
EU-Rent as an Artifact-Centric Process Model:

Technical Report

Montse Estañol, Anna Queralt, Maria Ribera Sancho, Ernest Teniente

September 2012

Abstract

Business process modeling using an artifact-centric approach has raised a signif-
icant interest over the last few years. This approach is usually stated in terms
of the BALSA framework which de�nes the four �dimensions� of an artifact-
centric business process model: Business Artifacts, Lifecycles, Services and As-
sociations. One of the research challenges in this area is looking for di�erent
diagrams to represent these dimensions. Bearing this in mind, this technical re-
port shows how various UML diagrams can be used to represent all the elements
in the BALSA framework by applying them to the EU-Rent case study.

Contents

1 Introduction 2

2 Artifact-Centric Business Process Models in UML 4
2.1 Introduction . 4
2.2 Business Artifacts . 4
2.3 Business Artifact Lifecycle . 5
2.4 Services . 5
2.5 Associations . 6
2.6 Summary . 6

3 EU-Rent Car Rental Service as an Artifact-Centric Model in
UML 7
3.1 Introduction . 7
3.2 Assumptions . 8
3.3 Business Artifacts as a Class Diagram 8
3.4 Lifecycle of RentalAgreement as a State Machine Diagram 18
3.5 Associations as Activity Diagrams and Services as Action Contracts 20

Appendices 45

A Structural Schema in OCL 46
A.1 Class Diagram . 46
A.2 Integrity Constraints . 46

1

Chapter 1

Introduction

Business process design is a key activity in organisations. Business process
models have been traditionally based on an activity-centric perspective and
thus speci�ed by means of diagrams which de�ne how a business process or
work�ow is supposed to operate, but giving little importance (or none at all) to
the information produced as a consequence of the process execution. Therefore,
this approach under-speci�es the data underlying the service and the way it is
manipulated by the process tasks [4].

Nearly a decade ago, a new information-centric approach to business process
modeling emerged [7] and it is still used today. It relies on the assumption that
any business needs to record details of what it produces in terms of concrete
information. Business artifacts, or simply artifacts, are proposed as a means
to record this information. They model key business-relevant entities which are
updated by a set of services (speci�ed by pre and postconditions) that implement
business process tasks. This approach has been successfully applied in practice
and it provides a simple and robust structure for work�ow modeling [2, 1].

The artifact-centric approach to business process speci�cation has been shown
to have a great intuitive appeal to business managers. However, further research
is needed with regards to the �best� artifact-centric model since none of the ex-
isting models can adequately handle the broad requirements of business process
modeling [6].

This technical report shows the results of a applying our particular proposal
for an artifact-centric approach using UML diagrams. We consider that one way
of validating it is by applying it to a big case study. EU-Rent, as it is explained
in [5], is a case study originally developed by Model Systems, Ltd. EU-Rent is
the name of a �ctional company which rents cars. It has branches in various
countries and it o�ers the typical car rental services and keeps information
about its customers. The technical report [5] includes a detailed description of
EU-Rent and its speci�cation using standard notation: UML 2.0 and OCL 2.0.

We considered that EU-Rent would be an appropriate case study for vali-
dating our proposal because it presents a service which most people would be
familiar with, but at the same time it is complex enough to o�er a good testing
environment. In order to avoid unnecessary repetition, we take [5] as a starting
point for our own report. We refer to it in order to �nd the detailed description
of the EU-Rent company and how it works. Unless otherwise stated, we have
followed exactly the same criteria described in it.

2

This technical report is structured in the following way:

Chapter 1: Introduction presents the purpose of the document and its
structure.

Chapter 2: Artifact-Centric Business Process Models in UML sum-
marises our proposal for describing business process from an artifact-centric
perspective using UML models.

Chapter 3: EU-Rent Car Rental Service as an Artifact-Centric Model
in UML shows how the EU-Rent car rental service would be speci�ed using
the proposal summarised in Section 2.

Acknowledgements: The research that resulted in the work presented here
has received the �nancial support of UPC (Universitat Politècnica de Catalunya
- Barcelona Tech).

3

Chapter 2

Artifact-Centric Business

Process Models in UML

This chapter describes brie�y our proposal for specifying artifact-centric busi-
ness process models in UML. A very brief summary is presented at the end.

2.1 Introduction

Traditional process-centric business process models are essentially uni-dimensional
in the sense that they focus almost entirely on the process model, its constructs
and its patterns, and provide little or no support for understanding the struc-
ture or the life-cycle of the data that underlies and tracks the history of most
work�ows [6].

In contrast, the artifact-centric approach provides four explicit inter-related
but �separable� dimensions in the speci�cation of the business process [6, 3].
This four-dimensional framework is referred to as �BALSA� - Business Arti-
facts, Lifecycles, Service and Associations, �rst described in [6, 3]. By showing
the UML diagram which is more appropriate to de�ne each one of these four
dimensions we will be able to construct our proposal for the speci�cation of
artifact-centric business process models in this language.

However, UML is not enough, as usually UML diagrams make use of some
textual notation to precisely specify those aspects that cannot be graphically
represented. Currently, the OCL (Object Constraint Language) [10] is prob-
ably the most popular one of these notations and we will also use it in our
proposal. OCL supplements UML by providing expressions that have neither
the ambiguities of natural language nor the inherent di�culty of logic.

The rest of the section gives a brief explanation of the four BALSA dimen-
sions and we explain how we propose representing them using UML diagrams.

2.2 Business Artifacts

The conceptual schema of business artifacts is intended to hold all of the in-
formation needed in completing business process execution. A business artifact
has an identity, which makes it distinguishable from any other artifact, and can

4

be tracked as it progresses through the work�ow of the business process execu-
tion. It will usually have also a set of attributes to store the data needed for the
work�ow execution. The relationship of a business artifact with other artifacts
must also be shown when this information is relevant for the business being
de�ned. In business terms, an artifact represents the explicit knowledge con-
cerning progress toward a business operational goal at any instant. Therefore,
at any time of the execution, the information contained in the set of artifact
records all the information about the business operation.

In UML, conceptual schemas are de�ned by means of class diagrams. We
will use a UML class diagram to show the business entities and how they are
related to each other, represented as classes and associations respectively. Each
class (or business artifact) may have a series of attributes that represent rele-
vant information for the business. Moreover, they can be externally identi�ed
by speci�c attributes or by the relationships they can take part in. A class
diagram may also require a list of integrity constraints that, as their name im-
plies, establish a series of restrictions over the class diagram. Constraints can
be either speci�ed graphically in the UML class diagram or textually by means
of the OCL language.

Furthermore, the UML class diagram allows representing class hierarchies
graphically. We will bene�t from this by representing the di�erent states in an
artifact's lifecycle as subclasses of a superclass, as long as these subclasses hold
relevant information or are in relevant relationships. The advantage of hav-
ing di�erent subclasses for a particular artifact is that it allows having exactly
those attributes and relationships that are needed according to its state, pre-
serving at the same time the artifact's original ID and the characteristics that
are independent of the artifact's state which are represented in the superclass.

2.3 Business Artifact Lifecycle

The lifecycle of a business artifact states the key, business-relevant, stages in the
possible evolution of the artifact, from inception to �nal disposal and archiving.
It is natural to represent it by using a variant of state machines, where each state
of the machine corresponds to a possible stage in the lifecycle of an artifact from
the class [6]. We propose representing the states an artifact may go through in
a UML state machine diagram.

2.4 Services

A service (or �task�) in a business process encapsulates a unit of work meaningful
to the whole business process. The action of services makes business artifacts
evolve, e.g. they may cause modi�cations on the information stored by the
artifacts or they may make artifacts to evolve to a new stage, relevant from the
business perspective.

Our way of representing services is by means of an OCL operation contract.
As we have mentioned before, OCL is a formal language that avoids ambiguities.
Moreover, it is declarative, which means that it does not indicate how things
should be done, but rather what should be done.

5

Operation contracts consist in a set of input parameters and output param-
eters, a precondition and a postcondition. Both input and output parameters
can be classes (i.e. business artifacts) or simple types (e.g. integers, strings,
etc.). A precondition states the conditions that must be true before invoking
the operation and refers to the values of artifact attributes at the time when the
service is called. The postcondition indicates the state of the business artifacts
after the execution of the operation. It may refer to the values of artifact at-
tributes at the time when the service is called (appending operator @pre) and to
their values after the service has �nished execution (no operator or appending
operator @post). Those artifacts that do not appear in the postcondition keep
their state from before the execution of the operation.

2.5 Associations

The problem, however, is that having the services as detailed above is not
enough. We need also a way to establish the conditions under which they can
be executed since, in a business process, services make changes to artifacts in a
manner that is restricted by a set of constraints.

Since the goal of the associations is to de�ne the right sequencing of service
execution, we propose using UML activity diagrams for specifying them. In
this way, each service is represented as an action (a rounded rectangle) in the
activity diagram. Arrows show the order in which actions have to be executed.
Swimlanes indicate the main business artifact involved in each action, and the
notes stereotypes as Participant indicate who is the responsible for carrying out
that action.

By modeling associations in this way we achieve our proposal to incorporate
also some notions of process awareness, despite its intrinsic artifact-centric na-
ture. Therefore, we may also explicitly capture the control �ow of the business
process, aspect which is usually lacking in previous artifact-centric proposals.

2.6 Summary

In summary, following the BALSA model described in [6], we will use the fol-
lowing UML diagrams to represent each of its elements:

• UML class diagram to represent the business artifacts.

• State machine diagram to represent the business artifacts' lifecycle.

• Services will be represented as OCL operations with preconditions and
postconditions.

• Associations will be shown graphically in a UML activity diagram.

