6].

This technical report shows the results of a applying our particular proposal
for an artifact-centric approach using UML diagrams. We consider that one way
of validating it is by applying it to a big case study. EU-Rent, as it is explained
in [5], is a case study originally developed by Model Systems, Ltd. EU-Rent is
the name of a fictional company which rents cars. It has branches in various
countries and it offers the typical car rental services and keeps information
about its customers. The technical report [5] includes a detailed description of
EU-Rent and its specification using standard notation: UML 2.0 and OCL 2.0.

We considered that EU-Rent would be an appropriate case study for vali-
dating our proposal because it presents a service which most people would be
familiar with, but at the same time it is complex enough to offer a good testing
environment. In order to avoid unnecessary repetition, we take [5] as a starting
point for our own report. We refer to it in order to find the detailed description
of the EU-Rent company and how it works. Unless otherwise stated, we have
followed exactly the same criteria described in it.

This technical report is structured in the following way:

Chapter 1: Introduction presents the purpose of the document and its
structure.

Chapter 2: Artifact-Centric Business Process Models in UML sum-
marises our proposal for describing business process from an artifact-centric
perspective using UML models.

Chapter 3: EU-Rent Car Rental Service as an Artifact-Centric Model
in UML shows how the EU-Rent car rental service would be specified using
the proposal summarised in Section 2.

Acknowledgements: The research that resulted in the work presented here
has received the financial support of UPC (Universitat Politécnica de Catalunya
- Barcelona Tech).

Chapter 2

Artifact-Centric Business
Process Models in UML

This chapter describes briefly our proposal for specifying artifact-centric busi-
ness process models in UML. A very brief summary is presented at the end.

2.1 Introduction

Traditional process-centric business process models are essentially uni-dimensional
in the sense that they focus almost entirely on the process model, its constructs
and its patterns, and provide little or no support for understanding the struc-
ture or the life-cycle of the data that underlies and tracks the history of most
workflows [6].

In contrast, the artifact-centric approach provides four explicit inter-related
but “separable” dimensions in the specification of the business process [6], [].
This four-dimensional framework is referred to as “BALSA” - Business Arti-
facts, Lifecycles, Service and Associations, first described in [6, [3]. By showing
the UML diagram which is more appropriate to define each one of these four
dimensions we will be able to construct our proposal for the specification of
artifact-centric business process models in this language.

However, UML is not enough, as usually UML diagrams make use of some
textual notation to precisely specify those aspects that cannot be graphically
represented. Currently, the OCL (Object Constraint Language) [10] is prob-
ably the most popular one of these notations and we will also use it in our
proposal. OCL supplements UML by providing expressions that have neither
the ambiguities of natural language nor the inherent difficulty of logic.

The rest of the section gives a brief explanation of the four BALSA dimen-
sions and we explain how we propose representing them using UML diagrams.

2.2 Business Artifacts

The conceptual schema of business artifacts is intended to hold all of the in-
formation needed in completing business process execution. A business artifact
has an identity, which makes it distinguishable from any other artifact, and can

be tracked as it progresses through the workflow of the business process execu-
tion. It will usually have also a set of attributes to store the data needed for the
workflow execution. The relationship of a business artifact with other artifacts
must also be shown when this information is relevant for the business being
defined. In business terms, an artifact represents the explicit knowledge con-
cerning progress toward a business operational goal at any instant. Therefore,
at any time of the execution, the information contained in the set of artifact
records all the information about the business operation.

In UML, conceptual schemas are defined by means of class diagrams. We
will use a UML class diagram to show the business entities and how they are
related to each other, represented as classes and associations respectively. Each
class (or business artifact) may have a series of attributes that represent rele-
vant information for the business. Moreover, they can be externally identified
by specific attributes or by the relationships they can take part in. A class
diagram may also require a list of integrity constraints that, as their name im-
plies, establish a series of restrictions over the class diagram. Constraints can
be either specified graphically in the UML class diagram or textually by means
of the OCL language.

Furthermore, the UML class diagram allows representing class hierarchies
graphically. We will benefit from this by representing the different states in an
artifact’s lifecycle as subclasses of a superclass, as long as these subclasses hold
relevant information or are in relevant relationships. The advantage of hav-
ing different subclasses for a particular artifact is that it allows having exactly
those attributes and relationships that are needed according to its state, pre-
serving at the same time the artifact’s original ID and the characteristics that
are independent of the artifact’s state which are represented in the superclass.

2.3 Business Artifact Lifecycle

The lifecycle of a business artifact states the key, business-relevant, stages in the
possible evolution of the artifact, from inception to final disposal and archiving.
It is natural to represent it by using a variant of state machines, where each state
of the machine corresponds to a possible stage in the lifecycle of an artifact from
the class [6]. We propose representing the states an artifact may go through in
a UML state machine diagram.

2.4 Services

A service (or “task”) in a business process encapsulates a unit of work meaningful
to the whole business process. The action of services makes business artifacts
evolve, e.g. they may cause modifications on the information stored by the
artifacts or they may make artifacts to evolve to a new stage, relevant from the
business perspective.

Our way of representing services is by means of an OCL operation contract.
As we have mentioned before, OCL is a formal language that avoids ambiguities.
Moreover, it is declarative, which means that it does not indicate how things
should be done, but rather what should be done.

Operation contracts consist in a set of input parameters and output param-
eters, a precondition and a postcondition. Both input and output parameters
can be classes (i.e. business artifacts) or simple types (e.g. integers, strings,
etc.). A precondition states the conditions that must be true before invoking
the operation and refers to the values of artifact attributes at the time when the
service is called. The postcondition indicates the state of the business artifacts
after the execution of the operation. It may refer to the values of artifact at-
tributes at the time when the service is called (appending operator @pre) and to
their values after the service has finished execution (no operator or appending
operator @post). Those artifacts that do not appear in the postcondition keep
their state from before the execution of the operation.

2.5 Associations

The problem, however, is that having the services as detailed above is not
enough. We need also a way to establish the conditions under which they can
be executed since, in a business process, services make changes to artifacts in a
manner that is restricted by a set of constraints.

Since the goal of the associations is to define the right sequencing of service
execution, we propose using UML activity diagrams for specifying them. In
this way, each service is represented as an action (a rounded rectangle) in the
activity diagram. Arrows show the order in which actions have to be executed.
Swimlanes indicate the main business artifact involved in each action, and the
notes stereotypes as Participant indicate who is the responsible for carrying out
that action.

By modeling associations in this way we achieve our proposal to incorporate
also some notions of process awareness, despite its intrinsic artifact-centric na-
ture. Therefore, we may also explicitly capture the control flow of the business
process, aspect which is usually lacking in previous artifact-centric proposals.

2.6 Summary

In summary, following the BALSA model described in [6], we will use the fol-
lowing UML diagrams to represent each of its elements:

e UML class diagram to represent the business artifacts.
e State machine diagram to represent the business artifacts’ lifecycle.

e Services will be represented as OCL operations with preconditions and
postconditions.

e Associations will be shown graphically in a UML activity diagram.

Chapter 3

EU-Rent Car Rental Service
as an Artifact-Centric Model
in UML

This chapter shows how our proposal is applied to a particular example. As we
have already mentioned in the Introduction, we will use the EU-Rent specifica-
tion described in [5] as a starting point. In the first section of this chapter we
give a brief overview of how the EU-Rent company works. Section Assumptions
details some considerations and assumptions we have made in order to specify
the car rental service provided by EU-Rent. The rest of sections in this chap-
ter show the various diagrams and elements that make up the EU-Rent service
specification.

3.1 Introduction

This introduction is meant to give a brief overview of EU-Rent. For a detailed
description of how the company works, check pages 1-15 of [5].

EU-Rent is a case study originally developed by Model Systems, Ltd. EU-
Rent is a fictional car rental company with branches in multiple countries. It
is part of a bigger company, EU-Corporation, which also owns hotels and an
airline. A prospective client must be registered with the company in order to
rent a car: he/she may make a reservation some days in advance, or rent the
car on the spot (what is called a walk-in rental).

Customers are allowed to have many reservations, but they can only have
one rental at a time. They are also allowed to return the car to a branch other
than the pick-up branch. The company keeps information about the customers,
such as a history of their rentals and records any bad experiences (e.g a late
return or a damaged car). Therefore, a particular customer may be blacklisted
(i.e. he/she will not be allowed to rent a car) if certain conditions are met.

On the other hand, customers may belong to the Loyalty Incentive Scheme.
Customers in this program are allowed to pay for their rentals using loyalty
points. Moreover, any rental may qualify for a discount, and the customer is
always offered the best price for the rental. However, loyalty points can only

pay for the basic price of a rental, i.e. without any discounts applied.

Cars are classified into different groups according to their characteristics, and
customers are allowed to choose either a particular car model or a car group.
If they do not choose any, they are assigned the cheapest car group. Cars are
serviced after a while, and can be bought and sold by EU-Rent. They sometimes
have to be transferred from one branch to the other, precisely because customers
are allowed to return them to a different branch.

When a car is handed over to the customer, he/she has to fulfill certain
conditions: he/she should be able to drive and should not be under the influence
of alcohol or drugs, he/she should have a valid driving license and be over 25
years of age. A reservation is held for a customer for 90 minutes after the
scheduled pick-up time if the reservation is not guaranteed. If it is guaranteed
by a credit card, it is held for the whole day before the car is released and the
customer’s credit card is charged for not picking it up.

Customers can request rental extensions by phone, and they are granted
unless the car is due for maintenance.

3.2 Assumptions

For the following service specification of EU-Rent we follow the same assump-
tions as in [5]. However, we only want to specify the car rental service provided
by the company, i.e. those business processes that are directly involved in the
provision of a car rental. This corresponds to a subset of the use cases in the
original specification. The rest of use cases are necessary for the provision of the
service but transparent to the client and we do not provide their details here.

It is also important to bear in mind that we want to avoid redundancy in
the specification. For this reason, we follow the guidelines of [II] both in the
specification of the actions (i.e. what in BALSA is referred to as services) and
in the activity diagrams. That is, the activity diagrams and action contracts do
not check conditions that are already guaranteed somewhere else in the spec-
ification (e.g. in integrity constraints). Moreover, consecutive actions will not
check for conditions already guaranteed by previous actions. We also consider
that parameters can be reused in operations that are part of the same activity
diagram.

3.3 Business Artifacts as a Class Diagram

The UML class diagram represents the business artifacts that take part in the
provison of the business processes. However, it is important to note that the
class diagram presented here is a subset of the one in [5]. Moreover, as the
resulting diagram was very big, we have split it into smaller ones. There is one
main diagram, that shows the main business artifacts and their relationships,
and then we have smaller diagrams showing a business artifacts and its subtypes.
At the end there is a diagram showing some data types that we use in our model.

For each class diagram, we include the corresponding integrity constraints
and derivation rules. They are defined in natural language. The corresponding
OCL definition can be found on Appendix A.

3.3.1 Main Class Diagram

The diagram in Figure shows the main artifacts in EU-Rent and the rela-
tionships between them.

EU_RentPerson represents someone who has had contact with EU-Rent,
either as a driver or as a customer. For this reason, it is linked with exactly one
DrivingLicense, and a DrivingLicense belongs exactly to one EU _RentPerson.
Notice that this class does not hold any personal information: we have assumed
that this information is shared with other EU companies, and the corresponding
class is shown in Figure @ An EU_RentPerson may take part in any number
of RentalAgreements as a driver. A Customer is a subtype of EU_ RentPerson
and will have, at least, one RentalAgreement, but he may not have more than
one RentalAgreement for a particular Date Timd'}

The key class in the diagram is RentalAgreement. It can be of the Reservation
subtype, which means that a reservation was made before the scheduled pick-up
date of the car. A Reservation is linked to a specific CarGroup, and may be
linked to a particular CarModel. Each CarModel belongs to one (and only one)
CarGroup. CarGroups are ordered by their category. A RentalAgreement will
have certain RentalDurations, and therefore may be eligible for some Discounts.
The RentalAgreement will be linked to exactly one pick-up and one drop-off
Branch, and will also have at least one Country where the user will travel to
with the car (at least, the Branches’ countries). It may also have a particular
Car assigned, which will be of a particular CarModel.

A RentalAgreement is opened (OpenRental) when a customer picks up the
car, and is closed (ClosedRental) when he/she returns it. It may also be ex-
tended (ExtendedRental). A ClosedRental may be linked to a BadExperience
(which may be of the CarDamange subtype) with an associated FaultSerious-
ness.

The following subsections describe the integrity constraints and derivation
rules.