6

Chapter 3

EU-Rent Car Rental Service

as an Artifact-Centric Model

in UML

This chapter shows how our proposal is applied to a particular example. As we
have already mentioned in the Introduction, we will use the EU-Rent speci�ca-
tion described in [5] as a starting point. In the �rst section of this chapter we
give a brief overview of how the EU-Rent company works. Section Assumptions
details some considerations and assumptions we have made in order to specify
the car rental service provided by EU-Rent. The rest of sections in this chap-
ter show the various diagrams and elements that make up the EU-Rent service
speci�cation.

3.1 Introduction

This introduction is meant to give a brief overview of EU-Rent. For a detailed
description of how the company works, check pages 1-15 of [5].

EU-Rent is a case study originally developed by Model Systems, Ltd. EU-
Rent is a �ctional car rental company with branches in multiple countries. It
is part of a bigger company, EU-Corporation, which also owns hotels and an
airline. A prospective client must be registered with the company in order to
rent a car: he/she may make a reservation some days in advance, or rent the
car on the spot (what is called a walk-in rental).

Customers are allowed to have many reservations, but they can only have
one rental at a time. They are also allowed to return the car to a branch other
than the pick-up branch. The company keeps information about the customers,
such as a history of their rentals and records any bad experiences (e.g a late
return or a damaged car). Therefore, a particular customer may be blacklisted
(i.e. he/she will not be allowed to rent a car) if certain conditions are met.

On the other hand, customers may belong to the Loyalty Incentive Scheme.
Customers in this program are allowed to pay for their rentals using loyalty
points. Moreover, any rental may qualify for a discount, and the customer is
always o�ered the best price for the rental. However, loyalty points can only

7

pay for the basic price of a rental, i.e. without any discounts applied.
Cars are classi�ed into di�erent groups according to their characteristics, and

customers are allowed to choose either a particular car model or a car group.
If they do not choose any, they are assigned the cheapest car group. Cars are
serviced after a while, and can be bought and sold by EU-Rent. They sometimes
have to be transferred from one branch to the other, precisely because customers
are allowed to return them to a di�erent branch.

When a car is handed over to the customer, he/she has to ful�ll certain
conditions: he/she should be able to drive and should not be under the in�uence
of alcohol or drugs, he/she should have a valid driving license and be over 25
years of age. A reservation is held for a customer for 90 minutes after the
scheduled pick-up time if the reservation is not guaranteed. If it is guaranteed
by a credit card, it is held for the whole day before the car is released and the
customer's credit card is charged for not picking it up.

Customers can request rental extensions by phone, and they are granted
unless the car is due for maintenance.

3.2 Assumptions

For the following service speci�cation of EU-Rent we follow the same assump-
tions as in [5]. However, we only want to specify the car rental service provided
by the company, i.e. those business processes that are directly involved in the
provision of a car rental. This corresponds to a subset of the use cases in the
original speci�cation. The rest of use cases are necessary for the provision of the
service but transparent to the client and we do not provide their details here.

It is also important to bear in mind that we want to avoid redundancy in
the speci�cation. For this reason, we follow the guidelines of [11] both in the
speci�cation of the actions (i.e. what in BALSA is referred to as services) and
in the activity diagrams. That is, the activity diagrams and action contracts do
not check conditions that are already guaranteed somewhere else in the spec-
i�cation (e.g. in integrity constraints). Moreover, consecutive actions will not
check for conditions already guaranteed by previous actions. We also consider
that parameters can be reused in operations that are part of the same activity
diagram.

3.3 Business Artifacts as a Class Diagram

The UML class diagram represents the business artifacts that take part in the
provison of the business processes. However, it is important to note that the
class diagram presented here is a subset of the one in [5]. Moreover, as the
resulting diagram was very big, we have split it into smaller ones. There is one
main diagram, that shows the main business artifacts and their relationships,
and then we have smaller diagrams showing a business artifacts and its subtypes.
At the end there is a diagram showing some data types that we use in our model.

For each class diagram, we include the corresponding integrity constraints
and derivation rules. They are de�ned in natural language. The corresponding
OCL de�nition can be found on Appendix A.

8

3.3.1 Main Class Diagram

The diagram in Figure 3.1 shows the main artifacts in EU-Rent and the rela-
tionships between them.

EU_RentPerson represents someone who has had contact with EU-Rent,
either as a driver or as a customer. For this reason, it is linked with exactly one
DrivingLicense, and a DrivingLicense belongs exactly to one EU_RentPerson.
Notice that this class does not hold any personal information: we have assumed
that this information is shared with other EU companies, and the corresponding
class is shown in Figure 3.2. An EU_RentPerson may take part in any number
of RentalAgreements as a driver. A Customer is a subtype of EU_RentPerson
and will have, at least, one RentalAgreement, but he may not have more than
one RentalAgreement for a particular DateTime1.

The key class in the diagram is RentalAgreement. It can be of the Reservation
subtype, which means that a reservation was made before the scheduled pick-up
date of the car. A Reservation is linked to a speci�c CarGroup, and may be
linked to a particular CarModel. Each CarModel belongs to one (and only one)
CarGroup. CarGroups are ordered by their category. A RentalAgreement will
have certain RentalDurations, and therefore may be eligible for some Discounts.
The RentalAgreement will be linked to exactly one pick-up and one drop-o�
Branch, and will also have at least one Country where the user will travel to
with the car (at least, the Branches' countries). It may also have a particular
Car assigned, which will be of a particular CarModel.

A RentalAgreement is opened (OpenRental) when a customer picks up the
car, and is closed (ClosedRental) when he/she returns it. It may also be ex-
tended (ExtendedRental). A ClosedRental may be linked to a BadExperience
(which may be of the CarDamange subtype) with an associated FaultSerious-
ness.

The following subsections describe the integrity constraints and derivation
rules.

3.3.1.1 Integrity Constraints

• Branch is identi�ed by name.

• The pick-up and drop-o� branches' Countries must be included in the list
of countries of the RentalAgreement.

• The initEnding of a RentalAgreement must be later than its beginning.
The actualReturn of a RentalAgreement must also be later than its begin-
ning.

• reservationDate of a Reservation must be previous to its beginning date.

• Requested car model in a Reservation must be in requested car group.

• Rental extension must be done after the beginning date of the RentalA-
greement and the new end date should be later than the initial end date

1Note that, for convenience purposes, we have included DateTime as a class of the diagram,
when it is clearly not a business artifact. However, we considered that a RentalAgreement
was de�ned by a Customer and a particular DateTime; therefore, we decided that RentalA-
greement should be an association class resulting from the link between these two classes.

9

 n
am

e
: S

tri
ng

B
ra

nc
h

 re
gi

st
ra

tio
nN

um
be

r :
 S

tri
ng

C
ar

EU
_R

en
tP

er
so

n

C
us

to
m

er

 n
um

be
r

: N
at

ur
al

 is
su

e
: D

at
e

 e
xp

ira
tio

n
: D

at
e

D
ri

vi
ng

Li
ce

ns
e

 /
 b

as
eP

ric
e

: M
on

ey
 /

 b
es

tP
ric

e
: M

on
ey

 /
 la

st
M

od
ifi

ca
tio

n
: D

at
e

R
en

ta
lA

gr
ee

m
en

t

 n
am

e
: S

tri
ng

 m
ec

ha
ni

ca
lC

on
di

tio
ns

R
eq

s
: S

et
(S

tri
ng

)
 e

m
is

si
on

sR
eq

s
: S

et
(S

tri
ng

)
 c

ar
Ta

x
: D

ou
bl

eC
ou

nt
ry

 e
xp

ec
te

dP
re

pa
re

dT
im

e
: T

im
e

A
ss

ig
ne

dC
ar

 a
ct

ua
lT

im
e

: T
im

e
P

re
pa

re
d

 n
am

e
: S

tri
ng

C
ar

G
ro

up
 n

am
e

: S
tri

ng
 c

ha
ra

ct
er

is
tic

s
: S

eq
ue

nc
e(

St
rin

g)

C
ar

M
od

el

D
at

eT
im

e

 re
se

rv
at

io
nD

at
e

: D
at

eT
im

e
R

es
er

va
tio

n

 n
am

e
: S

tri
ng

C
ar

G
ro

up

 a
ct

ua
lP

ic
kU

pT
im

e
: T

im
e

O
pe

nR
en

ta
l

 p
ay

m
en

tT
yp

e
: P

ay
Ty

pe
 c

re
di

tC
ar

dN
um

be
rD

am
ag

es
 :

N
at

ur
al

 /
 re

nt
al

Pr
ic

eW
ith

Ta
x

: M
on

ey

C
lo

se
dR

en
ta

l

E
xt

en
de

dR
en

ta
l

 n
am

e
: S

tri
ng

 e
ffe

ct
 :

St
rin

g
 d

es
cr

ip
tio

n
: S

tri
ng

 b
eg

in
ni

ng
D

at
e

: D
at

e
 re

se
rv

at
io

nT
im

e
: B

oo
le

an

D
is

co
un

t

 n
am

e
: S

tri
ng

 m
in

im
um

D
ur

at
io

n
: N

at
ur

al
 m

ax
im

um
D

ur
at

io
n

: N
at

ur
al

 ti
m

eU
ni

t :
 P

er
io

d

R
en

ta
lD

ur
at

io
n

D
at

eT
im

e p
ric

e
: M

on
ey

C
ar

G
ro

up
D

ur
at

io
nP

ric
e

 e
nd

in
gD

at
e

: D
at

e
E

nd
D

ur
at

io
nP

ric
e

 e
nd

in
gD

at
e

: D
at

e
C

lo
se

dD
is

co
un

t

 ty
pe

 :
Ba

dE
xp

Ty
pe

B
ad

E
xp

er
ie

nc
e

/C
ar

D
am

ag
e

 d
eg

re
e

: L
ev

el
Fa

ul
tS

er
io

us
ne

ss

 p
ric

e
: M

on
ey

D
am

ag
eC

os
t

 re
gi

st
ra

tio
nN

um
be

r :
 S

tri
ng

C
ar

 e
xt

en
si

on
D

on
e

: D
at

eT
im

e
E

xt
en

si
on

 p
ric

e
: M

on
ey

C
ar

G
ro

up
D

ur
at

io
nP

ric
e

 d
eg

re
e

: L
ev

el
Fa

ul
tS

er
io

us
ne

ss

 c
ur

re
nt

M
ile

ag
e

: D
ou

bl
e

 m
ile

ag
eF

ro
m

La
st

Se
rv

ic
e

: D
ou

bl
e

 la
st

M
ai

nt
en

an
ce

D
at

e
: D

at
e

 a
cq

ui
si

tio
nD

at
e

: D
at

e
 /

 a
va

ila
bl

e
: B

oo
le

an
 /

 a
ss

ig
ne

d
: B

oo
le

an

O
w

nC
ar

 /
 q

ua
nt

ity
 :

N
at

ur
al

/A
pp

lic
ab

le
R

en
ta

lD
ur

at
io

n

1

0.
.*

*

*

dr
iv

er

re
nt

al
sA

sD
riv

er

*

1.
.*

*
be

gi
nn

in
g

re
nt

er

1.
.*

1

ca
rG

ro
up

1
*

*be
gi

nn
in

g

1

1.
.*

ac
tu

al
R

et
ur

nB
ra

nc
h

1

*
pi

ck
U

pB
ra

nc
h

*

1.
.*

0.
.*

be
st

D
ur

at
io

nP
ric

es

1

1

*
0.

.1

*0.
.1

re
qu

es
te

dM
od

el

0.
.*

0.
.*

1

*

re
nt

G
ro

up

1

*

ag
re

ed
En

di
ng

*

1
re

qu
es

te
dG

ro
up

1.
.*

*

0.
.1

0.
.1

sh
or

te
r

lo
ng

er

1

*

in
itE

nd
in

g*

*

gr
ou

ps
Av

ai
la

bl
eN

ow

1

*
*

1.
.*

1

1.
.*

0.
.1

*

0.
.*

1.
.*

fa
ul

ts

0.
.*

0.
.1

ca
rs

Av
ai

la
bl

eN
ow

*

1 dr
op

O
ffB

ra
nc

h

*

1.
.*

*

1
ac

tu
al

R
et

ur
n

0.
.1

0.
.1

w
or

se

be
tte

r

0.
.1

0.
.*

la
st

N
ew

En
di

ng

/A
pp

lic
ab

le
R

en
ta

lD
ur

at
io

n
Ap

pl
ic

ab
le

G
ro

up
s

/is
A

va
ila

bl
e

/G
ro

up
A

va
ila

bi
lit

y

/H
as

Fa
ul

ts

/B
es

tD
ur

at
io

ns

^i
sR

es
po

ns
ib

le
Fo

r

{s
ub

se
ts

}

D
am

ag
eC

os
t

Fa
ul

tS
er

io
us

ne
ss

A
pp

lic
ab

le
D

ur
at

io
ns

Ex
te

ns
io

n

^
R

et
ur

ne
dT

o

R
et

ur
ne

dA
t

R
en

ta
lA

gr
ee

m
en

t

in
iti

al
E

nd
in

g
/ a

gr
ee

dE
nd

in
g

<
is

In

is
O

fA

/ i
sG

ro
up

ca
te

go
ry

O
rd

er

/

vi
si

ts
^

is
Lo

ca
te

dA
t

pi
ck

U
p

As
si

gn
ed

C
ar

<
dr

iv
es

dr
op

O
ff

ha
s

Vi
su

al
 P

ar
ad

ig
m

 fo
r U

M
L

C
om

m
un

ity
 E

di
tio

n
[n

ot
 fo

r c
om

m
er

ci
al

 u
se

]

F
ig
u
re

3
.1
:
M
a
in

cl
a
ss

d
ia
g
ra
m

w
it
h
th
e
b
u
si
n
es
s
a
rt
if
a
ct
s
fo
r
th
e
p
ro
v
is
io
n
o
f
ca
r
re
n
ta
ls

10

(initEnding). Note that this constraint has been rewritten, as the original
code did not tally with the original class diagram.

• CarModel is identi�ed by its name.

• CarGroup is identi�ed by its name.

• CarGroup order must be coherent (i.e. there are no cycles). Only one
CarGroup may not have a better CarGroup, and only one CarGroup may
not have a worse CarGroup (it may be the same).

• RentalAgreements of a Customer do not overlap.

• DrivingLicenses are identi�ed by their number.

• An EU_RentPerson has at least one year of driving experience and the
DrivingLicense does not expire before the agreedEnding of a rental of the
driver.

• RentalDurations are identi�ed by their name

• Price for a particular RentalDuration and CarGroup in CarGroupDu-
rationPrice must be higher than the price for the same RentalDuration
but worse CarGroup, excluding those CarGroupDurationPrice that have
ended.

• The order of RentalDurations is coherent (i.e. there are no cycles). Only
one RentalDuration may not have a longer RentalDuration, and only one
RentalDuration may not have a shorter RentalDuration (it may be the
same).

• Discounts are identi�ed by name.

• Ending date of EndDurationPrice must be on the same day or later than
its beginning date.

• Ending date of ClosedDiscount must be on the same day or later than its
beginning date.

• Countries are identi�ed by name.

• Car can only be assigned, at most, to one rental; excluding both closed
and canceled rentals.

• Car is identi�ed by registration number

• At the time when a car is assigned to a RentalAgreement (excluding Close-
dRentals and CanceledRentals) the pick-up branch becomes responible for
the car.

• BadExperience is identi�ed by type.

11

3.3.1.2 Derived Classes and Attributes

RentalAgreement

? basicPrice - Best price for the rental without discounts, considering its
duration.

? bestPrice - Best price for the rental with discounts. When the rental is
PaidWithPointsRental, it is equal to the basicPrice of the rental.

? lastModi�cation - Last modi�cation of the rental. If it is of the Reservation
subtype, it corresponds to the reservation date. Otherwise, it corresponds
to the beginning date of the rental. In any case, if if it has been extended,
it corresponds to the extensionDone date.

OwnCar

? available - An OwnCar is available if it is not assigned and is NOT of ANY
of the following subtypes: NeedsMaintenance, RepairsScheduled, ToBeSol-
dCar, BeingTransferredCar or NeedToBeSoldCar.

? assigned - An OwnCar is assigned if there is a RentalAgreement linked to
the OwnCar that has not been canceled (i.e. it is not of CanceledReser-
vation subtype) or closed (i.e. it is not of the ClosedRental subtype).

CarDamage

? Derived class - Every BadExperience that has type carDamage will be of
the CarDamage subtype.

ClosedRental

? rentalPriceWithTax - Price of the rental plus taxes. It is the result of
multiplying the carTax in the actual drop-o� branch and the bestPrice of
the rental.

ApplicableRentalDuration

? quantity - For a particular RentalAgreement and RentalDuration, it holds
the number of RentalDurations applicable to that RentalAgreement. This
is calculated by dividing the duration of the rental by the maximumDu-
ration or minimumDuration of RentalDuration.

3.3.1.3 Derived Relationships

? BestDuration - bestDurationPrices - Best prices (ordered from best to
worst) for the duration of the rental.

? agreedEnding - Obtains the return date of a rental, considering the ex-
tensions a rental may have. If it has no extensions, it corresponds to
initEnding. If it has been extended, it corresponds to lastNewEnding.

12

? rentGroup - Returns the carGroup that the user will have to pay for, that
is, if he has been o�ered a free promotion, he has to pay for the carGroup
he asked for, not more. Or, if he has been allocated a worse carGroup
than what he asked for, then he pays for the worse carGroup and not the
one he asked for initially.

? ApplicableRentalDuration - RentalDurations into which the RentalAgree-
ment can be split. It is calculated considering the number of days (or
hours) of the rental and the minimum and maximum durations of each
RentalDuration.

? IsGroup - carGroup - CarGroup a particular Car belongs to. It is the
same car group as the one for the car model of a particular car.

? HasFaults - faults - FaultSeriousness associated to the RentalAgreements
of a particular EU_RentPerson, considering his/her faults as both driver
and customer.

? IsAvailable - carsAvailableNow - AvailableOwnCars for a particular Branch.

? GroupAvailability - groupsAvailableNow - CarGroups available for a par-
ticular Branch, obtained through the available OwnCars.

3.3.2 EU_CoPerson and its Subclasses

The diagram in Figure 3.2 shows the classes and subclasses of EU_CoPerson.
It is important to note that we have decided to show in the diagram both
EU_CoPerson, representing people who are clients of EU-Corporation, and
EU_RentPerson, representing people who have used the services of EU-Rent.
Most of the information about the customer is kept in EU_CoPerson (such as
name, address, etc.), unlike in the original EU-Rent speci�cation [5].

As it can be seen in the diagram, EU_RentPerson is a subtype of EU_CoPerson.
An EU_RentPerson may be blacklisted, and in that case he/she is not allowed
to rent cars. As we have seen in the previous section, a Customer is also a
subtype of EU_RentPerson. Finally, a Customer may belong to the Loyalty
Incentive Scheme, represented by the subclass LoyaltyMember.

3.3.2.1 Integrity Constraints

• An EU_CoPerson is identi�ed by its id.

• An EU_CoPerson must be 25 or older.

• The reservations or rentals of a Blacklisted EU_RentPerson that begin
after the blacklistedDate must be cancelled.

• RentalAgreements of Customer do not overlap.

• A LoyaltyMember rented at least one car during the last year and does
not have any bad experience.

13

EU_RentPerson

Customer

 membershipDate : Date
 / availablePoints : Natural

LoyaltyMember

 blacklistedDate : Date
Blacklisted

 id : String
 name : String
 address String
 birthdate : Date
 telephone : Natural

EU_CoPerson
Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.2: Class diagram of EU_CoPerson and its subclasses

3.3.2.2 Derived Attributes and Classes

LoyaltyMember

? availablePoints - It holds the result of adding the points obtained in the
rentals made by the customer which have not been paid with points, and
substracting the points spent in the rentals paid with points.