3.3.1.1 Integrity Constraints

e Branch is identified by name.

e The pick-up and drop-off branches’ Countries must be included in the list
of countries of the RentalAgreement.

e The initEnding of a RentalAgreement must be later than its beginning.
The actualReturn of a RentalAgreement must also be later than its begin-
ning.

e reservationDate of a Reservation must be previous to its beginning date.
e Requested car model in a Reservation must be in requested car group.

e Rental extension must be done after the beginning date of the RentalA-
greement and the new end date should be later than the initial end date

INote that, for convenience purposes, we have included Date Time as a class of the diagram,
when it is clearly not a business artifact. However, we considered that a RentalAgreement
was defined by a Customer and a particular DateT%me; therefore, we decided that RentalA-
greement should be an association class resulting from the link between these two classes.

awi]aleq : 8jeQuUONEAISaI

s[ejual Ied Jo uorstaoxd 91} I0J SIORJILIE SSOUIST]) YIIM wreierp sse[d ure[y :1°¢ oangiq

{uazouy}
SI X YIMILId[eIUDL

vpauIniey

[eanieN :

Kouop : Xe1uimaeolidieual /

Aauop : soud
[1sopebeweq

Lo

119qWINNPIBONPRIO
adAjAed : adAjuswhed

[E1UBHPasOID

nsopabeweq
/
o

abeweqie)/

owi|aje(: BUOQUOISUBIXD

UoIsuaIxg

uinjayenioe]
13

|eluaypapuaIxy

uoisybixg
10

<k

sdnoine|qeslddy

UOIIEAI8SD
dnoigpaisanbai
L
Buis : sweu
dnoinied

UBo|00g : AWI] UOIBAISSA]
aleq : areabuluuibeq

Buiis : uonduossp
Buys : 1080
Buis : sweu

1unoosig

suonelnga|qedtddy

ajeq : aje@buipue
JUN09SIgpPaso|y

Buruurbeg

swileleq

m:_n:muwrw_mm Buipugiur |

be /
Buipyz|e!

ajeq : uonesdxa .
oreq ; onssi |onaT : 9a1Bop
|einjeN : Jequinu $S9USNOIIaS]INeS
©95UB0I7BUIAIIQ L0 | suney
sifedseH/
sey
3 b
Uosiagiuey N3 =
18juas jusuesibyeiuey
N Jawoisny '
J8ALIP '
'
1
1
1
sanlp " Buipugpes.
1
1
'
1
1
Jonudsysielual |
hd 1
|eanieN : Ayuenb /
uolijeing|eluaya|qeolddy/

|einieN : u

| [einieN : uoneingwinw

pouad : Junawn

<

aweu

ajeq : alegbuipus

50114uoleINgpUT

|apojypaisanbal
[

uoneinglelusyajqealddy/

o1e(: UONEOLIPONISE| /
Kauop : 8oudisaq /
ARauoy : @o114aseq /

IIPUIMONISE]

awi) : swildnyoidienioe

|eueyguadQ

youeigyodoip

H#odoip

L

youeagdnsord

3

dnsjoid

Juewaaliby elusy

1vpayedoTst y

I

Builg : sweu

L0 ®lqejreaysy .0

’
, {syesqns}

mwmcw:uu 9SHNEN, "0

'
1

1

" adA) dxgpeq : adA}
" sousliadxgpeg

I

'

L

lonaT : eaibop
ssausnolagyineq

olpauiniey v

10

youeiguinjayjenioe

uesjoog : paubisse /

youelg

3

a|qnoQ : xeJed
(Bug)ies : sbaysuoissiwe
(Bug)ies : sbaysuonipuo|esiueyosw

Buuys : sweu

A1junop

(Buiyg)eousnbag : sonsuvloRIEYD

19PONIEBD

Bumg :
uonjeInQqlerus
10 St " USIA
18u0ys ()
196u0|
suoneinqiseg/
_. Bujuuibeq
' —swieieq | owl] : swi]pasedaidpaloadxe -~ T T T T T T T T oo ;
' Te)paubIssy s90114uoleInQisaq
" Aouop : eoud
Kauop : eoud 90liduoneinqdnoinie
901iduoleinqdnoinied swiy : ewiljenjoe I dnoinyusl
paitedaid =
L0
Buing : Jequinyuonensibes |_x "+ dnounuey 10
* 1eH dnounsi / L Buis : oweu 9SI0M
Vvios! dnoigied
3 deneq L0
Jepiohioberen
ust >

MONB|qe|IeAYSIED)

uea|oog : 9|qe|IBA. /

ajeq : erequonisinboe

ole(: 9]egooUEBUBIUIBINISE|
a|gnoq : 8dIAIeSISEWOIJeBEa|IW
a|gnoq : ebes|iNIuLLIND

TeQUMO

J0-49|qisuodsaysly

Buins : Jequnnuonessibal
I5e)

(initEnding). Note that this constraint has been rewritten, as the original
code did not tally with the original class diagram.

CarModel is identified by its name.

CarGroup is identified by its name.

CarGroup order must be coherent (i.e. there are no cycles). Ouly one
CarGroup may not have a better CarGroup, and only one CarGroup may
not have a worse CarGroup (it may be the same).

RentalAgreements of a Customer do not overlap.

DrivingLicenses are identified by their number.

An EU_RentPerson has at least one year of driving experience and the
DrivingLicense does not expire before the agreedEnding of a rental of the
driver.

RentalDurations are identified by their name

Price for a particular RentalDuration and CarGroup in CarGroupDu-
rationPrice must be higher than the price for the same RentalDuration
but worse CarGroup, excluding those CarGroupDurationPrice that have
ended.

The order of RentalDurations is coherent (i.e. there are no cycles). Only
one RentalDuration may not have a longer RentalDuration, and only one
RentalDuration may not have a shorter RentalDuration (it may be the
same).

Discounts are identified by name.

Ending date of EndDurationPrice must be on the same day or later than
its beginning date.

Ending date of ClosedDiscount must be on the same day or later than its
beginning date.

Countries are identified by name.

Car can only be assigned, at most, to one rental; excluding both closed
and canceled rentals.

Car is identified by registration number

At the time when a car is assigned to a RentalAgreement (excluding Close-
dRentals and CanceledRentals) the pick-up branch becomes responible for
the car.

BadEzxperience is identified by type.

11

3.3.1.2 Derived Classes and Attributes

RentalAgreement

* basicPrice - Best price for the rental without discounts, considering its
duration.

* bestPrice - Best price for the rental with discounts. When the rental is
PaidWithPointsRental, it is equal to the basicPrice of the rental.

* lastModification - Last modification of the rental. If it is of the Reservation
subtype, it corresponds to the reservation date. Otherwise, it corresponds
to the beginning date of the rental. In any case, if if it has been extended,
it corresponds to the extensionDone date.

OwnCar

* available - An OwnCar is available if it is not assigned and is NOT of ANY
of the following subtypes: NeedsMaintenance, RepairsScheduled, ToBeSol-
dCar, BeingTransferredCar or NeedToBeSoldCar.

* assigned - An OQwnCar is assigned if there is a RentalAgreement linked to
the OwnCar that has not been canceled (i.e. it is not of CanceledReser-
vation subtype) or closed (i.e. it is not of the ClosedRental subtype).

CarDamage
* Derived class - Every BadEzperience that has type carDamage will be of
the CarDamage subtype.
ClosedRental

* rentalPriceWithTax - Price of the rental plus taxes. It is the result of
multiplying the carTaz in the actual drop-off branch and the bestPrice of
the rental.

ApplicableRentalDuration

* quantity - For a particular RentalAgreement and RentalDuration, it holds
the number of RentalDurations applicable to that RentalAgreement. This
is calculated by dividing the duration of the rental by the maximumDu-
ration or minimumDuration of RentalDuration.

3.3.1.3 Derived Relationships

* BestDuration - bestDurationPrices - Best prices (ordered from best to
worst) for the duration of the rental.

* agreedEnding - Obtains the return date of a rental, considering the ex-
tensions a rental may have. If it has no extensions, it corresponds to
initEnding. If it has been extended, it corresponds to lastNewEnding.

12

* rentGroup - Returns the carGroup that the user will have to pay for, that
is, if he has been offered a free promotion, he has to pay for the carGroup
he asked for, not more. Or, if he has been allocated a worse carGroup
than what he asked for, then he pays for the worse carGroup and not the
one he asked for initially.

* ApplicableRental Duration - RentalDurations into which the Rental Agree-
ment can be split. It is calculated considering the number of days (or
hours) of the rental and the minimum and maximum durations of each
RentalDuration.

* IsGroup - carGroup - CarGroup a particular Car belongs to. It is the
same car group as the one for the car model of a particular car.

* HasFaults - faults - FaultSeriousness associated to the RentalAgreements
of a particular EU _RentPerson, considering his/her faults as both driver
and customer.

* IsAwailable - carsAvailableNow - Available OQwnCars for a particular Branch.

* GroupAvailability - groupsAvailableNow - CarGroups available for a par-
ticular Branch, obtained through the available OwnClars.

3.3.2 EU_CoPerson and its Subclasses

The diagram in Figure shows the classes and subclasses of EU_CoPerson.
It is important to note that we have decided to show in the diagram both
EU_CoPerson, representing people who are clients of EU-Corporation, and
EU_RentPerson, representing people who have used the services of EU-Rent.
Most of the information about the customer is kept in EU_ CoPerson (such as
name, address, etc.), unlike in the original EU-Rent specification [5].

Asit can be seen in the diagram, FU _RentPerson is a subtype of EU_ CoPerson.
An EU_RentPerson may be blacklisted, and in that case he/she is not allowed
to rent cars. As we have seen in the previous section, a Customer is also a
subtype of EU_RentPerson. Finally, a Customer may belong to the Loyalty
Incentive Scheme, represented by the subclass LoyaltyMember.

3.3.2.1 Integrity Constraints
e An EU_CoPerson is identified by its id.

e An EU_CoPerson must be 25 or older.

e The reservations or rentals of a Blacklisted EU _RentPerson that begin
after the blacklistedDate must be cancelled.

e RentalAgreements of Customer do not overlap.

e A LoyaltyMember rented at least one car during the last year and does
not have any bad experience.

13

EU_CoPerson
id : String
name : String
address String
birthdate : Date
telephone : Natural

EU_RentPerson

I

Customer Blacklisted

blacklistedDate : Date

LoyaltyMember

membershipDate : Date
/ availablePoints : Natural

Figure 3.2: Class diagram of EU_CoPerson and its subclasses

3.3.2.2 Derived Attributes and Classes

LoyaltyMember

* availablePoints - It holds the result of adding the points obtained in the
rentals made by the customer which have not been paid with points, and
substracting the points spent in the rentals paid with points.

3.3.3 Reservation and its Subclasses

The diagram in Figure [3.3] shows the class Reservation and its subclasses.

Reservation

reservationDate : DateTime Canf:eledReservatu?n
<} cancellationDate : DateTime
{d.c}
ReservationWithSpecialDiscount
GuaranteedReservation CanceledCustomerLiable CanceledCompanyLiable
PointsPaymentReservation creditCardNumber : Natural motivation : CancellingMotivation

[N

/ GuaranteedCanceled

/ fine : Money {frozen}

Figure 3.3: Class diagram of Reservation and its subclasses

As it can be seen in the diagram, a Reservation may be:

14

A Reservation WithSpecialDiscount, if it includes a discount on the basic
price.

A PointsPaymentReservation, if it can be paid with points and the cus-
tomer wishes to.

e A GuaranteedReservation, if the customer leaves his credit card number.

e A CanceledReservation, if the reservation is cancelled. We distinguish two
subtypes:

— CanceledCompanyLiable, if EU-Rent is responsible for the cancella-
tion.

— CanceledCustomerLiable, if the customer is the ultimate responsible
for the cancellation. A CanceledCustomerLiable reservation may also
be of GuaranteedCanceled subtype if it was also a GuaranteedReser-
vation.

It is important to mention that, in the original specification [5], Cancele-
dReservation had CanceledCustomer and CanceledCompany as subclasses, show-
ing whether the reservation had been cancelled at a request from the customer
or the company had decided to do so, respectively. In our class diagram, sub-
classes CanceledCustomerLiable and CanceledCompanyLiable show who is the
ultimate responsible for the cancellation of the reservation: the company may
decide to cancel a reservation because a customer is not fit to drive; although it
is the company who makes the decision, the customer is liable for it.

3.3.3.1 Integrity Constraints

e reservationDate of a Reservation must be previous to its beginning date.

e Requested car model in a Reservation must be in requested car group.

e PointsPaymentReservation must be made at least 14 days in advance of
its beginning date.

e cancellationDate of a CanceledReservation must be after or on the same
reservationDate and before, on the beginning date of the RentalAgreement
or on the day after at the latest. This has been changed from the original
report [5].

3.3.3.2 Derived Classes and Attributes

GuaranteedCanceled

* Derived class - All Reservations that are both GuaranteedReservation and
CanceledCustomerLiable.

* fine - A fine of one day rental must be paid if the rental was guaranteed
and the cancelling date is the same day (or later if the customer does not
pick up the car) as the expected beginning of the rental. Otherwise, no
fine must be paid.

15

Car
registrationNumber : String

RepairsScheduled
beginningDate : Date

OwnCar
currentMileage : Double ﬂ /NeedsMaintenance
mileageFromLastService : Double MaintenanceScheduled
lastMaintenanceDate : Date <H— beginningDate : Date
acquisitionDate : Date

/ available : Boolean
/ assigned : Boolean

/NeedToBeSoldCar

I

BeingTransferred ToBeSoldCar

Figure 3.4: Class diagram of Car and its subclasses

3.3.4 Car and its Subclasses

The class diagram of Car and its subclasses can be seen in Figure [3.4]

An OwnCar represents those cars that are owned by EU-Rent (the company,
under special circumstances, can use cars that do not belong to it). An OwnCar
may be in the process of being transferred from one branch to the other (Being-
Transferred), may need maintenance (NeedsMaintenance subtype), may need
to be sold (NeedToBeSold) or may be of the ToBeSoldCar type, which means
that it can no longer be used as it is in the process of being sold. Finally, a Car
may be scheduled for repairs (RepairsScheduled) even if it does not belong to
EU-Rent.

3.3.4.1 Integrity Constraints

e Car can only be assigned, at most, to one rental; excluding both closed
and canceled rentals.

e (Car is identified by registration number

e A Car that needs maintenance cannot have more than 10% of the mileage
required for maintenance and not more than 10% of the required time
between services may have elapsed.

e A Car that is to be sold (ToBeSoldCar) cannot be assigned to a rental,
excepting those rentals that are closed or canceled.

3.3.4.2 Derived Classes and Attributes
NeedsMaintenance

* Derived class - A car needs maintenance if it was serviced more than 3
months ago or has accumulated more than 10,000 km since the last service.

16

NeedToBeSoldCar
* Derived class - An OuwnCar is of subtype NeedToBeSoldCar if it was

bought more than a year ago or has accumulated more than 40,000 km.

3.3.5 ClosedRental and its Subclasses
The diagram in Figure [3.5] shows the class ClosedRental and its subclasses.

ClosedRental rentalPriceWithTax is
paymentType : PayType {frozen}
creditCardNumberDamages : Natural

/ rentalPriceWithTax : Money

return_timeg {d,c}

/PaidWithPointsRental /LateReturn /EarlyReturn

/ extralnterval : Duration
/ extraCostWithTax : Money

extraCostWithTax is {frozen}lﬁ

Figure 3.5: Class diagram of ClosedRental and its subclasses

A ClosedRental may be PaidWithPointsRental, if it has been paid with
points; and may also be a LateReturn if the car has been returned later than
expected or an EarlyReturn, if it has been returned more than an hour earlier
than expected.