3.3.3 Reservation and its Subclasses

The diagram in Figure 3.3 shows the class Reservation and its subclasses.

 reservationDate : DateTime
Reservation

ReservationWithSpecialDiscount

 cancellationDate : DateTime
CanceledReservation

PointsPaymentReservation creditCardNumber : Natural
GuaranteedReservation

 motivation : CancellingMotivation
CanceledCustomerLiable CanceledCompanyLiable

 / fine : Money {frozen}
/ GuaranteedCanceled

{d,c}

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.3: Class diagram of Reservation and its subclasses

As it can be seen in the diagram, a Reservation may be:

14

• A ReservationWithSpecialDiscount, if it includes a discount on the basic
price.

• A PointsPaymentReservation, if it can be paid with points and the cus-
tomer wishes to.

• A GuaranteedReservation, if the customer leaves his credit card number.

• A CanceledReservation, if the reservation is cancelled. We distinguish two
subtypes:

� CanceledCompanyLiable, if EU-Rent is responsible for the cancella-
tion.

� CanceledCustomerLiable, if the customer is the ultimate responsible
for the cancellation. A CanceledCustomerLiable reservation may also
be of GuaranteedCanceled subtype if it was also a GuaranteedReser-
vation.

It is important to mention that, in the original speci�cation [5], Cancele-
dReservation had CanceledCustomer and CanceledCompany as subclasses, show-
ing whether the reservation had been cancelled at a request from the customer
or the company had decided to do so, respectively. In our class diagram, sub-
classes CanceledCustomerLiable and CanceledCompanyLiable show who is the
ultimate responsible for the cancellation of the reservation: the company may
decide to cancel a reservation because a customer is not �t to drive; although it
is the company who makes the decision, the customer is liable for it.

3.3.3.1 Integrity Constraints

• reservationDate of a Reservation must be previous to its beginning date.

• Requested car model in a Reservation must be in requested car group.

• PointsPaymentReservation must be made at least 14 days in advance of
its beginning date.

• cancellationDate of a CanceledReservation must be after or on the same
reservationDate and before, on the beginning date of the RentalAgreement
or on the day after at the latest. This has been changed from the original
report [5].

3.3.3.2 Derived Classes and Attributes

GuaranteedCanceled

? Derived class - All Reservations that are both GuaranteedReservation and
CanceledCustomerLiable.

? �ne - A �ne of one day rental must be paid if the rental was guaranteed
and the cancelling date is the same day (or later if the customer does not
pick up the car) as the expected beginning of the rental. Otherwise, no
�ne must be paid.

15

 registrationNumber : String
Car

 currentMileage : Double
 mileageFromLastService : Double
 lastMaintenanceDate : Date
 acquisitionDate : Date
 / available : Boolean
 / assigned : Boolean

OwnCar

 beginningDate : Date
RepairsScheduled

/NeedsMaintenance

ToBeSoldCar

 beginningDate : Date
MaintenanceScheduled

/NeedToBeSoldCar

BeingTransferred

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.4: Class diagram of Car and its subclasses

3.3.4 Car and its Subclasses

The class diagram of Car and its subclasses can be seen in Figure 3.4.
An OwnCar represents those cars that are owned by EU-Rent (the company,

under special circumstances, can use cars that do not belong to it). An OwnCar
may be in the process of being transferred from one branch to the other (Being-
Transferred), may need maintenance (NeedsMaintenance subtype), may need
to be sold (NeedToBeSold) or may be of the ToBeSoldCar type, which means
that it can no longer be used as it is in the process of being sold. Finally, a Car
may be scheduled for repairs (RepairsScheduled) even if it does not belong to
EU-Rent.

3.3.4.1 Integrity Constraints

• Car can only be assigned, at most, to one rental; excluding both closed
and canceled rentals.

• Car is identi�ed by registration number

• A Car that needs maintenance cannot have more than 10% of the mileage
required for maintenance and not more than 10% of the required time
between services may have elapsed.

• A Car that is to be sold (ToBeSoldCar) cannot be assigned to a rental,
excepting those rentals that are closed or canceled.

3.3.4.2 Derived Classes and Attributes

NeedsMaintenance

? Derived class - A car needs maintenance if it was serviced more than 3
months ago or has accumulated more than 10,000 km since the last service.

16

NeedToBeSoldCar

? Derived class - An OwnCar is of subtype NeedToBeSoldCar if it was
bought more than a year ago or has accumulated more than 40,000 km.

3.3.5 ClosedRental and its Subclasses

The diagram in Figure 3.5 shows the class ClosedRental and its subclasses.

 paymentType : PayType
 creditCardNumberDamages : Natural
 / rentalPriceWithTax : Money

ClosedRental

 / extraInterval : Duration
 / extraCostWithTax : Money

/LateReturn /EarlyReturn/PaidWithPointsRental

return_time {d,c}

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.5: Class diagram of ClosedRental and its subclasses

A ClosedRental may be PaidWithPointsRental, if it has been paid with
points; and may also be a LateReturn if the car has been returned later than
expected or an EarlyReturn, if it has been returned more than an hour earlier
than expected.

3.3.5.1 Integrity Constraints

• In a PaidWithPointsRental, the Reservation for the corresponding rental
was made at least 14 days in advance of the rental's beginning date.

• In a PaidWithPointsRental, the Customer must be a member of Loyalty
Incentive Scheme (i.e. LoyaltyMember) in order to pay with points. It is an
initial constraint, as the customer must be a Loyalty Incentive Member
only at the time of paying; later on he/she may not be a member any
longer.

3.3.5.2 Derived Classes and Attributes

ClosedRental

? rentalPriceWithTax - Price of the rental plus taxes. It is the result of
multiplying the carTax in the actual drop-o� branch and the bestPrice of
the rental.

17

PaidWithPointsRental

? Derived class - All ClosedRentals that have been paid with points (i.e their
paymentType is Points).

LateReturn

? Derived class - All ClosedRentals such that the actualReturn is later than
the agreedEnding.

? extraInterval - Duration of the period between the agreedEnding and the
actualReturn of the car.

? extraCostWithTax - Holds the price of the extraInterval, considering the
best price for duration without applying any discounts, and the cost of
the taxes according to country where the car has been dropped o�.

EarlyReturn

? Derived class - All ClosedRentals such that the actualReturn is more than
an hour sooner than the agreedEnding.

3.3.6 Types

The types that have been de�ned for EU-Rent can be seen in Figure 3.6. Note
that most of them have been de�ned from scratch or rede�ned from [5].

 blacklisting
 no_show
 unable_to_drive
 customer_canceled

<<enumerat ion>>
Cancell ingMotivation

 EUCorpCustomer
 EURentCustomer
 NotRegistered

<<enumerat ion>>
CustomerType

 CarReady
 CarNotReady
 NoReservation

<<enumerat ion>>
ReservationStatus

 Points
 SpecialDiscount
 BestPrice
 BasePrice

<<enumerat ion>>
PayType

 veryhigh
 high
 medium
 low
 verylow

<<enumerat ion>>
Level

 lateReturn
 carDamage
 paymentProblem

<<enumerat ion>>
BadExpType

 hour
 day

<<enumerat ion>>
Period

 mileageForService : Double = 10000
 timeForService : Duration = (month, 3)

MaintenanceRequirements

 Unit : Period
 numberOfUnits : Natural

Durat ion

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.6: De�nition of types

3.4 Lifecycle of RentalAgreement as a State Ma-

chine Diagram

Although many of the business artifacts represented in the class diagram have
a lifecycle, in order to keep it simple we will focus only on the lifecycle of what
is the main business artifact: RentalAgreement.

The state machine diagram for the service can be seen in Figure 3.7. It
shows the whole lifecycle of RentalAgreement, from the moment a customer

18

ExtendedRental

CanceledReservation

ClosedRental

OpenRentalReservation

Extend Rental

Return Car

[not guaranteedReservation] (now() - beginning)>90min / Cancel Reservation

Customer is Blacklisted/ Cancel Reservation

[guaranteedReservation] today()>day(beginning) / Cancel Reservation

Pick-Up Car[cancel]

Make Walk-In Rental[success]
Extend Rental

Cancel Reservation by Customer Demand [success]

Return Car

Pick-Up Car[success]Make Reservation[success]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.7: State machine diagram for RentalAgreement

makes a reservation or rents a car to the moment when the car is returned. It is
worth noting that this diagram does not follow exactly the standard described
in [9]: we have more than one outgoing transition from the start node. This is
necessary because the service can be initialized in di�erent ways (e.g. by making
a walk-in rental or a reservation). In any case, the transitions between states
are triggered by either domain events, time events or change events [8].

However, our domain events are not always atomic: they can be subprocesses
which are further decomposed into actions (or services). These subprocesses may
have a condition in square brackets which the subprocess has to meet when it
ends in order for the transition to be �red. For example, the transition from
Reservation to OpenRental will only be triggered when: 1- subprocess Pick Up
Car takes place AND 2- it ends successfully AND 3- RentalAgreement is in
state Reservation. If this same subprocess ends ful�lling the condition cancel
when the service is in state Reservation, then the RentalAgreement would be
canceled. The postconditions in the state transitions can also be non-atomic.
For example, when time event today() > day(beginning) takes place and the
Reservation has been guaranteed, then the reservation must be canceled. This
is done through subprocess Cancel Reservation.

The state machine diagram in Figure 3.7 shows that there are two possible
ways of creating a RentalAgreement : either with Make Reservation or Make
Walk-In Rental. In the case of Make Reservation, the user has to Pick-Up Car
before actually using it. It is also important to notice that in state Reservation,
the reservation may be cancelled either because the customer requests it (Cancel
Reservation by Customer Demand) or because one of the following conditions is
met: 1- the car is not picked up 90 minutes after the scheduled pick-up time and
the reservation is not guaranteed, 2- the car is not picked-up in the scheduled day
and the reservation was guaranteed, 3- the customer is blacklisted, 4- Pick-Up
Car is cancelled. In all these cases, the service ends.

While the rental is open, the customer can request an extension (Extend
Rental. The RentalAgreement will become a ClosedRental when the customer
returns the car (Return Car).

19

3.5 Associations as Activity Diagrams and Ser-

vices as Action Contracts

The activity diagrams provide the details for each of the subprocesses in the state
machine diagrams. Each subprocess is decomposed into actions, which in turn
can be atomic (they are services as de�ned in BALSA) or further decomposed in
another activity diagram (indicated by a rake-like symbol). Therefore, activity
diagrams act as associations between services.

In each activity diagram, the transitions that lead to an end node may be
stereotyped with a tag that indicates the outcome of the subprocess. Examples
of tags are succeed and fail, which may be then used in the state machine
diagram to determine the following state in the service evolution. Swimlanes
indicate the main artifact involved in each of the services or actions, and they
are labeled with stereotype material if they are dealing with a real, physical
object and not its representation. Those actions that deal with information
resources are further speci�ed by action contracts using OCL. They correspond
to services in BALSA.

Each subsection corresponds to one of the subprocesses in the state machine
diagram. However, there are some actions within activity diagrams whose de-
tails are de�ned in another activity diagram: they also have a subsection of
their own.

3.5.1 Make Reservation

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
R

en
te

r

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver Status

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

<<succeed>>

[blacklisted]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.8: Activity Diagram for Make Reservation

3.5.1.1 Obtain Customer

See section 3.5.2 on page 25.

3.5.1.2 Obtain Data for Rental and Calculate Price

Obtains the data for the rental (such as beginning and end date, the countries
the user wants to visit, the preferred car model or car group, etc.) and calculates

20

its price, considering the fact that there may be some applicable o�ers or the
customer may be eligible to pay with points.

There are four di�erent possible prices:

• Basic Price - It is calculated according to the rental duration, without
considering any discounts.

• Best Price - It is calculated considering the existing discounts, excluding
those discounts that were must be applied at reservation time. IMPOR-
TANT NOTE: In the original speci�cation [5], apparently Best Price and
Price with Special Discount are calculated in the same way, considering
in both cases discounts applicable at reservation time. We have consid-
ered that this is a mistake, and for Best Price we do not include the
reservation-time discounts.

• Price with Special Discount - It considers all types of applicable discounts,
including those than can only be selected at reservation time.

• Points - The payment with points can only be selected if the user is
member of the Loyalty Incentive Scheme and has enough points. The cost
in points of the rental is calculated from the Basic Price (or Base Price)
of the rental.

Additional comments:

• Although there is an integrity constraint that does not allow users to pay
with points if the reservation is not made 14 days in advance, this action
checks it anyway, to avoid o�ering the user the option to pay with points
if he is not able to.

• points() - changes from Money to Points.

• isBetter() - checks whether one alternative is better than the other.

• durationT() - obtains the corresponding duration given a period and a
natural number.

• applicable() - used to determine if a particular discount is applicable to a
customer.

• apply() - applies a discount to a particular price. It is needed because the
Discount class contains this information in a String format, as it may be
given as a percentage over the �nal price, certain conditions may have to
be met, etc.

action obtainDataForRentalAndCalculatePrice (s tar tDate : DateTime ,
endDate : DateTime , pickUpBranch : String , dropOffBranch :
String , c oun t r i e s : Set (String) , carG : String , carM : String ,
person : EU_CoPerson) : Set (TupleType (id : PayType , desc : String))

localPre : −

localPost :

21

−− Change input EU_CoPerson in to EU_RentPerson and again to
Customer . At t h i s po in t EU_CoPerson must a l ready be
EU_RentPerson but may not be a Customer −−

person . oclAsType (EU_RentPerson) . ocl IsTypeOf (Customer) and

let c : Customer=person . oclAsType (Customer) in

−− Create Rental Agreement −−
−− 1 . Creates the RentalAgreement as a Reservat ion subtype with

the input data −−
−− 2 . Links the EU_RentPerson with t h i s RentalAgreement −−
Reservat ion . a l l I n s t a n c e s ()−>ex i s t s (r |

r . oclIsNew () and r . d r i v e r=c . oclAsType (EU_RentPerson) and

r . r en t e r=c and r . beg inn ing=star tDate and

r . in i tEnd ing=endDate and r . r e s e rva t i onDate=now() and

r . pickUpBranch=Branch . a l l I n s t a n c e s ()−>s e l e c t (pub |
pub . name=pickUpBranch) and

r . dropOffBranch=Branch . a l l I n s t a n c e s ()−>s e l e c t (dob |
dob . name=dropOffBranch) and

(i f (carG = ' ') then

r . requestedGroup=CarGroup . a l l I n s t a n c e s ()−>s e l e c t (cg
| cg . worse−>isEmpty ())

else

r . requestedGroup=CarGroup . a l l I n s t a n c e s ()−>s e l e c t (cg
| cg . name=carG)

endif)
and

(i f (carM <> ' ') then

r . requestedModel=CarModel . a l l I n s t a n c e s ()−>s e l e c t (cm
| cm. name=carM)

else

t rue
endif)
and

count r i e s−>f o rA l l (co2 |
r . country−>s e l e c t (co | co . name=co2)−>notEmpty ()) and

r . country−>inc l ud e s (Branch . a l l I n s t a n c e s ()−>s e l e c t (b |
b . name=pickUpBranch) . country) and

r . country−>inc l ud e s (Branch . a l l I n s t a n c e s ()−>s e l e c t (b |
b . name=dropOffBranch) . country))

−− Ca lcu la t e Price −−
−− 1 . basePrice and be s tPr i c e are der i ved a t t r i b u t e s in the

c l a s s / bus ine s s a r t i f a c t . Therefore , t he re i s no need to
c a l c u l a t e them.−−

let basePr :Money=r . ba s i cP r i c e
let bestPr :Money=r . be s tPr i c e

−− 2 . We have to c a l c u l a t e the pr i c e cons ider ing the d i s coun t s
a v a i l a b l e at r e s e r va t i on time −−

−− 2 . 1 . We s e l e c t those d i s coun t s a p p l i c a b l e to the
p a r t i c u l a r rentGroup and the time o f the r en t a l . We
a l s o check i f i t s a p p l i c a b l e to the Customer . −−

let app l i c ab l eD i s count s : Set (Discount) =
r . rentGroup . discount−>s e l e c t (d i s |
d i s . beginningDate<=r . in i tEnd ing and

(d i s . oc l IsTypeOf (ClosedDiscount) implies

d i s . oclAsType (ClosedDiscount) . endingDate>=today () and

app l i c ab l e (d is , c)) in

−− 2 . 2 . We crea te a func t i on to determine , o f a l l
app l i cab l eDi scoun t s , the b e s t one fo r a p a r t i c u l a r
durat ion −−

let bestDiscountPerDurat ion (rd : RentalDuration , p r i c e :

22

Money) : Discount = app l i cab l eDi s count s−>s e l e c t (d |
d . r enta lDurat ion=rd)−> r e j e c t (disAct : Discount |
app l i c ab l eD i s count s −> s e l e c t (d2 |
d2 . r enta lDurat ion=rd) −> ex i s t s (d isOther : Discount |
apply (disOther , p r i c e) . i sB e t t e r (apply (disAct ,
p r i c e)))−>any ()

−− 2 . 3 . We c a l c u l a t e the pr i c e o f the r en t a l i n c l ud ing the
d i s coun t s −−

−− 2 . 3 . 1 . Each RentalAgreement i s a s soc i a t ed to
var ious RentalDurations .

−− 2 . 3 . 2 . Each RentalAgreement i s l i n k ed to
var ious CarGroupDurationPrices (through
bes tDura t ionPr ices) . This conta ins the b e s t
p r i c e f o r each r en t a l durat ion fo r the
CarGroup of the RentalAgreement . That i s , f o r
every RentalDuration , there i s e x a c t l y one
CarGroupDurationPrice . −−

−− 2 . 3 . 3 . This imp l i e s that , i f we nav iga te the
r e l a t i o n s h i p bes tDurat ionPr ices and s e l e c t the
CarGroupDurationPrice f o r a p a r t i c u l a r
RentalDuration , there w i l l on ly be ONE
CarGroupDurationPrice .

−− 2 . 3 . 4 . We c a l c u l a t e the pr i c e o f the r en t a l by
i t e r a t i n g through the RentalDurations l i n k ed
to the RentalAgreement and s e l e c t i n g the
corresponding pr i c e in bes tDurat ionPr ices . We
then ob ta in the b e s t Discount f o r a p a r t i c u l a r
RentalDuration and CarGroup , app ly t h i s
Discount to the pr i c e in CarGroupDurationPrice
and mu l t i p l y t h i s f o r the number o f a
p a r t i c u l a r RentalDuration there i s in a
RentalAgreement . F ina l l y , we add t h i s va lue to
the accumulated pr i c e and we examine the next
RentalDuration . −−

let bestSpD : Money =
r . app l i cab l eRenta lDurat ions−>i t e r a t e (elem ;
tup : Tuple{ cu r r en tPr i c e : Money=0, accPr i c e : Money=0} |

cu r r en tPr i c e = r . be s tDurat i onPr i c e s −> s e l e c t
(cGDP |
cGDP. renta lDurat ion=elem . renta lDurat ion) . p r i c e

cu r r en tPr i c e =
apply (bestDiscountPerDurat ion (elem . renta lDurat ion ,
cu r r en tPr i c e) , cu r r en tPr i c e)

accPr i c e = accPr i c e + cur r en tPr i c e ∗elem . quant i ty
) . a ccPr i c e

in

answerSOptions=Sequence{}−>append (Tuple{ id=PayType : : BasePrice ,
desc=
basePr . t oS t r i ng })−>append (Tuple{ id=PayType : : BestPrice ,
desc=bestPr . t oS t r i ng }) −>
append (Tuple{ id=PayType : : Spec ia lDiscount ,
desc=bestSpD . toS t r i ng })