3.3.5.1 Integrity Constraints

e In a PaidWithPointsRental, the Reservation for the corresponding rental
was made at least 14 days in advance of the rental’s beginning date.

e In a PaidWithPointsRental, the Customer must be a member of Loyalty
Incentive Scheme (i.e. LoyaltyMember) in order to pay with points. It is an
initial constraint, as the customer must be a Loyalty Incentive Member
only at the time of paying; later on he/she may not be a member any
longer.

3.3.5.2 Derived Classes and Attributes
ClosedRental

* rentalPrice WithTaz - Price of the rental plus taxes. It is the result of
multiplying the carTaz in the actual drop-off branch and the bestPrice of
the rental.

17

PaidWithPointsRental
* Derived class - All ClosedRentals that have been paid with points (i.e their
paymentType is Points).
LateReturn

* Derived class - All ClosedRentals such that the actualReturn is later than
the agreedEnding.

* extralnterval - Duration of the period between the agreedEnding and the
actualReturn of the car.

* extraCostWithTaz - Holds the price of the extralnterval, considering the
best price for duration without applying any discounts, and the cost of
the taxes according to country where the car has been dropped off.

EarlyReturn
* Derived class - All ClosedRentals such that the actualReturn is more than
an hour sooner than the agreedEnding.

3.3.6 Types

The types that have been defined for EU-Rent can be seen in Figure Note
that most of them have been defined from scratch or redefined from [5].

<<enumeration>>
ReservationStatus

<<enumeration>>
CustomerType

<<enumeration>>
CancellingMotivation

Duration

CarReady
CarNotReady
NoReservation

EUCorpCustomer
EURentCustomer
NotRegistered

<<enumeration>>
Level

veryhigh
high
medium
low
verylow

blacklisting
no_show
unable_to_drive
customer_canceled

Unit : Period
numberOfUnits : Natural

<<enumeration>>

<<enumeration>>

BadExpType PayType
lateReturn Points
carDamage SpecialDiscount
paymentProblem BestPrice

BasePrice

MaintenanceRequirements

mileageForService : Double = 10000

timeForService : Duration = (month, 3)

Figure 3.6: Definition of types

<<enumeration>>
Period

hour

day

3.4 Lifecycle of RentalAgreement as a State Ma-
chine Diagram

Although many of the business artifacts represented in the class diagram have
a lifecycle, in order to keep it simple we will focus only on the lifecycle of what
is the main business artifact: RentalAgreement.

The state machine diagram for the service can be seen in Figure 3.7 It
shows the whole lifecycle of RentalAgreement, from the moment a customer

Customer is Blad]

[not guar

klisted/ Cancel Reservation

Make Walk-In Rental[success] Extend Rental
xtend Rental

Extend Rental

Make Reservation[success] Reservation Pick-Up Car[success] (OpenRental ExtendedRental
|
L J \] [] E

Pick-Up Car[gancel]

Cancel Resetvation by Customer Demand [success]

ClosedRental
[guaranteedReserVation] today()>flay(beginning ancel Reservation

anteedReservation] (now() -|beginning)>90min / Cancel Reservation r CanceledReservation

<]

Figure 3.7: State machine diagram for RentalAgreement

makes a reservation or rents a car to the moment when the car is returned. It is
worth noting that this diagram does not follow exactly the standard described
in [9]: we have more than one outgoing transition from the start node. This is
necessary because the service can be initialized in different ways (e.g. by making
a walk-in rental or a reservation). In any case, the transitions between states
are triggered by either domain events, time events or change events [§].

However, our domain events are not always atomic: they can be subprocesses
which are further decomposed into actions (or services). These subprocesses may
have a condition in square brackets which the subprocess has to meet when it
ends in order for the transition to be fired. For example, the transition from
Reservation to OpenRental will only be triggered when: 1- subprocess Pick Up
Car takes place AND 2- it ends successfully AND 3- RentalAgreement is in
state Reservation. If this same subprocess ends fulfilling the condition cancel
when the service is in state Reservation, then the RentalAgreement would be
canceled. The postconditions in the state transitions can also be non-atomic.
For example, when time event today() > day(beginning) takes place and the
Reservation has been guaranteed, then the reservation must be canceled. This
is done through subprocess Cancel Reservation.

The state machine diagram in Figure [3.7 shows that there are two possible
ways of creating a RentalAgreement: either with Make Reservation or Make
Walk-In Rental. In the case of Make Reservation, the user has to Pick-Up Car
before actually using it. It is also important to notice that in state Reservation,
the reservation may be cancelled either because the customer requests it (Cancel
Reservation by Customer Demand) or because one of the following conditions is
met: 1- the car is not picked up 90 minutes after the scheduled pick-up time and
the reservation is not guaranteed, 2- the car is not picked-up in the scheduled day
and the reservation was guaranteed, 3- the customer is blacklisted, 4- Pick-Up
Car is cancelled. In all these cases, the service ends.

While the rental is open, the customer can request an extension (Extend
Rental. The RentalAgreement will become a ClosedRental when the customer
returns the car (Return Car).

19

Return Car eturn Car

3.5 Associations as Activity Diagrams and Ser-
vices as Action Contracts

The activity diagrams provide the details for each of the subprocesses in the state
machine diagrams. Each subprocess is decomposed into actions, which in turn
can be atomic (they are services as defined in BALSA) or further decomposed in
another activity diagram (indicated by a rake-like symbol). Therefore, activity
diagrams act as associations between services.

In each activity diagram, the transitions that lead to an end node may be
stereotyped with a tag that indicates the outcome of the subprocess. Examples
of tags are succeed and fail, which may be then used in the state machine
diagram to determine the following state in the service evolution. Swimlanes
indicate the main artifact involved in each of the services or actions, and they
are labeled with stereotype material if they are dealing with a real, physical
object and not its representation. Those actions that deal with information
resources are further specified by action contracts using OCL. They correspond
to services in BALSA.

Each subsection corresponds to one of the subprocesses in the state machine
diagram. However, there are some actions within activity diagrams whose de-
tails are defined in another activity diagram: they also have a subsection of
their own.

3.5.1 Make Reservation

/Make Reservation A
c
O]
4
& ticipant
i obtain). ____| <<participant>
- . e Customer Clerk
[}
<<succeed>>
Obtain Data for Rental .
c
2 and Calculate Price) . O
g | i
i ! .
= <<participant>
Clerk
AN J

Figure 3.8: Activity Diagram for Make Reservation

3.5.1.1 Obtain Customer
See section [3.5.2) on page

3.5.1.2 Obtain Data for Rental and Calculate Price

Obtains the data for the rental (such as beginning and end date, the countries
the user wants to visit, the preferred car model or car group, etc.) and calculates

20

its price, considering the fact that there may be some applicable offers or the
customer may be eligible to pay with points.
There are four different possible prices:

Basic Price - 1t is calculated according to the rental duration, without
considering any discounts.

Best Price - It is calculated considering the existing discounts, excluding
those discounts that were must be applied at reservation time. IMPOR-
TANT NOTE: In the original specification [5], apparently Best Price and
Price with Special Discount are calculated in the same way, considering
in both cases discounts applicable at reservation time. We have consid-
ered that this is a mistake, and for Best Price we do not include the
reservation-time discounts.

Price with Special Discount - It considers all types of applicable discounts,
including those than can only be selected at reservation time.

Points - The payment with points can only be selected if the user is
member of the Loyalty Incentive Scheme and has enough points. The cost
in points of the rental is calculated from the Basic Price (or Base Price)
of the rental.

Additional comments:

Although there is an integrity constraint that does not allow users to pay
with points if the reservation is not made 14 days in advance, this action
checks it anyway, to avoid offering the user the option to pay with points
if he is not able to.

points() - changes from Money to Points.
isBetter() - checks whether one alternative is better than the other.

durationT() - obtains the corresponding duration given a period and a
natural number.

applicable() - used to determine if a particular discount is applicable to a
customer.

apply() - applies a discount to a particular price. It is needed because the
Discount class contains this information in a String format, as it may be
given as a percentage over the final price, certain conditions may have to
be met, etc.

action obtainDataForRentalAndCalculatePrice (startDate: DateTime,

loca

loca

endDate: DateTime, pickUpBranch: String, dropOffBranch:
String, countries: Set(String), carG: String, carM: String,
person: EU_ CoPerson): Set(TupleType(id:PayType,desc:String))
IPre: —

1Post:

21

— Change input EU_CoPerson into EU_RentPerson and again to
Customer. At this point EU CoPerson must already be
EU_RentPerson but may not be a Customer —

person.oclAsType (EU_RentPerson).ocllsTypeOf(Customer) and

let c¢:Customer=person.oclAsType(Customer) in

— Create Rental Agreement —
— 1. Creates the RentalAgreement as a Reservation subtype with
the input data —
— 2. Links the EU_RentPerson with this RentalAgreement —
Reservation.alllnstances ()—>exists (r |
r.oclIsNew () and r.driver=c.oclAsType(EU_ RentPerson) and
r.renter=c and r.beginning=startDate and
r.initEnding=endDate and r.reservationDate=now() and
r.pickUpBranch=Branch. alllnstances ()—>select (pub |
pub.name=pickUpBranch) and
r.dropOffBranch=Branch. alllnstances ()—>select (dob |
dob.name=dropOffBranch) and
(if (carG = ’’) then
r.requested Group=CarGroup. alllnstances ()—>select (cg
| cg.worse—>isEmpty())

else
r.requestedGroup=CarGroup. allInstances ()—>select (cg
| cg.name=carG)
endif)
and

(if (carM <> ’’) then
r.requestedModel=CarModel. allInstances ()—>select (cm
| cm.name=carM)
else
true
endif)
and
countries —>forAll(co2 |
.country—>select (co|co.name=co2)—>notEmpty()) and
.country—>includes (Branch. alllnstances ()—>select (b |
.name=pickUpBranch).country) and
.country—>includes (Branch. alllnstances ()—>select (b |
.name=dropOffBranch) .country))

TR oR s

— Calculate Price —

— 1. basePrice and bestPrice are derived atliributes in the
class/business artifact. Therefore, there is no need to
calculate them.——

let basePr:Money=r.basicPrice

let bestPr:Money=r.bestPrice

— 2. We have to calculate the price considering the discounts
available at reservation time —

— 2.1. We select those discounts applicable to the
particular rentGroup and the time of the rental. We
also check if its applicable to the Customer. —

let applicableDiscounts:Set(Discount) =
r.rentGroup.discount—>select (dis |
dis .beginningDate<=r.initEnding and
(dis.ocllsTypeOf(ClosedDiscount) implies
dis .oclAsType(ClosedDiscount).endingDate>=today () and
applicable (dis,c)) in

— 2.2. We create a function to determine, of all
applicableDiscounts , the best one for a particular
duration —

let bestDiscountPerDuration (rd:RentalDuration, price:

22

Money) : Discount = applicableDiscounts—>select (d |
d.rentalDuration=rd)—> reject (disAct: Discount |
applicableDiscounts —> select (d2 |
d2.rentalDuration=rd) —> exists(disOther:Discount |
apply (disOther , price).isBetter (apply(disAct,
price)))—>any ()

— 2.3. We calculate the price of the rental including the
discounts —

— 2.3.1. FEach RentalAgreement is associated to
various RentalDurations.

— 2.3.2. FEach RentalAgreement is linked to
various CarGroupDurationPrices (through
bestDurationPrices). This contains the best
price for each rental duration for the
CarGroup of the RentalAgreement. That is, for
every RentalDuration, there is ezactly one
CarGroupDurationPrice. —

— 2.3.3. This implies that, if we navigate the
relationship bestDurationPrices and select the
CarGroupDurationPrice for a particular
RentalDuration , there will only be ONE
CarGroupDurationPrice.