−− Check i f a b l e to pay with po in t s −−
−−− 1 . Reservat ion must be made at l e a s t 14 days in advance −−
−−− 2 . Customer must be long to Loya l ty Incen t i v e −−
−−− 3 . Customer must have enough po in t s to pay −−
i f (s tar tDate >= (today ()+day (14)) and

p . oclIsTypeOf (LoyaltyMember) and (po in t s (r . b a s i cP r i c e) <=
(c . oclAsType (LoyaltyMember) . a v a i l a b l ePo i n t s))) then

answerSOptions−>append (Tuple{ id=PayType : : Points ,
desc=po in t s . t oS t r i ng })

23

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
R

en
te

r

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver Status

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

<<succeed>>

[blacklisted]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.9: Activity Diagram for Obtain Customer

else

t rue
endif

−− Return a l l p r i c e s and d i s coun t s a v a i l a b l e −−
r e s u l t = answerSOptions

3.5.1.3 Choose Price

The user chooses the price for his/her rental and decides whether to guarantee it
or not (if he provides the credit card number, he wants to guarantee the rental).

action ChoosePrice (r : Reservat ion , pm: PayType , cc : Natural)

localPre : −

localPost :
i f (pm = PayType : : Points) then

r . oc l IsTypeOf (PointsPaymentReservation)
else

i f (pm = PayType : : Spec ia lD i s count) then

r . oc l IsTypeOf (Reservat ionWithSpec ia lDiscount)
else

t rue
endif

endif

i f (cc <> nu l l) then

r . oc l IsTypeOf (GuaranteedReservation) and

r . oclAsType (GuaranteedReservation) . creditCardNumber =
cc

else

t rue
endif

24

3.5.2 Obtain Customer

3.5.2.1 Check Existing Customer

Checks whether the user is already a customer and of what type (EU_RentPerson,
EU_CoPerson or not registered).

action CheckExistingCustomer (c id : String) :
TupleType (cType : CustomerType , EU_CoP: EU_CoPerson)

localPre : −

localPost :
i f (EU_RentPerson . a l l I n s t a n c e s () −> s e l e c t (id=c id)−>notEmpty ())

then

r e s u l t = Tuple{cType=CustomerType : : EURentCustomer ,
EU_CoP=EU_CoPerson . a l l I n s t a n c e s ()−>s e l e c t (id=c id) }

else

i f (EU_CoPerson . a l l I n s t a n c e s () −>
s e l e c t (id=c id)−>notEmpty ()) then

r e s u l t = Tuple{cType=CustomerType : : EUCorpCustomer ,
EU_CoP=EU_CoPerson . a l l I n s t a n c e s ()−>s e l e c t (id=c id) }

else

r e s u l t = Tuple{cType=CustomerType : : NotRegistered ,
EU_CoP=nu l l }

endif

endif

3.5.2.2 Insert New EU_CorporationCustomer

Inserts a new EU_CoCustomer after acquiring the customer's personal infor-
mation.

Additional comments:

• The customer id (cid) in this operation must be the same as in the previous
one.

action InsertNewEU−CorpCustomer (c id : String , cname : String ,
cb i r thday : Date , cAddress : String , cTelephone : Natural) :
EU_CoPerson

localPre : −

localPost :
EU_CoPerson . a l l I n s t a n c e s ()−>ex i s t s (p | p . oclIsNew () and p . id=c id

and p . name=cname and p . b i r thday=cbir thday and

p . address=cAddress and p . te l ephone=cTelephone) and

r e s u l t=p

3.5.2.3 Add Customer's Driving License

Adds a driving license to an EU_CoPerson, so that it becomes an EU_RentPerson
and therefore eligible for renting a car with the company.

Additional comments:

• After having executed this operation, the EU_CoPerson will have been
converted into an EU_RentPerson. Therefore, it is not necessary to return

25

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
R

en
te

r

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver Status

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

<<succeed>>

[blacklisted]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.10: Activity Diagram for Pick-Up Car

the EU_RentPerson for the following operations, as it will be guaranteed
that the EU_CoPerson is an EU_RentPerson as well.

action AddCustomersDrivingLicense (EU_CoP: EU_CoPerson , dExpiry :
Date , d I s sue : Date , lnumber : Natural) : EU_RentPerson

localPre : −

localPost :
EU_CoP. oclIsTypeOf (EU_RentPerson) and

Driv ingL icense . a l l I n s t a n c e s ()−>ex i s t s (l | l . oclIsNew () and

l . number=lnumber and l . i s s u e=dIs sue and l . e xp i r a t i on=dExpiry
and l . EU_RentPerson=EU_CoP. oclAsType (EU_RentPerson)) and

r e s u l t = EU_CoP. oclAsType (EU_RentPerson)

26

3.5.3 Pick-up Car

3.5.3.1 Check RentalAgreement Status

Checks whether the customer identi�ed by a certain id has a reservation for a
car at the moment the action is called.

Additional comments:

• It returns a RentalAgreement because the Handover actions expect it. It
cannot work with Reservations because Handover is also called fromMake
Walk-In Rental, where there is no Reservation for the RentalAgreement.

action CheckRentalAgreementStatus (c id : String) : TupleType (s t a tu s :
Reservat ionStatus , time : DateTime , ra : RentalAgreement)

localPre : −

localPost :
−− Ex i s t i n g Reservat ion fo r Now −−
let r e s e r v : Reservat ion = Reservat ion . a l l I n s t a n c e s ()−> s e l e c t (r |

r . r en t e r . id=c id and r . beginning<=now() and

not (r . oc l I sKindOf (Cance ledReservat ion)) and not

r . oc l I sKindOf (OpenRental)) in

i f r e se rv−>isEmpty () then

r e s u l t = Tuple{ s t a tu s = Reservat ionStatus : : NoReservation ,
time=nul l , r e s=nu l l }

else

i f (r e s e r v . ass ignedCar−>notEmpty ()) then

i f (r e s e r v . ass ignedCar . oclIsTypeOf (Prepared)) then

r e s u l t = Tuple{ s t a tu s =
Reservat ionStatus : : CarReady ,
time=r e s e r v . ass ignedCar . oclAsType (Prepared) . actualTime ,
r e s=r e s e r v . oclAsType (RentalAgreement) }

else

r e s u l t = Tuple{ s t a tu s =
Reservat ionStatus : : CarNotReady ,
time=r e s e r v . ass ignedCar . expectedPreparedTime ,
r e s=r e s e r v . oclAsType (RentalAgreement) }

endif

else

r e s u l t = Tuple{ s t a tu s =
Reservat ionStatus : : CarNotReady , time=nul l ,
r e s=oclAsType (RentalAgreement) }

endif

endif

3.5.3.2 Choose Cancel at No Cost

As the car is not ready, the customer is given the opportunity to cancel the
reservation at no cost. In case the customer chooses to cancel it, the action
cancels the reservation stating that the company (i.e. EU-Rent) is liable for the
cancellation.

Additional comments:

• The RentalAgreement is also of the Reservation subtype, as we have chosen
an existing Reservation in the previous operation.

27

action ChooseCancelAtNoCost (ra : RentalAgreement , cance l :
Boolean) : Boolean

localPre : −

localPost :
i f (cance l) then

ra . oc l IsTypeOf (CanceledCompanyLiable) and

ra . oclAsType (CanceledCompanyLiable) . c ance l l a t i onDate =
now() and r e s u l t = true

else

r e s u l t = f a l s e
endif

3.5.3.3 Calculate Reimbursement

The action calculates the reimbursement the company has to give to the cus-
tomer in case the car was not ready at the scheduled pick-up time.

Additional comments:

• Car must be ready in order to calculate the appropriate refund.

action CalculateReimbursement (ra : RentalAgreement) : Money

localPre carReady : ra . ass ignedCar−>notEmpty () and

ra . ass ignedCar . oc lIsTypeOf (Prepared)

localPost :
let hourlyPaid : Money=

ra . bes tDurat ionPr ices−>s e l e c t (b | b . r enta lDurat ion . minimumDuration=1
and b . r enta lDurat ion . timeUnit=hour) . p r i c e

let hours : Integer= (ra . ass ignedCar . oclAsType (Prepared) . actualTime
− s e l f . r e s e r v a t i o n . beg inning . Time ()) . f l o o r () in

r e s u l t=hours ∗hourlyPaid

3.5.3.4 Reimburse Money

EU-Rent reimburses money to the customer for not having the car ready.

Deals with mate r i a l r e s ou r c e s .

3.5.3.5 Handover

Check section 3.5.4 on page 29.

3.5.3.6 Cancel Reservation Unable to Drive

Cancels the reservation because the customer is not �t to drive the car, e.g. he
may be under the in�uece of illegal drugs or alcohol.

action cance lReservat ionUnableToDrive (ra : RentalAgreement) : Natural

localPre : −

localPost :

28

ra . oc l IsTypeOf (CanceledCustomerLiable) and

ra . oclAsType (CanceledCustomerLiable) . c ance l l a t i onDate = now()
and

ra . oclAsType (CanceledCustomerLiable) . mot ivat ion=Cance l l ingMot ivat ion : : unable_to_drive
and

i f (ra . oc l IsTypeOf (GuaranteedCancel)) then

r e s u l t=ra . oclAsType (GuaranteedCancel) . f i n e
else

r e s u l t=0
endif

3.5.3.7 Pay Fine

The user has to pay a �ne for not being in an appropriate condition to drive
the car.

Deals with mate r i a l r e s ou r c e s .

3.5.4 Handover

3.5.4.1 Verify State of Customer

Checks that the customer is in a right state (e.g physically capable, not under
the in�uence of illegal drugs or drunk, etc.) to drive the car.

Deals with mate r i a l r e s ou r c e s .