— 2.8.4. We calculate the price of the rental by
iterating through the RentalDurations linked
to the RentalAgreement and selecting the
corresponding price in bestDurationPrices. We
then obtain the best Discount for a particular
RentalDuration and CarGroup, apply this
Discount to the price in CarGroupDurationPrice
and multiply this for the number of a
particular RentalDuration there is in a
RentalAgreement. Finally, we add this wvalue to
the accumulated price and we eramine the mnext
RentalDuration. —

let bestSpD: Money =
r.applicableRentalDurations—>iterate (elem;
tup:Tuple{currentPrice: Money=0, accPrice: Money=0} |
currentPrice = r.bestDurationPrices —> select
(cGDP |
c¢GDP.rentalDuration=elem.rentalDuration).price
currentPrice =
apply (bestDiscountPerDuration (elem.rentalDuration ,
currentPrice), currentPrice)

accPrice = accPrice + currentPricexelem.quantity

).accPrice

in

answerSOptions=Sequence{}—>append (Tuple{id=PayType:: BasePrice
desc=
basePr.toString })—>append (Tuple{id=PayType:: BestPrice ,
desc=bestPr.toString}) —>
append (Tuple{id=PayType:: SpecialDiscount ,
desc=bestSpD.toString})

—— Check if able to pay with points —

—— 1. Reservation must be made at least 14 days in advance —

—— 2. Customer must belong to Loyalty Incentive —

—— 3. Customer must have enough points to pay —

if (startDate >= (today()+day(14)) and
p.ocllsTypeOf(LoyaltyMember) and (points(r.basicPrice) <=
(c.oclAsType(LoyaltyMember) . availablePoints))) then

answerSOptions—>append (Tuple{id=PayType:: Points ,
desc=points.toString})

23

/Obtain Customer

EURentCustomer]
5 [

% [EUCOpCustomer]

2 [NotRegigfered]

I Add Customer's

Driving License

S Insert New <<participant>:

2

ol Check Existing EU-Corporation [~ ----- Clerk

o J
Figure 3.9: Activity Diagram for Obtain Customer
else
true

endif

— Return all prices and discounts available —
result = answerSOptions

3.5.1.3 Choose Price

The user chooses the price for his/her rental and decides whether to guarantee it
or not (if he provides the credit card number, he wants to guarantee the rental).

action ChoosePrice (r: Reservation, pm: PayType, cc: Natural)
localPre: —
localPost:

if (pm = PayType:: Points) then
r.ocllIsTypeOf(PointsPaymentReservation)

else
if (pm = PayType:: SpecialDiscount) then
r.ocllIsTypeOf(ReservationWithSpecialDiscount)
else
true
endif
endif

if (cc <> null) then
r.ocllIsTypeOf(GuaranteedReservation) and
r.oclAsType(GuaranteedReservation) .creditCardNumber =
cc
else
true
endif

24

3.5.2 Obtain Customer
3.5.2.1 Check Existing Customer

Checks whether the user is already a customer and of what type (EU_ RentPerson,
EU_CoPerson or not registered).

action CheckExistingCustomer (cid: String):
TupleType(cType: CustomerType, EU CoP: EU_CoPerson)

localPre: —

localPost:
if (EU_RentPerson.alllnstances () —> select (id=cid)—>notEmpty ())
then
result = Tuple{cType=CustomerType:: EURentCustomer,
EU CoP=EU_ CoPerson. alllnstances ()—>select (id=cid)}

else
if (EU_CoPerson.alllnstances () —>
select (id=cid)—>notEmpty()) then
result = Tuple{cType=CustomerType :: EUCorpCustomer,
EU_CoP=EU_CoPerson. allInstances ()—>select (id=cid)}
else
result = Tuple{cType=CustomerType:: NotRegistered ,
EU CoP=null}
endif
endif

3.5.2.2 Insert New EU CorporationCustomer

Inserts a new EU_CoCustomer after acquiring the customer’s personal infor-
mation.
Additional comments:

e The customer id (cid) in this operation must be the same as in the previous
one.

action InsertNewEU—CorpCustomer (cid: String, cname: String,
cbirthday: Date, cAddress: String, cTelephone: Natural):
EU_ CoPerson

localPre: —

localPost:

EU_ CoPerson. alllnstances ()—>exists (p | p.oclIsNew() and p.id=cid
and p.name=cname and p.birthday=cbirthday and
p.address=cAddress and p.telephone=cTelephone) and

result=p

3.5.2.3 Add Customer’s Driving License

Adds a driving license to an EU _ CoPerson, so that it becomes an FU_ RentPerson
and therefore eligible for renting a car with the company.
Additional comments:

o After having executed this operation, the EU CoPerson will have been
converted into an EU_ RentPerson. Therefore, it is not necessary to return

25

/Pick-Up Car N

= [CarNotReady]
@
£ . - Check RentalAgreement
5
e
= .
< T [NoReservation]
<
£ :
K} —
o <<participant>: [FarReady]
Clerk
'
'
:
'
- - [true] Choose Cancel at
S Cancel Reservation <<cance|>> No Cost
s Unable to Drive
g Calculate
2 Reimbursement
o [false] <<participant>
| M] Clerk
[resulf > oj<<cancel>
|
A '
2 thilure] H
ER (pilurel |\ WV . <<participant>. '
o o Pay Fine - H
52 Reimburse Money EU-Rent |
£ '
v ' H
v ' '
L
T "
' '
' '
' e
' Handover
' <<cancel>> h 4
'
' \
! [spccess] Y
> ' . <<slicceed>> \
< ' <<participant>.
; é User
<<participant| .
User
N J

Figure 3.10: Activity Diagram for Pick-Up Car

the EU_RentPerson for the following operations, as it will be guaranteed
that the EU CoPerson is an EU_RentPerson as well.

action AddCustomersDrivingLicense (EU_CoP: EU_CoPerson, dExpiry:
Date, dIssue: Date, Inumber: Natural): EU RentPerson

localPre: —

localPost:

EU_CoP.oclIsTypeOf(EU_RentPerson) and

DrivingLicense. alllnstances ()—>exists (1l | l.oclIsNew () and

l .number=lnumber and 1.issue=dIssue and l.expiration=dExpiry
and 1.EU_RentPerson=EU_CoP.oclAsType(EU_RentPerson)) and
result = EU CoP.oclAsType(EU _ RentPerson)

26

3.5.3 Pick-up Car
3.5.3.1 Check RentalAgreement Status

Checks whether the customer identified by a certain id has a reservation for a
car at the moment the action is called.
Additional comments:

e It returns a RentalAgreement because the Handover actions expect it. It
cannot work with Reservations because Handover is also called from Make
Walk-In Rental, where there is no Reservation for the RentalAgreement.

action CheckRentalAgreementStatus (cid: String): TupleType(status:
ReservationStatus , time: DateTime, ra: RentalAgreement)

localPre: —

localPost:

—— FEuzisting Reservation for Now —

let reserv: Reservation = Reservation.alllnstances()—> select(r |

r.renter.id=cid and r.beginning<=now() and
not(r.oclIsKindOf(CanceledReservation)) and not
r.oclIsKindOf(OpenRental)) in
if reserv—>isEmpty () then
result = Tuple{status = ReservationStatus:: NoReservation,
time=null , res=null}

else
if (reserv.assignedCar—>notEmpty()) then
if (reserv.assignedCar.ocllsTypeOf(Prepared)) then
result = Tuple{status =
ReservationStatus :: CarReady,
time=reserv .assignedCar.oclAsType(Prepared).actualTime,
res=reserv.oclAsType(RentalAgreement)}
else
result = Tuple{status =
ReservationStatus :: CarNotReady ,
time=reserv .assignedCar .expectedPreparedTime ,
res=reserv .oclAsType(RentalAgreement)}
endif
else
result = Tuple{status =
ReservationStatus :: CarNotReady, time=null,
res=oclAsType(RentalAgreement)}
endif
endif

3.5.3.2 Choose Cancel at No Cost

As the car is not ready, the customer is given the opportunity to cancel the
reservation at no cost. In case the customer chooses to cancel it, the action
cancels the reservation stating that the company (i.e. EU-Rent) is liable for the
cancellation.

Additional comments:

e The RentalAgreement is also of the Reservation subtype, as we have chosen
an existing Reservation in the previous operation.

27

action ChooseCancelAtNoCost (ra: RentalAgreement, cancel:
Boolean): Boolean

localPre: —

localPost:
if (cancel) then
ra.ocllsTypeOf(CanceledCompanyLiable) and
ra.oclAsType(CanceledCompanyLiable).cancellationDate =
now() and result = true
else
result = false
endif

3.5.3.3 Calculate Reimbursement

The action calculates the reimbursement the company has to give to the cus-
tomer in case the car was not ready at the scheduled pick-up time.
Additional comments:

e Car must be ready in order to calculate the appropriate refund.

action CalculateReimbursement (ra: RentalAgreement): Money

localPre carReady: ra.assignedCar—notEmpty() and
ra.assignedCar.ocllsTypeOf(Prepared)

localPost:
let hourlyPaid: Money=
ra.bestDurationPrices—>select (b|b.rentalDuration.minimumDuration=1
and b.rentalDuration.timeUnit=hour).price
let hours: Integer= (ra.assignedCar.oclAsType(Prepared).actualTime
— self.reservation.beginning.Time()).floor () in
result=hoursxhourlyPaid

3.5.3.4 Reimburse Money

EU-Rent reimburses money to the customer for not having the car ready.

Deals with material resources.

3.5.3.5 Handover
Check section [3.5.4 on page

3.5.3.6 Cancel Reservation Unable to Drive

Cancels the reservation because the customer is not fit to drive the car, e.g. he
may be under the influece of illegal drugs or alcohol.

action cancelReservationUnableToDrive(ra: RentalAgreement): Natural
localPre: —

localPost:

28

ra.ocllsTypeOf(CanceledCustomerLiable) and

ra.oclAsType(CanceledCustomerLiable).cancellationDate = now()

and

ra.oclAsType(CanceledCustomerLiable).motivation=CancellingMotivation :: unable to drive
and

if (ra.ocllsTypeOf(GuaranteedCancel)) then
result=ra.oclAsType(GuaranteedCancel). fine
else
result=0
endif

3.5.3.7 Pay Fine

The user has to pay a fine for not being in an appropriate condition to drive
the car.

Deals with material resources.

3.5.4 Handover
3.5.4.1 Verify State of Customer

Checks that the customer is in a right state (e.g physically capable, not under
the influence of illegal drugs or drunk, etc.) to drive the car.

Deals with material resources.

3.5.4.2 Verify State of Driver

Checks that the driver is in a right state (e.g physically capable, not under the
influence of illegal drugs or drunk, etc.) to drive the car.

Deals with material resources.

3.5.4.3 Check Requirements Fulfilment
Check section [3.5.5] on page

3.5.4.4 Sign Additional Driver’s Authorization

The additional driver has to sign an authorization in order to be allowed to
drive the car.

Deals with material resources.

3.5.4.5 Add Driver to Rental

Given an FU_CoPerson and a RentalAgreement, the action adds the driver to
the given rental.
Additional comments:

e The previous operation makes sure that the EU_ CoPerson is also a EU_ RentPerson.

29

/Handover

<<material>>
User
—

[unable to drive]

@<

[else]

Verify State of

Customer lelse]

new driver]

Verify State of Driver

EU_RentPerson

Check Requirements

Fulfillment th <<suc¢eed>:

[success],

<<material>>
Contract

Sign Rental
Agreement

. - . <<participant>:
Sign Addmo.nal.Drlver s User Femmmee--
Authorization

RentalAgreement

<<participant>> [\ ------------- Confirm Pick-Up
Add Driver to Rental |__________ | Clerk

<<material>>
Car

Hand Car Over

Figure 3.11: Activity Diagram for Handover

30

action addDriverToRental (p: EU_ CoPerson, ra: RentalAgreement)

localPre:
— We need to check these conditions here as we do not want the
whole activity diagram to abort exzecution if they are not met

ra.beginning<=now() and ra.assignedCar.ocllsTypeOf(Prepared)

localPost :
ra.driver—includes (p.oclAsType(EU _ RentPerson))

3.5.4.6 Sign Rental Agreement

The customer signs the rental agreement in order to accept the rental conditions
and be able to rent the car.

Deals with material resources

3.5.4.7 Confirm Pick-Up

Confirms that the car has been picked up and the rental is open.

action confirmPickUp (ra: RentalAgreement)
localPre: —
localPost:

ra.ocllIsTypeOf(OpenRental) and
ra.oclAsType(OpenRental) .actualPickUpTime=now ()

3.5.4.8 Hand Car Over

The car is given to the customer.

Deals with material resources

3.5.5 Check Requirements Fulfilment

3.5.5.1 Check Existing Person

Has the same OCL code as action Check Existing Customer in section [3.5.2.7]
page [23]

3.5.5.2 Insert New EU-Corporation Driver

Inserts a new EU-Corporation customer using his/her personal data.
Additional comments:

e The postcondition checks whether the person is over 25 years of age, a
condition which is guaranteed by the integrity constraints. However, in
this particular case, we do not want to cancel the whole process if the
person does not fulfill the requirements, as it is simply an additional driver
and not the customer.

31

Check Requirements Fulfillment

Check Existing
<<participant>: Person
c Clerk
S
2 AN
% N [EURentCustomer] NotRedgistered
K Check Driver [NotRegistered]
S| [true] Blacklisted
w <<fail>> EUCorpCustomer]
[false] Get Driving
Tcceed License
H [else]
L
|
<<participant>p\---------Ng---ooooon Insert New
Clerk EU-Corporation Driver
c
O]
4
e
8 [null]
| <<fail>>
=
[}
[null]
<<fail>>

Figure 3.12: Activity Diagram for Check Requirements Fulfilment

action insertNewEU—CorporationDriver (cid: String, cname: String,
cbirthday: Date, cAddress: String, cTelephone: Integer):
EU_CoPerson

localPre: —
localPost:

if ((today()—cbirthday)<year(25)) then
result=null

else
EU_ CoPerson. alllnstances ()—>exists (p | p.oclIsNew () and
p.id=cid and p.name=cname and p.birthday=cbirthday and
p.address=cAddress and p.telephone=cTelephone) and
result=p
endif

3.5.5.3 Get Driving License

Obtains the driver’s license information and creates a EU RentPerson.
Additional comments:

e The postcondition checks whether the driving license is valid, a condition
which is guaranteed by the integrity constraints. However, in this partic-
ular case, we do not want to cancel the whole process if the license is not
valid, as it is simply the driving license of an additional driver and not the
customer.

32

action getDrivingLicense (p: EU_ CoPerson, dExpiry: Date, dIssue:
Date, Ilnumber: Integer)

localPre: —

localPost:
if ((dExpiry < dIssue) or (dExpiry < today()) or ((today() —
dIssue) > year(1l))) then
result=null
else
p.ocllsTypeOf(EU_RentPerson) and
DrivingLicence. alllnstances ()—>exists (1 | 1.oclIsNew () and
l .number=Inumber and 1.issue=dIssue and
l.expiry=dExpiry and r.drivingLicense=1) and
result=r

3.5.5.4 Check Driver Blacklisted

Checks whether the EU RentPerson has been blacklisted.
Additional comments:

e We need to check whether the additional driver has been blacklisted. If
he has, the operation fails but it does not imply the failure of the whole
subprocess, just the insertion of the new driver (as it is shown in the
activity diagram).

action checkDriverBlacklisted (EU CoP: EU CoPerson): Boolean
localPre: —

localPost:
result=EU_ CoP.oclAsType(EU_ RentPerson).ocllsTypeOf(Blacklisted)

3.5.6 Make Walk-In Rental
3.5.6.1 Obtain Customer
See section [3.5.2] on page

3.5.6.2 Obtain Rental Data

The action obtains the data for the rental (such as the beginning and end dates,
the countries the customer wants to travel to with the car, the preferred car
group or car model, etc.) and creates the Rental Agreement.