3.5.4.2 Verify State of Driver

Checks that the driver is in a right state (e.g physically capable, not under the
in�uence of illegal drugs or drunk, etc.) to drive the car.

Deals with mate r i a l r e s ou r c e s .

3.5.4.3 Check Requirements Ful�lment

Check section 3.5.5 on page 31.

3.5.4.4 Sign Additional Driver's Authorization

The additional driver has to sign an authorization in order to be allowed to
drive the car.

Deals with mate r i a l r e s ou r c e s .

3.5.4.5 Add Driver to Rental

Given an EU_CoPerson and a RentalAgreement, the action adds the driver to
the given rental.

Additional comments:

• The previous operation makes sure that the EU_CoPerson is also a EU_RentPerson.

29

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
R

en
te

r

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver Status

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

<<succeed>>

[blacklisted]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.11: Activity Diagram for Handover

30

action addDriverToRental (p : EU_CoPerson , ra : RentalAgreement)

localPre :
−− We need to check the se cond i t i ons here as we do not want the

whole a c t i v i t y diagram to abor t execu t ion i f they are not met
−−

ra . beginning<=now() and ra . ass ignedCar . ocl IsTypeOf (Prepared)

localPost :
ra . dr ive r−>inc l ud e s (p . oclAsType (EU_RentPerson))

3.5.4.6 Sign Rental Agreement

The customer signs the rental agreement in order to accept the rental conditions
and be able to rent the car.

Deals with mate r i a l r e s ou r c e s

3.5.4.7 Con�rm Pick-Up

Con�rms that the car has been picked up and the rental is open.

action confirmPickUp (ra : RentalAgreement)

localPre : −

localPost :
ra . oc l IsTypeOf (OpenRental) and

ra . oclAsType (OpenRental) . actualPickUpTime=now()

3.5.4.8 Hand Car Over

The car is given to the customer.

Deals with mate r i a l r e s ou r c e s

3.5.5 Check Requirements Ful�lment

3.5.5.1 Check Existing Person

Has the same OCL code as action Check Existing Customer in section 3.5.2.1,
page 25.

3.5.5.2 Insert New EU-Corporation Driver

Inserts a new EU-Corporation customer using his/her personal data.
Additional comments:

• The postcondition checks whether the person is over 25 years of age, a
condition which is guaranteed by the integrity constraints. However, in
this particular case, we do not want to cancel the whole process if the
person does not ful�ll the requirements, as it is simply an additional driver
and not the customer.

31

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
C

us
to

m
er

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver
Blacklisted

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

[false]
<<succeed>>

[true]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.12: Activity Diagram for Check Requirements Ful�lment

action insertNewEU−Corporat ionDr iver (c id : String , cname : String ,
cb i r thday : Date , cAddress : String , cTelephone : Integer) :
EU_CoPerson

localPre : −

localPost :
i f ((today ()−cb i r thday)<year (25)) then

r e s u l t=nu l l
else

EU_CoPerson . a l l I n s t a n c e s ()−>ex i s t s (p | p . oclIsNew () and

p . id=c id and p . name=cname and p . b i r thday=cbir thday and

p . address=cAddress and p . te l ephone=cTelephone) and

r e s u l t=p
endif

3.5.5.3 Get Driving License

Obtains the driver's license information and creates a EU_RentPerson.
Additional comments:

• The postcondition checks whether the driving license is valid, a condition
which is guaranteed by the integrity constraints. However, in this partic-
ular case, we do not want to cancel the whole process if the license is not
valid, as it is simply the driving license of an additional driver and not the
customer.

32

action ge tDr iv ingL i c ense (p : EU_CoPerson , dExpiry : Date , d I s sue :
Date , lnumber : Integer)

localPre : −

localPost :
i f ((dExpiry < dIs sue) or (dExpiry < today ()) or ((today () −

dI s sue) > year (1))) then

r e s u l t=nu l l
else

p . oclIsTypeOf (EU_RentPerson) and

Driv ingL icence . a l l I n s t a n c e s ()−>ex i s t s (l | l . oclIsNew () and

l . number=lnumber and l . i s s u e=dIs sue and

l . exp i ry=dExpiry and r . d r i v i ngL i c en s e=l) and

r e s u l t=r

3.5.5.4 Check Driver Blacklisted

Checks whether the EU_RentPerson has been blacklisted.
Additional comments:

• We need to check whether the additional driver has been blacklisted. If
he has, the operation fails but it does not imply the failure of the whole
subprocess, just the insertion of the new driver (as it is shown in the
activity diagram).

action che ckDr i v e rB l a ck l i s t ed (EU_CoP: EU_CoPerson) : Boolean

localPre : −

localPost :
r e s u l t=EU_CoP. oclAsType (EU_RentPerson) . oclIsTypeOf (B l a c k l i s t e d)

3.5.6 Make Walk-In Rental

3.5.6.1 Obtain Customer

See section 3.5.2 on page 25.

3.5.6.2 Obtain Rental Data

The action obtains the data for the rental (such as the beginning and end dates,
the countries the customer wants to travel to with the car, the preferred car
group or car model, etc.) and creates the RentalAgreement.

Additional comments:

• The operation creates the RentalAgreement. There is no need to create a
Reservation because the Customer will take the car with him immediately.

• As we have previously called the action Obtain Customer, we can guaran-
tee that the EU_CoPerson is already a EU_RentPerson.

• We need a way to identify the branch from which the system is being run.
So far, we have a function, currentBranch(), that returns the Branch from
which the Reservation is being made.

33

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
A

ny

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
C

us
to

m
er

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver
Blacklisted

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

[false]
<<succeed>>

[true]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.13: Activity Diagram for Make Walk-In Rental

• We assign the car directly to the RentalAgreement. To do so, we �rst make
sure that only currently available CarModels and CarGroups are selected.
If the user chooses a CarModel, then we assign the car with least mileage
belonging to that CarModel. If the user selects a CarGroup (or if he has
not selected any), then we assign the car with the least mileage from that
group (or with the least mileage if he has not speci�ed a group).

• The description of the case study states that, when assigning cars, the
absolute mileage should be considered instead of the car's mileage since
its last service. However, in the original operation's speci�cation, the
mileage since the last service is used. We have considered that this is a
mistake, and therefore we have used the car's absolute mileage.

• The speci�cation in the original technical report does not calculate nor
show the cost of the rental to the customer, as he/she will not be able to
select any special o�ers. Apparently, then, there is no need to calculate
the cost of the rental.

action obtainRentalData (endDate : Date , pickUpBranch : String ,
dropOffBranch : String , c oun t r i e s : Set (String) , carG : String ,
carM : String , p : EU_CoPerson) : RentalAgreement

localPre avai lableCarModel : carM<>' ' implies

currentBranch () . carsAvai lableNow . carModel . name−>inc l ud e s (carM)
localPre avai lableCarGroup : carG<>' ' implies

currentBranch () . groupsAvailableNow . name−>inc l ud e s (carG)
localPre ava i l ab l eCar s : (carM = ' ' and carG = ' ') implies

currentBranch () . carsAvailableNow−>notEmpty ()

34

localPost :

let c : EU_RentPerson=p . oclAsType (EU_RentPerson) in

−− Create Rental Agreement −−
RentalAgreement . a l l I n s t a n c e s () −> ex i s t s (ra . oclIsNew () and

ra . d r i v e r=c and c . isTypeOf (Customer) and

ra . r en t e r=c . oclAsType (Customer) and ra . beg inning=now() and

ra . in i tEnd ing=endDate and ra . pickUpBranch=currentBranch () and

ra . dropOffBranch=Branch . a l l I n s t a n c e s ()−>s e l e c t (dob |
dob . name=dropOffBranch) and

−− We ass i gn the car model with the l e a s t mi leage −−
(i f (carM <> ' ') then

ra . car = currentBranch () . carsAvai lableNow −> s e l e c t (c |
c . carModel . name=carM)−>sortedBy (currentMi l eage) −>
f i r s t ()

else

(i f (carG = ' ') then

ra . car = currentBranch () . carsAvai lableNow −>
sortedBy (currentMi l eage) −> f i r s t ()

else

ra . car = currentBranch () . carsAvai lableNow −>
s e l e c t (c | c . carGroup . name=carG) −>
sortedBy (currentMi l eage) −> f i r s t ()

endif)
endif)

and

−− We add the coun t r i e s to the l i s t , i n c l ud ing the branches '
countr ies−−

count r i e s−>f o rA l l (co2 |
ra . country−>s e l e c t (count | count . name=co2)−>notEmpty ()) and

ra . country−>inc l ud e s (currentBranch () . country) and

ra . country−>inc l ud e s (Branch . a l l I n s t a n c e s ()−>s e l e c t (b |
b . name=dropOffBranch) . country) and

−− We return the Rental Agreement −−
r e s u l t = ra)

3.5.6.3 Handover

Check section 3.5.4 on page 29.

3.5.7 Extend Rental Agreement

3.5.7.1 Call Branch

The customer calls an EU-Rent branch to ask for a rental extension.

Deals with mate r i a l r e s ou r c e s .

3.5.7.2 Obtain ID, Data for Extension and Verify

This action extends a Rental Agreement as long as the customer has an open
rental that has not been closed, the new end date is later that the previous end
date and the car is not in need of maintenance.

Additional comments:

• It does not check for overlapping rentals as this is guaranteed by the
integrity constraints.

35

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
C

us
to

m
er

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver Status

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

<<succeed>>

[blacklisted]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.14: Activity Diagram for Extend Rental Agreement

• Extension must be applied to the currently OpenRental.

• It is necessary to check that Rental is not ClosedRental because Close-
dRental is a subclass of OpenRental.