Additional comments:

e The operation creates the RentalAgreement. There is no need to create a
Reservation because the Customer will take the car with him immediately.

e As we have previously called the action Obtain Customer, we can guaran-
tee that the EU_ CoPerson is already a FU_RentPerson.

e We need a way to identify the branch from which the system is being run.
So far, we have a function, currentBranch(), that returns the Branch from
which the Reservation is being made.

33

/Make Walk-In Rental N

EU_CoPerson

H Obtain Y------- <<participant>
Customer Clerk
Obtain Rental Data

Handover
th

RentalAgreemen

' '
1

'

'
<<participant> .
Clerk !
<<participant>
User

Any

Figure 3.13: Activity Diagram for Make Walk-In Rental

e We assign the car directly to the RentalAgreement. To do so, we first make
sure that only currently available CarModels and CarGroups are selected.
If the user chooses a CarModel, then we assign the car with least mileage
belonging to that CarModel. If the user selects a CarGroup (or if he has
not selected any), then we assign the car with the least mileage from that
group (or with the least mileage if he has not specified a group).

e The description of the case study states that, when assigning cars, the
absolute mileage should be considered instead of the car’s mileage since
its last service. However, in the original operation’s specification, the
mileage since the last service is used. We have considered that this is a
mistake, and therefore we have used the car’s absolute mileage.

e The specification in the original technical report does not calculate nor
show the cost of the rental to the customer, as he/she will not be able to
select any special offers. Apparently, then, there is no need to calculate
the cost of the rental.

action obtainRentalData(endDate: Date, pickUpBranch: String,
dropOffBranch: String, countries: Set(String), carG: String,
carM: String, p: EU CoPerson): RentalAgreement

localPre availableCarModel: carM<>’’ implies
currentBranch () .carsAvailableNow .carModel .name—>includes (carM)

localPre availableCarGroup: carG<>’’ implies
currentBranch () .groupsAvailableNow .name—>includes (carG)
localPre availableCars: (carM = ’’ and carG = ’’) implies

currentBranch () .carsAvailableNow—>notEmpty ()

34

localPost:

let ¢:EU_RentPerson=p.oclAsType(EU_RentPerson) in

— Create Rental Agreement —

RentalAgreement. alllnstances () —> exists(ra.ocllIsNew () and
ra.driver=c and c.isTypeOf(Customer) and
ra.renter=c.oclAsType(Customer) and ra.beginning=now () and
ra.initEnding=endDate and ra.pickUpBranch=currentBranch () and
ra.dropOffBranch=Branch. alllnstances ()—>select (dob |
dob.name=dropOffBranch) and

— We assign the car model with the least mileage —

(if (carM <> ’’) then

ra.car = currentBranch().carsAvailableNow —> select(c |
c.carModel .name=carM)—>sortedBy (currentMileage) —>
first ()
else
(if (carG = ’’) then
ra.car = currentBranch().carsAvailableNow —>
sortedBy (currentMileage) —> first ()
else
ra.car = currentBranch().carsAvailableNow —>
select (¢ | c¢.carGroup.name=carG) —>
sortedBy (currentMileage) —> first ()
endif)
endif)
and

— We add the countries to the list, including the branches’

countries —
countries—>forAll (co2 |
ra.country—>select (count|count.name=co2)—>notEmpty()) and
ra.country—>includes (currentBranch () .country) and
ra.country—>includes (Branch. alllnstances ()—>select (b |
b.name=dropOffBranch).country) and
— We return the Rental Agreement —
result = ra)

3.5.6.3 Handover
Check section on page

3.5.7 Extend Rental Agreement
3.5.7.1 Call Branch

The customer calls an EU-Rent branch to ask for a rental extension.

Deals with material resources.

3.5.7.2 Obtain ID, Data for Extension and Verify

This action extends a Rental Agreement as long as the customer has an open
rental that has not been closed, the new end date is later that the previous end
date and the car is not in need of maintenance.

Additional comments:

e It does not check for overlapping rentals as this is guaranteed by the
integrity constraints.

35

/Extend Rental Agreement

<<external>>
Call Branch

<<participant>
""""" User

<<participant> Obtain ID, Data for)

k<material>>)
Branch

Clerk Extension and Verify

RentalAgreement

Figure 3.14: Activity Diagram for Extend Rental Agreement

e Extension must be applied to the currently OpenRental.

e It is necessary to check that Rental is not ClosedRental because Close-
dRental is a subclass of OpenRental.

e New end date must be later than agreedEnding.

action obtainIDDataExtensionVerify (cid: String, newEndDate:
DateTime) : Boolean

localPre customerHasOpenRental:
Customer. alllnstances ()—>
select (c|c.id=cid).rentalAgreement —> select (ra |
ra.ocllsTypeOf(OpenRental) and not
ra.ocllsTypeOf(ClosedRental))—>notEmpty ()

localPre laterReturnDate:
let rental: OpenRental = (Customer. alllnstances ()—>
select (¢|c.id=cid).rentalAgreement —> select (ra |
ra.ocllIsTypeOf(OpenRental) and not
ra.ocllsTypeOf(ClosedRental))).oclAsType(OpenRental) in
rental .agreedEnding < newEndDate

localPost:

let currentRental: OpenRental=

Customer. alllnstances ()—> select(c|c.id=cid).rentalAgreement —>
select (ra | ra.ocllIsTypeOf(OpenRental) and not
ra.ocllsTypeOf(ClosedRental)).oclAsType(OpenRental)

in

if (currentRental.car.ocllIsTypeOf(NeedsMaintenance)) then

result=false

else
currentRental.ocllsTypeOf(ExtendedRental) and
currentRental.oclAsType(ExtendedRental).lastNewEnding
= newEndDate and
currentRental.oclAsType(ExtendedRental).extension.extensionDone
= now() and result=true
endif

36

/Cancel Reservation by Customer Demand

s . Obtain Data and Cancel
3 i
2 '
3 1
@ 1
& '
' >\
'
'
'
'
j
'
A <<participant> [reisult>0] [etee]
< .| [clerk
T O -
25 .
S =
5 Charge Fin
v
h J

Figure 3.15: Activity Diagram for Cancel Reservation by Customer Demand

3.5.8 Cancel Reservation by Customer Demand
3.5.8.1 Obtain Data and Cancel

This action obtains the startDate of a rental and a user’s id and cancels the
corresponding reservation. It returns the money that the customer has to be
charged for the cancellation (may be 0).

Additional comments:

e The description of the use case states that a car should be freed if it
had been previously assigned to a no-show reservation. However, in the
original operation’s specification this is not taken care of. It is not taken
care of here either.

e A fine should be charged if reservation is cancelled on pick-up day. This
action returns money that has to be charged.

action obtainDataAndCancel (cid: String, startDate: DateTime):
Money

localPre: —

localPost:

let ra:RentalAgreement = Customer. alllnstances ()—>
select (c|c.id=cid and
c.beginning=startDate).rentalAgreement—>select (r
r.ocllIsTypeOf(Reservation) and not
r.ocllIsKindOf(CanceledReservation) and not
r.oclIsKindOf(OpenRental)) in

ra.ocllsTypeOf(CanceledReservation) and
ra.ocllIsTypeOf(CanceledCustomerLiable) and
ra.oclAsType(CanceledCustomerLiable).motivation=CancelingMotivation :: customer canceled
and
ra.oclAsType(CanceledCustomerLiable).cancellationDate=now() and

if (ra.ocllsTypeOf(GuaranteedCancel)) then

result=ra.oclAsType(GuaranteedCancel). fine

37

/Cancel Reservation N
c <<participant>
S H Cancel Reservation Company | - [clerk
g
m ag
D
i
e
- J

Figure 3.16: Activity Diagram for Cancel Reservation

else
result=0
endif

3.5.8.2 Charge Fine

The customer is charged a fine for the cancellation of the reservation.

Deals with material resources.

3.5.9 Cancel Reservation
3.5.9.1 Cancel Reservation Company

This action cancels a user’s reservation at the request of EU-Rent. However,
the customer may also have to pay a fine if the company is forced to cancel it
due to a customer’s fault (e.g. becoming blackslisted).

Additional comments:

e The original specification for this operation did not charge the user for
cancelling the reservation. However, we consider that if the company is
forced to cancel a reservation because of the user’s fault, the user should be
charged as if it had been a no-show reservation. The original description,
in fact, states that this is so.

e We have included the charge operation in this action, instead of having a
separate action for it, because this is done automatically and there is no
interaction with the user.

e charge() - charges the cancellation cost to the user.

action CancelReservationCompany (res: Reservation, reason:
CancellingMotivation)

localPre: —

localPost:

38

e

Return Car

Car

<<participant> _ !
Clerk Check Car <<participant>.
Mechanic

[damages] | [else]

H Close Rental

<<participant>y\o - - - - - . Pay
User

Money

kk<material>>] RentalAgreement|] <<material>>

%ecord Mileage and Maintenance)

<<pa"”'°ipam> _______ Record Damages, Mileage and
Mechanic Maintenance

Car

Figure 3.17: Activity Diagram for Return Car

res.ocllsTypeOf(CanceledCustomerLiable) and
res.oclAsType(CanceledCustomerLiable). motivation=reason and
res.oclAsType(CanceledCustomerLiable).cancellationDate=now ()
if (res.ocllsTypeOf(GuaranteedCanceled)) then
charge(res.oclAsType(GuaranteedCanceled) . fine)
else
true
endif

3.5.10 Return Car
3.5.10.1 Close Rental

This action closes the corresponding rental after a customer returns the car. It
calculates the final price of the rental and, if the customer has returned the car
later than expected, a bad experience is recorded.

Additional comments:

e Checks if the user fulfils any blacklisting criterion. If ClosedRental (closedR)
is a LateReturn, then we add a BadFEzperience of this type to the Close-
dRental, we calculate the degree of the BadEzperience and the Customer
loses his membership to the Loyal Incentive Scheme.

e As the car has been returned, we must indicate the new type of the rental,
ClosedRental.

e If the car is returned to a branch other than the pickUpBranch, then car
ownership is transfered to the drop OffBranch.

39

e Obtains the data to charge the user for the rental (payment type and
credit card number).

e To calculate the final price, LateReturn and a drop-off charge are consid-
ered.

e It is not clear whether we should record a bad experience and membership
loss for the customer and the additional drivers. We have considered that
it only affects the renter (i.e. the customer).

e currentBranch() - returns the branch from which the system is being ex-
ecuted.

e degree() - calculates the degree of the customer’s fault and returns a Level.

o dropOffPenalty() - calculates cost of dropping off the car at a different
branch than expected.

action CloseRental (pid: String, paymentT: PayType, cc: Integer):
TupleType(retCar: Car, money: Money)

localPre: —

localPost:
OpenRental. allInstances ()—>select(r | r.renter.id=pid and not
r@pre.ocllsTypeOf(ClosedRental)).ocllsTypeOf(ClosedRental)
let closedR: closedRental = OpenRental.alllnstances ()—>select(r |
r.renter.id=pid and not
r@Qpre.ocllsTypeOf(ClosedRental)).oclAsType(ClosedRental) in
let dropPenalty: Boolean = closedR.dropOffBranch <>
currentBranch () in
closedR.actualReturn=now() and
closedR . actualReturnBranch=currentBranch () and
(closedR .actualReturnBranch <> closedR.pickUpBranch implies
closedR . actualReturnBranch.car—>includes (closedR.car) and
closedR . pickUpBranch.car—>excludes (closedR.car)) and
if (closedR.oclIsKindOf(LateReturn)) then
FaultSeriousness.alllnstances ()—>exists (fs | fs.oclIsNew ()
and fs.badExperience.type=BadExpType::lateReturn and
fs.closedRental=closedR and
fs.degree=degree(closedR.oclAsType(LateReturn).extralnterval))
and
not closedR.customer.oclIsTypeOf(LoyaltyMember)
if dropPenalty then
result = Tuple{retCar=closedR .car,
money=closedR .rentalPriceWithTax +
closedR .oclAsType(LateReturn) .extraCostWithTax +
dropOffPenalty ()}
else
result=Tuple{retCar=closedR .car,
money=closedR .rentalPriceWithTax +
closedR .oclAsType(LateReturn) .extraCostWithTax}
endif
else
if dropPenalty then
result=Tuple{retCar=closedR .car,
money=closedR .rentalPriceWithTax+dropOffPenalty ()}
else
result=Tuple{retCar=closedR .car,
money=closedR .rentalPriceWithTax }

40

endif
endif
and
closedR . paymentType=paymentT and closedR .creditCarNumberDamages=cc

3.5.10.2 Pay

The customer pays for the rental.

Deals with material resources.

3.5.10.3 Check Car

The mechanic checks the car for any damages.

Deals with material resources

3.5.10.4 Record Damages, Mileage and Maintenance

This action records the new mileage of a car and, as the car has been damaged,
it records a bad experience for the customer and schedules the car reparations.
It also checks if the car needs maintenance.

Additional comments:

e It is not clear if all drivers lose Loyalty Incentive Membership or only the
renter. However, drivers don’t have to be customers, and the ones that
can belong to the Loyalty Incentive are customers. Therefore, we have
considered that the renter is the only one who loses the Loyalty Incentive
Membership.

e If the customer is blacklisted, when this operation ends the integrity con-
straints are not satisfied, as the customer’s reservations are not cancelled.
This is, apparently, a contradiction with the assumption that, if at the
end of an activity diagram the system’s constraints are not fulfilled, then
the whole activity diagram is reverted. However, in the state machine di-
agram, it is shown how a customer being blacklisted implies a cancellation
of the reservation.

e charge() - Automatically charges customer’s credit card. We have not
included this as a separate action because we have considered that it is
done automatically without the user’s nor the clerk’s involvement.

o blacklistingCriteriaAchieved() - Checks if the user fulfills the blacklisting
criteria.

o getMaintenanceDate() - Obtains a date for which car maintenance can be
performed.

action RecordDamagesMileageMaintenance (retCar: Car, deg: Level,
dcost: Money, mileage: Double)

localPre CorrectMileage:
if (retCar.ocllsTypeOf(OwnCar)) then

41

retCar.oclAsType(OwnCar) . currentMileage < mileage
else

true
endif

localPost:

— Obtain the last rental associated with the car —

let closedR: closedRental = retCar.rentalAgreement—>select(ra |
ra.ocllsKindOf(ClosedRental))—>forAll (ra |
ra.oclAsType(ClosedRental))—>sortedBy (actualReturn)—>last ()

in

— Record a bad experience—

FaultSeriousness.alllnstances ()—>exists (fs | fs.oclIsNew () and
fs.closedRental=closedR and
fs.badExperience.type=BadExpType::carDamage and fs.degree=deg)
and

— Record Car Damage —

DamageCost . allInstances ()—>exists (dc.oclIsNew () and
dc.closedRental=closedR and dc.price=dcost and
dc.carDamage . type=BadExpType:: carDamage) and

—— Charge Cost of Damages —

charge (closedR .creditCardNumberDamages, dcost) and

— Schedule car reparations —

closedR.car.ocllIsTypeOf(RepairsScheduled) and
closedR .car.oclAsType(RepairsScheduled).beginningDate=today ()
and

— Customer loses Loyalty Incentive membership —

not closedR .renter.oclIsTypeOf(LoyaltyMember) and

— Check if customer should be blacklisted. If he had been
blacklisted before he would not have been able to rent the car
in the first place —

if blacklistingCriteriaAchieved (closedR.renter) then

closedR .renter.oclAsType(EU RentPerson).ocllsTypeOf(Blacklisted)
and
closedR .renter.oclAsType(Blacklisted).blacklistedDate=today ()
else
true

endif and

— Update mileage if car belongs to EU Rent and check if it needs
maintenance

if retCar.ocllsTypeOf(OwnCar) then

retCar.oclAsType(OwnCar) . currentMileage=mileage and
if (retCar.oclIsKindOf(NeedsMaintenance)) then
retCar.ocllsTypeOf(MaintenanceScheduled) and
retCar.oclAsType(MaintenanceScheduled) . beginningDate
= getMaintenanceDate ()

else
true
endif
else
true
endif

3.5.10.5 Record Mileage, Maintenance

The actions updates the car mileage and checks if it needs maintenance or has
to be sold.

action RecordMileageMaintenance (retCar: Car, mileage: Double)

42

localPre CorrectMileage:
if (retCar.oclIsTypeOf(OwnCar)) then
retCar.oclAsType(OwnCar) . currentMileage < mileage

else
true
endif
localPost:
— Update mileage tf car belongs to EU Rent and check if it needs
maintenance

if retCar.ocllIsTypeOf(OwnCar) then
retCar.ocAsType (OwnCar) . currentMileage=mileage and
if (retCar.ocllsKindOf(NeedsMaintenance)) then
retCar.ocllIsTypeOf(MaintenanceScheduled) and
retCar.oclAsType(MaintenanceScheduled).beginningDate
= getMaintenanceDate ()

else
— Car doesn’t need maintenance and therefore we
check if it mneeds to be sold. We don’t check
if it has been assigned because it has just
been returned —
if (retCar.oclIsKindOf(NeedToBeSoldCar)) then
retCar.oclIsTypeOf(ToBeSoldCar)
else
true
endif
endif
else
true
endif

43

Bibliography

1]

2]

[3]

[4]

[5]

[6]

[7]

18]
[9]

[10]

[11]

K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu.
Artifact-centered operational modeling: lessons from customer engage-
ments. IBM Syst. J., 46(4):703-721, October 2007.

K. Bhattacharya, R. Guthman, K. Lyman, F. F. Heath III, S. Kumaran,
P. Nandi, F. Wu, P. Athma, C. Freiberg, L. Johannsen, and A. Staudt.
A model-driven approach to industrializing discovery processes in pharma-
ceutical research. IBM Syst. J., 44(1):145-162, January 2005.

Kamal Bhattacharya, Richard Hull, and Jianwen Su. A Data-Centric De-
sign Methodology for Business Processes. In Handbook of Research on
Business Process Management, pages 1-28. 2009.

Elio Damaggio, Alin Deutsch, Richard Hull, and Victor Vianu. Automatic
verification of data-centric business processes. In Stefanie Rinderle-Ma,
Farouk Toumani, and Karsten Wolf, editors, BPM 2011, volume 6896,
pages 3—16. Springer, 2011.

Leonor Frias, Anna Queralt, and Antoni Olivé. EU-Rent Car Rentals
Specification. Technical Report Technical report LSI-03-59-R, Universitat
Politécnica de Catalunya, 2003.

Richard Hull. Artifact-centric business process models: Brief survey of
research results and challenges. In Robert Meersman and Zahir Tari, edi-
tors, OTM 2008, volume 5332 of LNCS, pages 1152-1163. Springer Berlin
/ Heidelberg, 2008.

A Nigam and N S Caswell. Business artifacts: an approach to operational
specification. IBM Syst. J., 42(3):428-445, 2003.

Antoni Olivé. Conceptual Modeling of Information Systems. Springer, 2007.

OMG. Unified Modeling Language superstructure 2.4.1, 2011. Available
at: http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF|

OMG. OMG Object Constraint Language version 2.3.1, 2012. Available
at: http://www.omg.org/spec/0CL/2.3.1/PDF/\

Anna Queralt and Ernest Teniente. Specifying the semantics of opera-
tion contracts in conceptual modeling. In Journal on Data Semantics VII,
volume 4244 of LNCS, pages 33-56. Springer Berlin / Heidelberg, 2006.

44

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/OCL/2.3.1/PDF/

Appendices

45

Appendix A

Structural Schema in OCL

The following appendix includes the definition of the integrity constraints and
the derivation rules in OCL corresponding to class diagrams in Chapter 3.

A.1 Class Diagram

Following the method described in [§], in this section we present the class di-
agram with the corresponding operations that define the derivation rules for
attributes and their relationships, together with the integrity constraints, also
represented as operations.

A.2 Integrity Constraints

The following section defines, for each class in Chapter 3, its integrity constraints
and derivation rules.

A.2.1 Branch
Id id key:

context Branch:: namelsKey() : Boolean
body: result=Branch.alllnstances ()—> isUnique (name)

Derived relationship carsAvailableNow

context Branch:: carsAvailableNow (): Set(OwnCar)
body: result = self.car—>select(c | c.oclIsKindOf(OwnCar) and
c.oclAsType (OwnCar) . available).oclAsType (OwnCar)

Derived relationship groupsAvailableNow

context Branch:: carsAvailableNow (): Set(CarGroup)
body: result = self.carsAvailableNow.carModel.carGroup—>asSet ()

46

"9DIAISG [BIUDY Ie)) JUSY-()] 10§ weiderp ssep urejy [y oinSiq

()Aeyspiequinu <<Q|>>|
()esuaoIplleA <<)|>>|

ajeq : uonesidxa
ajeq : onssi
|einieN : Jequinu

asuao7buialg

oA : @aibep

ssausnolegineq

sjiney

Wpauinjey

s

uinjeyen)og
I

()xe_Lynmaedlid|eiual

Aauop : eoud

[1sopebeweq

L0

KBUOW : XeLYlMadLId[eIual /

|einjeN : sabeweqiequnNpIEDIPaID
adA | Aed : adAuswAed

nsopebeweq
’

abeweqied; |

[B1UBHP3500

awi]aleq : SUOQUOISUBIXD

UOISUBIXg
T

()suoisualxgenyy <<Q|>>

()Buipugpoaaibe

|ejuaypapusIXy

+0
uoisyeixg
Lo

sey sypedseH/
AL
. .
()delierplONO@S|BIUB <<]|>>| 19)U8)
Osunes Jawoisny
uosiadiuey N3 *
19A1Ip
saAlp >
7 sys|ejual

uawoeaibyeiuay Buiu

uibaq

3

Buipugpea/be /

()dnoigujsjepow <<Q|>>|
(Juoneasssayewluo <<Q|>>|

()Aeyisjpweu <<g>>

awi|aleq : 81BQUONEAISSAI

UoIjeAIasay

ues|00g : dWI| UOIeAIaSal
ejeq : ayeqgbuiuuibag
buiys : uonduosap
Buiys : 1080

Bus : sweu

1un0os1q

sdnoina|gepiddy

suoneInqeIuays|qe:

()Amuenb

leinieN : Ayjuenb /

suopeingelueyaiqeolddy/

N

()Buipuz1081100 <<Q|>>|

oleq : ayegbuipus

JUN09SIgPaso|)

dnoigpaisenbai

()18piQle10) <<9|>>|
()Aeys|oweu <<Q|>>|

Buys : sweu

dnoigied

boneingsjqeolddy

()seo11diuaiayod <<Q|>>

()19piQle10) <<Q|>>

()Aeysjoweu <<Q|>>

|einyeN : u
|eanieN : uoneinqunwiuiw | |0

pouiad : nunawi
eIngquinwixew

Buuys : sweu

uoneingejuey

Buiuuiba

swileleq

()elqisuodsays|youeigdnold <<g|iu>>

aw

()Buipu33001100 <<Q|>>|

Aauop : soud

ajeq : aregbuipus

90114u0l1eINQdnoinied

8o1iduoneingpuy

|opojypaisenbal
(3]

()Aeysjoweu <<Q|>>|

: awi| pasedaigperoadxe

1eppaubissy

7

awi] : swienjoe

(Bulyg)eouanbag : s:

9j0RIBYD
buiys : aweu

vios!

reQppubissy

()uoneingiadiunoosigs|qeoljdde

()SOLIUNODYOURIGSISISIA <<]|>>

Buipugpeaibe

swileleq

Buipuziur |

JulpugmaNise|

: awildnfoidienioe

|eyuaguedQ

(Juoneoyipopise|
()dnoioual

youeigyodosp

()Buipugpeaibe
()se@ouduoneingisaq
()ooudiseq
()eoudoiseq

()leaseu1o0100 <<Q|>>|

2]eQ : UONEBONIPONISE] /

Jodoup L

youesgdnyord

Keuop : @o11diseq /
Aauop : @oudaseq /

Juswoee.by|ejuey

N HSIA
suoneinqiseg/
soouquoneinaiseq !
Aauop : eond
9o11guolieingdnolnie)
| dnoiojual

()moNa|qe|reaysdnoib
()mONB|ge|IeAYSIED
()Aeysjoweu <<g|>>

dnpord L

buins : sweu

's

Saysnolegyne

0

()AeysjedAhy <<Q|>>!
adA 1 dxgpeg : edA)
sousliadx3peg

[EIEy]

: @aibop

ssausnolesineq

o] pauinjay

0 _®lgelleAysl L

youeiguinjay enjoe

47

youeig

1ypejesost v

5

()Aoysjoweu <<)|>>|

a|gno(Q : xe]Jeo
(Buyg)ies : shaysuoissiwe
(Bus)ias : sbaysuonipuogesiueyosw

Buig : sweu

Anjunog

[9PONIED

uis >

paiedald
[MOND®|gelieAysdnoif
()iepiQreioy <<Q|>>| |
()dnoigueo dnoipieg ()Aays| 1 <<)|>>| Lo
(uewubissysuQAjuo <<Q|>> dnoiosi / 3 Bug : eweu aslom
()AeysjioquinNuonesnsibas <<Q|>> dnoi5ien
Bulns : sequinNuonyessibal 1 oned 10
IR) J9pi0hiobojeo

Angejieaydnoiny

MONBIq

leAysied

ueajoog : 9|q

JeQUMQO

JoJa|qisuodsaysly

()uswubissyauQAjuo <<Q|>>|
()AeyspiequinNuonessibal <<)|>>|

()dnoinreo

Bulns : sequinNuonessibal

i)

()psubisse
()eiqeene

uesjoog : paubisse /
leAe /
ajeq : ayequonisinboe

aleq : ale@aouBUBIUBNISE|
a|gnoq : aoIA1agIseWoIJebes|IW
ajgnoq : abesjiNIuaLIND

EU_CoPerson
id : String
name : String
address String
birthdate : Date
telephone : Natural
<<IC>> is250rOlder()
<<IC>> idlsKey()

EU_RentPerson

faults()
Customer Blacklisted
<<IC>> rentalsDoNotOverlap() blacklistedDate : Date
% <<IC>> noRentals()

LoyaltyMember
membershipDate : Date
/ availablePoints : Natural

availablePoints()
<<IC>> meetsLoyalPermanence()

Figure A.2: Class diagram of EU_CoPerson and its subclasses

A.2.2 EU_ CoPerson
Id is key:

context EU_ CoPerson:: idIsKey () : Boolean
body: result = EU_CoPerson. alllnstances ()—>isUnique (id)

Must be 25 or older:

context EU_CoPerson:: is250rOlder() : Boolean
body: result = today()—self.birthdate() >= year(25))

A.2.3 EU_ RentPerson

Derived relationship faults:

context EU_ RentPerson:: faults() : Boolean
body :
let faultsAsDriver: FaultSeriousness = self.rentalsAsDriver —
select (rA |
rA.oclIsTypeOf(ClosedRental)).oclAsType(ClosedRental).faultSeriousness
let faultsAsRenter: FaultSeriousness = Customer. alllnstances () —>

select (¢ | c.id = self.id).rentalAgreement —> select (rA |
rA.ocllsTypeOf(ClosedRental)).oclAsType(ClosedRental).faultSeriousness
in
result = faultsAsDriver—>asSet ()—> union(faultsAsRenter)—>asSet ()

48

Reservation
reservationDate : DateTime

<<IC>> onTimeReservation() CanceledReservation
<<IC>> modelsInGroup() <}

cancellationDate : DateTime

<<IC>> correctCancellation()

ReservationWithSpecialDiscount

bestPrice()

{d.c}

/ GuaranteedCanceled
/ fine : Money {frozen}

fine()
alllnstances()

Figure A.3: Class diagram of Reservation and its subclasses

A.2.4 RentalAgreement

The pick-up and drop-off branches’ countries must be included in the list of
countries of the RentalAgreement:

context RentalAgreement:: visitsBranchCountries() : Boolean
body: result = self.Countries—>includes(self.PickUpBranch.Country)
and self.Countries—includes(self.DropOffBranch.Country)

Correct interval for rental agreement:

context RentalAgreement:: correctInterval() : Boolean
body: result=self.beginning< self.initEnding and
self.actualReturn> self.beginning

Derived attribute basicPricdlt

context RentalAgreement:: basicPrice(): Money

body :

— We have to calculate the price considering the best applicable
prices, but without any discounts. —

— 1. FEach RentalAgreement is associated to wvarious
RentalDurations .

— 2. FEach RentalAgreement is linked to wvarious
CarGroupDurationPrices (through bestDurationPrices). This
contains the best price for each rental duration for the
CarGroup of the RentalAgreement. That is, for every
RentalDuration , there is exactly one CarGroupDurationPrice. —

— 8. This implies that, if we navigate the relationship
bestDurationPrices and select the CarGroupDurationPrice for a
particular RentalDuration, there will only be ONE
CarGroupDurationPrice.

— 2.3.4. We calculate the price of the rental by iterating
through the RentalDurations linked to the RentalAgreement and
selecting the corresponding price in bestDurationPrices. We

I This code has been changed from the original specification in [5].

49

GuaranteedReservation CanceledCustomerLiable CanceledCompanyLiable
PointsPaymentReservation creditCardNumber : Natural motivation : CancellingMotivation
<<IC>> _14DaysInAdvance() A

Car
registrationNumber : String

<<IC>> registrationNumberlsKey()
<<IC>> onlyOneAssignment()

carGroup()
RepairsScheduled
beginningDate : Date
OwnCar
currentMileage : Double < /NeedsMaintenance

MaintenanceScheduled
beginningDate : Date

mileageFromLastService : Double
lastMaintenanceDate : Date
acquisitionDate : Date

/ available : Boolean

/ assigned : Boolean

<<IC>> notOver10Percent() ﬂ

allinstances()

available() kK}——— /NeedToBeSoldCar
assigned() allinstances()
BeingTransferred ToBeSoldCar

<<IC>> notAssignedReservation()

Figure A.4: Class diagram of Car and its subclasses

then multiply this for the number of a particular
RentalDuration there is in a RentalAgreement. Finally, we add
this wvalue to the accumulated price and we examine the next
RentalDuration. —
result =
self.applicableRentalDuration—>iterate (elem;
tup:Tuple{currentPrice: Money=0, accPrice:
Money=0} |
currentPrice = self.bestDurationPrices —>
select (cGDP |
c¢GDP.rentalDuration=elem.rentalDuration).price
accPrice = accPrice +
currentPricexelem.quantity
}.accPrice

Derived attribute bestPricd? :

context RentalAgreement:: bestPrice(): Money
body:

— We have to calculate the price considering the discounts
available. However, we must exclude those discounts that are
only applicable at reservation time, as the function is in
RentalAgreement and may not be of the Reservation subtype. —
— 1. We select those discounts applicable to the particular
rentGroup and the last modification of the rental, excluding
those that must be selected at reservation time. We also check
if its applicable to the Customer. —
let
applicableDiscounts:Set(Discount)=self.rentGroup.discount—>select (dis
| dis.beginningDate<=self.initEnding and
(dis.ocllsTypeOf(ClosedDiscount) implies
dis .oclAsType(ClosedDiscount).endingDate>=self.lastModification)
and dis.reservationTime=false and applicable(dis,c)) in

2This code has been modified from the original specification in [5].

50

ClosedRental

paymentType : PayType

creditCardNumberDamages : Natural

/ rentalPriceWithTax : Money

rentalPriceWithTax()

rentalPriceWithTax is

{frozen}

]

return_tim

{d,c}

/LateReturn

/EarlyReturn

/PaidWithPointsRental

alllnstances()
bestPrice()

<<IC>> enoughlinAdvance()
<<inilC>> customerlsLoyaltyMember()

/ extralnterval : Duration
/ extraCostWithTax : Money

alllnstances()

allinstances()

extraCostWithTax()

extraCostWithTax is {frozen}lﬁ

Figure A.5: Class diagram of ClosedRental and its subclasses

<<enumeration>>

<<enumeration>>

<<enumeration>>

Duration

ReservationStatus CustomerType CancellingMotivation
CarReady EUCorpCustomer blacklisting
CarNotReady EURentCustomer no_show

NoReservation

NotRegistered

<<enumeration>>
Level

unable_to_drive
customer_canceled

Unit : Period
numberOfUnits : Natural

<<enumeration>>

veryhigh
high
medium
low
verylow

<<enumeration>>

— 2. We create a function to determine,
applicableDiscounts ,

— 3. We calculate the price

MaintenanceRequirements
mileageForService : Double = 10000
timeForService : Duration = (month, 3)

BadExpType PayType
lateReturn Points
carDamage SpecialDiscount
paymentProblem BestPrice
BasePrice

Figure A.6: Definition of types

of all

let bestDiscountPerDuration (rd:RentalDuration,

Money) Discount

applicableDiscounts —> select (d2 |
d2.rentalDuration=rd) —> exists(disOther:Discount |

apply (disOther ,
price)))—>any ()

3.1. Each RentalAgreement
RentalDurations .
— 3.2. FEach RentalAgreement

of the rental

1§

is

price:

Discount |

price).isBetter (apply (disAct,

associated to wvarious

linked to warious

<<enumeration>>
Period

hour
day

the best one for a particular duration —

applicableDiscounts—>select (d |
d.rentalDuration=rd)—> reject (disAct:

including the discounts

CarGroupDurationPrices (through bestDurationPrices).

This contains

every RentalDuration,
CarGroupDurationPrice. —

51

the best price for each rental
for the CarGroup of the RentalAgreement.
there

is ezactly one

That

5,

duration

for

— 3.8. This implies that, if we navigate the relationship
bestDurationPrices and select the
CarGroupDurationPrice for a particular RentalDuration,
there will only be ONE CarGroupDurationPrice. —

— 3.4. We calculate the price of the rental by iterating
through the RentalDurations linked to the
RentalAgreement and selecting the corresponding price
in bestDurationPrices. We then obtain the best
Discount for a particular RentalDuration and CarGroup,
apply this Discount to the price in
CarGroupDurationPrice and multiply this for the number
of a particular RentalDuration there is in a
RentalAgreement. Finally, we add this wvalue to the
accumulated price and we examine the next
RentalDuration. —

result =
self.applicableRentalDuration—>iterate (elem;
tup:Tuple{currentPrice: Money=0, accPrice:
Money=0} |
currentPrice = self.bestDurationPrices —>
select (cGDP |
cGDP.rentalDuration=elem.rentalDuration).price
currentPrice =
apply (bestDiscountPerDuration (elem.rentalDuration ,
currentPrice), currentPrice)
accPrice = accPrice +
currentPricexelem.quantity
).accPrice

Derived attribute lastModification:

context RentalAgreement:: lastModification (): DateTime
body :
if self.ocllsTypeOf(Reservation) then
result = self.reservationDate
else
result = self.beginning
endif

Derived relationship bestDurationPrices

context RentalAgreement:: bestDurationPrices():
Set(CarGroupDurationPrice)

body :

let applicableDuration: Set(CarGroupDurationPrice)=
self.rentGroup.carGroupDurationPrice —> select{cg:
CarGroupDurationPrice | cg.beginning<= self.ending and
(cg.ocllsTypeOf(EndDurationPrice) implies
cg.oclAsType(EndDurationPrice) .endingDate >=
self.lastModification)

let bestCurrentDuration: Set(CarGroupDurationPrice)=
applicableDuration—>reject (cgCur: CarGroupDurationPrice |
applicableDuration—> exists{cgOther:CarGroupDurationPrice |
cgOther.rentalDuration=cgCur.rentalDuration and
cgOther.carGroup= cgCur.carGroup and
cgOther. price<cgCur. price))

in

result = bestCurrentDuration —> sortedBy(rentalDuration.shorter)

Derived relationship rentalDuration]|

3This relationship and its correspoding associative class do not appear in the original
specification in [5]. We suppose that duration of a rental is measured either in days or hours.

52

context RentalAgreement:: rentalDuration(): Set(RentalDuration)
body:

let rentalDur:Duration = durationT (self.agreedEnding —
self.initEnding)
let rentalDays:Natural = rentalDur.numberOfUnits in

let possibleRentalDur:Set({RentalDuration) =
if (rentalDur.unit = Period::day) then
RentalDuration.allInstances ()—>select (rd |
rd . timeUnit=Period :: day)—>sorted By (maximumDuration)—>reverse ()

else
—— The rental will only be for a few hours —
RentalDuration. alllnstances ()—>select (rd |
rd . timeUnit=Period :: hour)—>sorted By (maximumDuration)—>reverse ()
endif
in
possibleRentalDur—>iterate (elem;
selRentalDur: OrderedSet (RentalDuration)—>isEmpty ()
|
if (rentalDays >= elem.maximumDuration)
then
selRentalDur=selRentalDur—>including (elem)
rentalDays=rentalDays%maximumDuration
else
true
endif
if (rentalDays >= elem.minimumDuration)
then
selRentalDur=selRentalDur—>including (elem)
rentalDays=rentalDays%minimumDuration
else
true
endif
result = selRentalDur

Derived relationship agreedEnding.

context RentalAgreement:: agreedEnding(): DateTime
body: result= initEnding

Derived relationship rentGroup:

context RentalAgreement:: rentGroup (): CarGroup
body :
if self.oclIsKindOf(Reservation) then
if self.car—isEmpty () or
self.car.carGroup<>self.carGroup.worse then
result=self.carGroup

else
result=self.carGroup.worse
endif
else
result=self.car.carGroup
endif

A.2.5 Reservation

Reservation date of a rental must be previous to its beginning date.

context Reservation:: onTimeReservation() : Boolean
body: result=self.reservationDate < self.beginning

53

Requested car model must be in requested car group.

context Reservation:: modellsIinGroup () : Boolean
body: result=self.requestedModel—>notEmpty () implies
self .requestedModel.carGroup=self.requestedGroup

A.2.6 ReservationWithSpecialDiscount
Derived attribute bestPrice:

e This code has been modified from the original specification in [3].

context ReservationWithSpecialDiscount :: bestPrice() : Money

body :

— We have to calculate the price considering the discounts
available at reservation time ——

— 1. We select those discounts applicable to the particular
rentGroup and last modification of the rental. We also check
if its applicable to the Customer. —

let
applicableDiscounts:Set(Discount)=self.rentGroup.discount—>select (dis
| dis.beginningDate<=self.initEnding and
(dis.ocllsTypeOf(ClosedDiscount) implies
dis.oclAsType(ClosedDiscount) .endingDate>=self .lastModification
and applicable(dis,c)) in

— 2. We create a function to determine, of all
applicableDiscounts , the best one for a particular duration —

let bestDiscountPerDuration (rd:RentalDuration, price:
Money) : Discount = applicableDiscounts—>select (d |
d.rentalDuration=rd)—> reject (disAct: Discount |
applicableDiscounts —> select (d2 |
d2.rentalDuration=rd) —> exists(disOther:Discount |
apply (disOther , price).isBetter(apply(disAct,
price)))—>any ()

— 8. We calculate the price of the rental including the discounts

— 38.1. FEach RentalAgreement is associated to wvarious
RentalDurations. —

— 3.2. Each RentalAgreement is linked to wvarious
CarGroupDurationPrices (through bestDurationPrices).
This contains the best price for each rental duration
for the CarGroup of the RentalAgreement. That is, for
every RentalDuration, there is exactly one
CarGroupDurationPrice. —

— 3.8. This implies that, if we navigate the relationship
bestDurationPrices and select the
CarGroupDurationPrice for a particular RentalDuration,
there will only be ONE CarGroupDurationPrice. —

— 3.4. We calculate the price of the rental by iterating
through the RentalDurations linked to the
RentalAgreement and selecting the corresponding price
in bestDurationPrices. We then obtain the best
Discount for a particular RentalDuration and CarGroup,
apply this Discount to the price in
CarGroupDurationPrice and multiply this for the number
of a particular RentalDuration there is in a
RentalAgreement. Finally, we add this value to the
accumulated price and we examine the next
RentalDuration. —

54

result =
self.applicableRentalDuration—>iterate (elem;
tup: Tuple{currentPrice: Money=0, accPrice:
Money=0} |
currentPrice = self.bestDurationPrices —>
select (¢cGDP |
c¢GDP.rentalDuration=elem.rentalDuration).price
currentPrice =
apply (bestDiscountPerDuration (elem.rentalDuration ,
currentPrice), currentPrice)
accPrice = accPrice +
currentPricexelem.quantity
}.accPrice

A.2.7 PointsPaymentReservation

PointsPaymentReservation must be made at least 14 days in advance of its
beginning date.

context PointsPaymentReservation:: 14DaysInAdvance() : Boolean
body: result=(self.beginning—self.reservationDate)>=day(14)

A.2.8 CanceledReservation

Cancellation date of a reservation must be after or on the same reservation date
and before the beginning date, on the same date or the day after. This has been
changed from the original report.

context CanceledReservation:: correctCancellation() : Boolean
body: result=(self.cancellationDate>=self.reservationDate and
self .cancellationDate <=(self.beginning+day(1)))

A.2.9 GuaranteedCanceled

Derived class:

context GuaranteedCanceled:: alllnstances():
Set(GuaranteedCanceled)

body: result=CanceledCustomerLiable. alllnstances ()—>
intersection (GuaranteedReservation. alllnstances ())

Derived attribute fine:

context GuaranteedCanceled:: fine () : Money
body:
if self.beginning=self.cancellationDate then
result = self.bestDurationPrices—>select (cGDP |
not (¢cGDP. oclIsTypeOf(EndDurationPrice)) and
cGDP.rentalDuration .timeUnit= Period ::day and
¢GDP.rentalDuration . minimumDuration=1)—>first () . price
else
result = 0
endif

55

A.2.10 ExtendedRental

Rental extension must be done after the beginning date of the rental agreement
and the new end date should be later than initial end date. Note that this
constraint has been rewritten, as the original code did not tally with the original
class diagram.

context ExtendedRental:: trueExtension() : Boolean
body: result= self.extension.extensionDone > self.beginning and
self.lastNewEnding > self.initialEnding

Derived attribute lastModification. Note that this constraint has been rewritten:

context ExtendedRental:: lastModification (): DateTime
body: result=self.extension.extensionDone

Derived attribute agreedEnding:

context ExtendedRental:: agreedEnding(): DateTime
body: result=self.lastNewEnding

A.2.11 ClosedRental
Derived attribute rentalPrice WithTax:

context ClosedRental:: rentalPriceWithTax (): Money
body: result= self.bestPrice x
self.actualReturnBranch.country.carTax

A.2.12 PaidWithPointsRental

The Reservation for the corresponding rental was made at least 14 days in
advance of the rental’s beginning date.

context PaidWithPointsRental:: enoughInAdvance() : Boolean

body: result= (self.ocllIsTypeOf(Reservation) and
(self.beginning.day ()—
self.oclAsType(Reservation).reservationDate .day ())>=day(14))

Customer must be member of Loyalty Incentive Scheme in order to pay with
points. It is a initial constraint as the customer must be a Loyalty Incentive
Member only at the time of paying; later on he/she may not be a member any
longer.

context PaidWithPointsRental:: customerIsLoyaltyMember() : Boolean
body: result = self.renter.ocllsTypeOf(LoyaltyMember)

Derived class:

context PaidWithPointsRental:: alllnstances():
Set(PaidWithPointsRental)

body: result= ClosedRental.alllnstances —>select (cR|cR.paymentType=
payType:: points)

Derived attribute bestPrice:

context PaidWithPointsRental:: bestPrice(): Money
body: result=basicPrice

56

A.2.13 LateReturn

Derived class:

context LateReturn:: alllnstances(): Set(LateReturn)
body: result= ClosedRental.alllnstances ()—>select (cR|
cR.actualReturn > cR.agreedEnding)

Derived attribute extralnterval

context LateReturn:: extralnterval(): Duration
body: result = self.actualReturn—self.agreedEnding

Derived attribute extraCost WithTax:

let timeUnit: Period—=
if self.extralnterval.unit=Period ::hour and
self.extralnterval .numberOfUnits <= 6 then
Period :: hour
else
Period ::day
endif
in
let durationPrice: Money= self.bestDurationPrices—>select (cGDP |
not (cGDP. oclIsTypeOf(EndDurationPrice)) and ¢GDP.timeUnit=
timeUnit and minimumDuration=1)—>first ().price
let extraPrice: Money=
durationPricex(extralnterval/durationT (timeUnit ,1))+
durationPricex(extralnterval%durationT (timeUnit,1)) in
result= extraPrice x self.actualReturnBranch.country.carTax

A.2.14 EarlyReturn

Derived class:

context EarlyReturn:: alllnstances(): Set(EarlyReturn)
body: ClosedRental.alllnstances ()—>select (initEnding—
actualReturn> hour (1))

A.2.15 Car

Car can only be assigned, at most, to one rental; excluding both closed and
canceled rentals.

context Car:: onlyOneCarAssignment() : Boolean

body: result = self.rentalAgreement—>select (rA |
not (rA.oclIsTypeOf(CanceledReservation)) and
not (rA.oclIsTypeOf(ClosedRental)))—>size ()<=1

Car is identified by registration number

context Car:: registrationNumberIsKey () : Boolean
body: result = Car.alllnstances ()—>isUnique(registrationNumber)

Derived relationship carGroup:

context Car:: carGroup(): CarGroup
result=self.carModel.carGroup

57

A.2.16 OwnCar

Derived attribute available

context OwnCar:: available() : Boolean

body: result= not(self.ocllsTypeOf(NeedsMaintenance)) and
not{self.ocllsTypeOf(RepairsScheduled)) and
not(self.oclIsKindOf(ToBeSoldCar)) and not(self.assigned) and
not{self.ocllsTypeOf(BeingTransferredCar)) and
not(self.ocllIsTypeOf(NeedToBeSoldCar))

Derived attribute assigned

context OwnCar:: assigned() : Boolean

body: result= car.rentalAgreement—>exists (rA |
not (rA.oclIsTypeOf(CanceledReservation) and
not(rA.ocllsTypeOf(ClosedRental)))

A.2.17 AssignedCar

At the time when a car is assigned to a RentalAgrement (exluduing closed rentals
and canceled rentals) the pick-up branch becomes responible for the car.

context AssignedCar:: pickUpBranchisResponsible(): Boolean
body: result= self.car.branch = self.rentalAgreement.pickUpBranch

A.2.18 NeedsMaintenance

A Car that needs maintenance cannot have more than 10% of the mileage re-
quired for maintenance and not more than 10% of the required time between
services may have elapsed.

context NeedsMaintenance:: notOverlOPercent (): Boolean

body: result = ((currentMileage — mileageFromLastService) <=
(1,1xMaintenanceRequirements. mileageForService)) or ((now() —
lastMaintenanceDate) <=
(1,1xMaintenanceRequirements.timeForService))

Derived class:

context NeedsMaintenance:: alllnstances(): Set(NeedsMaintenance)

result= OwnCar. allInstances ()—>select (currentMileage —
mileageFromLastService >=
MaintenanceRequirements . mileageForService or now()
—lastMaintenanceDate > MaintenanceRequirements.timeForService)

A.2.19 NeedToBeSoldCar

Derived class:

context NeedToBeSoldCar:: alllnstances(): Set(NeedToBeSoldCar)
body: OwnCar. alllnstances ()—>select (c|today()—c.acquisitionDate >=
year (1) or self.currentMileage >=40,000)

58

A.2.20 ToBeSoldCar

A Car that is to be sold cannot be assigned to a rental, excepting those rentals
that are closed or canceled.

context ToBeSoldCar:: notAssignedReservation(): Boolean

body: result = self.rentalAgreement—>forAll(r|
r.ocllsKindOf(ClosedRental) or
r.oclIsKindOf(CanceledReservation))

A.2.21 CarModel
CarModel is identified by its name.

context CarModel:: namelsKey() : Boolean
body: result = CarModel. alllnstances ()—>isUnique (name)

A.2.22 CarGroup
CarGroup is identified by its name.

context CarGroup:: namelsKey() : Boolean
body: result = CarGroup. alllnstances ()—>isUnique (name)

Makes sure that the order of CarGroups is coherent (i.e there are no cycles).

context CarGroup:: totalOrder (): Boolean

let isWorse(w,b:CarGroup) :Boolean= b.worse=w or isWorse(w,b.worse)

let isBetter (b,w:CarGroup):Boolean= w.better=b or
isBetter (b,w.better)

in result = CarGroup.alllnstances ()—>one(cg|cg.worse—>isEmpty())
and CarGroup.alllnstances ()—>one(cg|cg.better—isEmpty()) and
CarGroup. alllnstances ()—>forall (cgl ,cg2| isWorse(cgl,cg2)
implies not isBetter(cgl,cg2) and isBetter(cgl,cg2) implies
not isWorse(cgl,cg2))

A.2.23 Customer

RentalAgreements of a Customer do not overlap.

context Customer:: rentalsDoNotOverlap() : Boolean

body: result=self.rentalAgreement—> reject (rA|
rA.ocllsKindOf(CanceledReservation)—>notExists (rA |
self .rentalAgreement—>select (rAOther |
rAOther. beginning .day()> rA.beginning.day ())—>exists (rAOther |
rAOther. beginning .day() <= rA.agreedEnding.day()))

A.2.24 LoyaltyMember

A member of the loyalty incentive scheme rented at least one car during the last
year and does not have any bad experience.

context LoyaltyMember:: meetsLoyalPermanence() : Boolean
body: result = (self.rentalAgreement.beginning—>exists (dT|
dT>(now()—year(1))) and self.faults —>isEmpty())

59

Derived attribute availablePoints:

let candidateRentals: Set(ClosedRental)= self.RentalAgreement—>
select (rA| rA.ocllIsTypeOf(ClosedRental) and (now()—
rA.agreedEnding)< year(3) and rA.agreedEnding >
(membershipDate — year(1)).oclAsType(ClosedRental)—>asSet ()
let earnRentals: Set(ClosedRental)= candidateRentals—>
reject (cR|cR.oclIsTypeOf(PaidWithPointsRental)
let accumulatedPoints: Integer= earnRentals—>forAll(r |
result —>including (pointsEarned (r.bestPrice)))—>sum()
let spendRentals: Set(ClosedRental)=
candidateRental —>select (oclIsTypeOf(PaidWithPointsRental))
let spentPoints: Integer= spendRentals—>forAll(r
|result —including (pointsSpent(r.bestPrice)))—>sum() in
result= accumulatedPoints—spentPoints

A.2.25 Blacklisted

The reservations or rentals of a blacklisted driver that begin after the black-
listedDate must be cancelled.

context Blacklisted :: noRentals() : Boolean

body: result= self.rentalsAsDriver —>select (rA| rA.beginning >
self.blacklistedDate)—>
forAll(rA|ra.ocllsTypeOf(CanceledReservation))

A.2.26 DrivingLicense

DrivingLicenses are identified by their number.

context DrivingLicense :: numberIsKey () : Boolean
body: result = DrivingLicense.alllnstances ()—>isUnique (number)

Driver has at least one year of experience and the license does not expire before
the agreed end of a rental of the driver.

context DrivingLicense:: validLicence() : Boolean
body: result = today()—self.issue>year (1) and
self.eU RentPerson.rentalsAsDriver.agreedEnding—>
forAll(d|d<self.expiration)

A.2.27 RentalDuration

RentalDurations are identified by their name.

context RentalDuration:: namelsKey () : Boolean
body: result = RentalDuration.alllnstances ()—>isUnique (name)

Price for a particular rental duration and car group must be higher than the
price for the same rental duration but worse car group, excluding those that
have ended.

context RentalDuration:: coherentPrices() : Boolean

body: let curCGDPrices: Set(CarGroupDurationPrice) =
self.carGroupDurationPrice—>reject (cgdp|cgdp.ocllsTypeOf(EndDurationPrice))
in

result = curCGDPrices—forAll (cgdp|cgdp.price >=
(curCGDPrices.carGroup . worse.carGroupDurationPrice—>
select (cg|cg.rentalDuration=self)).price)

60

Makes sure that the order of RentalDurations is coherent (i.e. there are no
cycles).

context RentalDuration:: totalOrder(): Boolean

let isShorter(s,l:RentalDuration):Boolean= 1.shorter=s or
isShorter(s,l.shorter)

let isLonger(l,s:RentalDuration):Boolean= s.longer=l or
isLonger(l,s.longer) in

result = (RentalDuration.alllnstances ()—>one(rd|
rd.shorter —isEmpty()) and RentalDuration.alllnstances ()—>
one(rd|rd.longer—isEmpty()) and RentalDuration.allInstances ()
—>forAll(rdl,rd2| isShorter(rdl,rd2) implies not
isLonger(rdl,rd2) and isLonger(rdl,rd2) implies not
isShorter(rdl,rd2)))

A.2.28 ApplicableRentalDuration
Derived clasd} :

e Will be the result of the derived relationship between RentalAgreement
and RentalDuration.

Derived attribute quantity:

context ApplicableRentalDuration :: quantity ():Natural
body :
let rentalDur:Duration
self.initEnding)
let rentalDays:Natural = rentalDur.numberOfUnits
— All RentalDurations related to a particular RentalAgreement can
be obtained by accessing the RentalAgreement and, from there,
navigating to RentalDuration. Accessing the RentalDuration
from this class will only return one RentalDuration. —
let allRentalDur:Set(RentalDuration) =
self.rentalAgreement .rentalDuration in
allRentalDur—>iterate (elem; qty:Natural = 0 |
if (rentalDays >= elem.maximumDuration) then
if (elem = self.rentalDuration) then
qty=qty+rentalDays/maximumDuration

durationT (self.agreedEnding —

else
true
endif
rentalDays=rentalDays%maximumDuration
else
true
endif
if (rentalDays >= elem.minimumDuration) then
if (elem = self.rentalDuration) then
qty=qty+rentalDays/minimumDuration
else
true
endif
rentalDays=rentalDays%minimumDuration
else
true
endif
)

result = qty

4This class and its corresponding relationship do not appear in the original specification
in [5]. We suppose that duration of a rental is measured either in days or hours.

61

A.2.29 Discount

Discounts are identified by name.

context Discount :: namelsKey() : Boolean
body: result = Discount.alllnstances ()—>isUnique (name)

A.2.30 EndDurationPrice

Ending date of EndDurationPrice must be on the same day or later than its
beginning date.

context EndDurationPrice:: correctEnding(): Boolean
body: result = self.endingDate >= self.beginning

A.2.31 ClosedDiscount

Ending date of ClosedDiscount must be on the same day or later than beginning
date.

context ClosedDiscount :: correctEnding(): Boolean
body: result = self.beginningDate <= self.endingDate

A.2.32 BadExperience
BadExperience is identified by type.

context BadExperience:: typelsKey() : Boolean
body: result = BadExperience. alllnstances ()—>isUnique (type)

A.2.33 CarDamage

Derived class:

context CarDamage:: alllnstances ():Set(CarDamage)
result = BadExperience. allInstances ()—>
select (b|b.type=BadExpType:: carDamage)

A.2.34 Country

Countries are identified by name.

context Country:: namelsKey() : Boolean
body: result = Country.alllnstances ()—>isUnique (name)

62

	Introduction
	Artifact-Centric Business Process Models in UML
	Introduction
	Business Artifacts
	Business Artifact Lifecycle
	Services
	Associations
	Summary

	EU-Rent Car Rental Service as an Artifact-Centric Model in UML
	Introduction
	Assumptions
	Business Artifacts as a Class Diagram
	Lifecycle of RentalAgreement as a State Machine Diagram
	Associations as Activity Diagrams and Services as Action Contracts

	Appendices
	Structural Schema in OCL
	Class Diagram
	Integrity Constraints