• New end date must be later than agreedEnding.

action obtainIDDataExtens ionVer i fy (c id : String , newEndDate :
DateTime) : Boolean

localPre customerHasOpenRental :
Customer . a l l I n s t a n c e s ()−>

s e l e c t (c | c . id=c id) . rentalAgreement −> s e l e c t (ra |
ra . oc l IsTypeOf (OpenRental) and not

ra . oc l IsTypeOf (ClosedRental))−>notEmpty ()

localPre laterReturnDate :
let r e n t a l : OpenRental = (Customer . a l l I n s t a n c e s ()−>

s e l e c t (c | c . id=c id) . rentalAgreement −> s e l e c t (ra |
ra . oc l IsTypeOf (OpenRental) and not

ra . oc l IsTypeOf (ClosedRental))) . oclAsType (OpenRental) in

r e n t a l . agreedEnding < newEndDate

localPost :
let currentRenta l : OpenRental=
Customer . a l l I n s t a n c e s ()−> s e l e c t (c | c . id=c id) . rentalAgreement −>

s e l e c t (ra | ra . oc lIsTypeOf (OpenRental) and not

ra . oc l IsTypeOf (ClosedRental)) . oclAsType (OpenRental)
in

i f (currentRenta l . car . oc lIsTypeOf (NeedsMaintenance)) then

r e s u l t=f a l s e
else

currentRenta l . oc l IsTypeOf (ExtendedRental) and

currentRenta l . oclAsType (ExtendedRental) . lastNewEnding
= newEndDate and

currentRenta l . oclAsType (ExtendedRental) . ex t ens i on . extensionDone
= now() and r e s u l t=true

endif

36

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
R

en
te

r

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver Status

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

<<succeed>>

[blacklisted]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.15: Activity Diagram for Cancel Reservation by Customer Demand

3.5.8 Cancel Reservation by Customer Demand

3.5.8.1 Obtain Data and Cancel

This action obtains the startDate of a rental and a user's id and cancels the
corresponding reservation. It returns the money that the customer has to be
charged for the cancellation (may be 0).

Additional comments:

• The description of the use case states that a car should be freed if it
had been previously assigned to a no-show reservation. However, in the
original operation's speci�cation this is not taken care of. It is not taken
care of here either.

• A �ne should be charged if reservation is cancelled on pick-up day. This
action returns money that has to be charged.

action obtainDataAndCancel (c id : String , s ta r tDate : DateTime) :
Money

localPre : −

localPost :
let ra : RentalAgreement = Customer . a l l I n s t a n c e s ()−>

s e l e c t (c | c . id=c id and

c . beg inning=star tDate) . rentalAgreement−>s e l e c t (r |
r . oc l IsTypeOf (Reservat ion) and not

r . oc l I sKindOf (Cance ledReservat ion) and not

r . oc l I sKindOf (OpenRental)) in

ra . oc l IsTypeOf (Cance ledReservat ion) and

ra . oc l IsTypeOf (CanceledCustomerLiable) and

ra . oclAsType (CanceledCustomerLiable) . mot ivat ion=Cance l ingMotivat ion : : customer_canceled
and

ra . oclAsType (CanceledCustomerLiable) . c ance l l a t i onDate=now() and

i f (ra . oc l IsTypeOf (GuaranteedCancel)) then

r e s u l t=ra . oclAsType (GuaranteedCancel) . f i n e

37

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
R

en
te

r

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver Status

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

<<succeed>>

[blacklisted]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.16: Activity Diagram for Cancel Reservation

else

r e s u l t=0
endif

3.5.8.2 Charge Fine

The customer is charged a �ne for the cancellation of the reservation.

Deals with mate r i a l r e s ou r c e s .

3.5.9 Cancel Reservation

3.5.9.1 Cancel Reservation Company

This action cancels a user's reservation at the request of EU-Rent. However,
the customer may also have to pay a �ne if the company is forced to cancel it
due to a customer's fault (e.g. becoming blackslisted).

Additional comments:

• The original speci�cation for this operation did not charge the user for
cancelling the reservation. However, we consider that if the company is
forced to cancel a reservation because of the user's fault, the user should be
charged as if it had been a no-show reservation. The original description,
in fact, states that this is so.

• We have included the charge operation in this action, instead of having a
separate action for it, because this is done automatically and there is no
interaction with the user.

• charge() - charges the cancellation cost to the user.

action CancelReservationCompany (r e s : Reservat ion , reason :
Cance l l ingMot ivat ion)

localPre : −

localPost :

38

Cancel Reservation by Customer DemandMake Reservation Pick-Up Car Return Car

Handover

Extend Rental Agreement

Check Requirements Fulfi l lmentMake Walk-In Rental Contact Customer

Call Police

Obtain Customer Cancel Reservation

Obtain Data and Cancel

R
es

er
va

tio
n

R
en

ta
lA

gr
ee

m
en

t

Check RentalAgreement
Status

R
es

er
va

tio
n

A
ny

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

<<
m

at
er

ia
l>

>
Br

an
ch

R
en

ta
lA

gr
ee

m
en

t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

R
en

ta
lA

gr
ee

m
en

t
U

nd
ef

in
ed

<<
m

at
er

ia
l>

>
U

se
r

<<
m

at
er

ia
l>

>
C

on
tr

ac
t

<<
m

at
er

ia
l>

>
C

ar
R

en
ta

lA
gr

ee
m

en
t

EU
_R

en
tP

er
so

n

C
ar

<<
m

at
er

ia
l>

>
M

on
ey

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

EU
_C

oP
er

so
n

EU
_C

oP
er

so
n

<<
m

at
er

ia
l>

>
R

en
te

r

<<
m

at
er

ia
l>

>
Po

lic
e

<<
m

at
er

ia
l>

>
In

su
ra

nc
e

C
om

pa
ny

EU
_R

en
tP

er
so

n
EU

_C
oP

er
so

n

R
es

er
va

tio
n

<<
m

at
er

ia
l>

>
M

on
ey

Check Driver Status

Get Driving
License

Choose PriceObtain Data for Rental
and Calculate Price

<<part ic ipant>>

Choose Cancel at
No CostCancel Reservation

Unable to Drive

Handover

<<part ic ipant>>

<<part ic ipant>>

Charge Fine

<<part ic ipant>>

<<externa l>>
Call Branch

Obtain ID, Data for
Extension and Verify

Check Car

Close Rental

Handover

Obtain Rental Data Verify State of Driver

Verify State of
Customer

Sign Rental
Agreement

Sign Additional Driver's
Authorization

Hand Car Over

Add Driver to Rental

Check Requirements
Fulfillment

Confirm Pick-Up

Record Damages, Mileage and
Maintenance Record Mileage and Maintenance

<<part ic ipant>>
<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>> Pay

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Check Existing
Person

Insert New
EU-Corporation Driver

<<part ic ipant>>

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

Obtain
Customer

<<part ic ipant>>

<<part ic ipant>>

Call Customer

Call Police

Notify Insurance
Company

Check Existing
Customer

Add Customer's
Driving License

Insert New
EU-Corporation

Customer

<<part ic ipant>>

<<part ic ipant>>

<<part ic ipant>>

Cancel Reservation Company
<<part ic ipant>>

Calculate
Reimbursement

Reimburse Money

<<part ic ipant>>
Pay Fine

<<part ic ipant>>

[else]
<<cancel>>[result > 0]

[EUCorpCustomer]

[EURentCustomer]

[NotRegistered]

[else]
<<succeed>>

[else][damages]

<<cancel>>

[success]
<<succeed>>

[failure]
< < f a i l > >

<<succeed>>

[result>0] [else]

[fail]

[success]

<<succeed>>

[blacklisted]
< < f a i l > >

[EURentCustomer]

[null]
< < f a i l > >

[null]
< < f a i l > >

[NotRegistered]

[else]

[EUCorpCustomer]

[CarReady]

[NoReservation]
< < f a i l > >

<<succeed>>

[failure]

[success]
<<succeed>>

[else]

[unable to drive]
< < f a i l > >

[else]

[unable to drive]

[new driver]

[else]

[false]

[true]
<<cancel>>

[CarNotReady]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.17: Activity Diagram for Return Car

r e s . oc l IsTypeOf (CanceledCustomerLiable) and

r e s . oclAsType (CanceledCustomerLiable) . mot ivat ion=reason and

r e s . oclAsType (CanceledCustomerLiable) . c ance l l a t i onDate=now()
i f (r e s . oc l IsTypeOf (GuaranteedCanceled)) then

charge (r e s . oclAsType (GuaranteedCanceled) . f i n e)
else

t rue
endif

3.5.10 Return Car

3.5.10.1 Close Rental

This action closes the corresponding rental after a customer returns the car. It
calculates the �nal price of the rental and, if the customer has returned the car
later than expected, a bad experience is recorded.

Additional comments:

• Checks if the user ful�ls any blacklisting criterion. If ClosedRental (closedR)
is a LateReturn, then we add a BadExperience of this type to the Close-
dRental, we calculate the degree of the BadExperience and the Customer
loses his membership to the Loyal Incentive Scheme.

• As the car has been returned, we must indicate the new type of the rental,
ClosedRental.

• If the car is returned to a branch other than the pickUpBranch, then car
ownership is transfered to the dropO�Branch.

39

• Obtains the data to charge the user for the rental (payment type and
credit card number).

• To calculate the �nal price, LateReturn and a drop-o� charge are consid-
ered.

• It is not clear whether we should record a bad experience and membership
loss for the customer and the additional drivers. We have considered that
it only a�ects the renter (i.e. the customer).

• currentBranch() - returns the branch from which the system is being ex-
ecuted.

• degree() - calculates the degree of the customer's fault and returns a Level.

• dropO�Penalty() - calculates cost of dropping o� the car at a di�erent
branch than expected.

action CloseRenta l (pid : String , paymentT : PayType , cc : Integer) :
TupleType (retCar : Car , money : Money)

localPre : −

localPost :
OpenRental . a l l I n s t a n c e s ()−>s e l e c t (r | r . r en t e r . id=pid and not

r@pre . oc lIsTypeOf (ClosedRental)) . oc l IsTypeOf (ClosedRental)
let closedR : c l o s edRenta l = OpenRental . a l l I n s t a n c e s ()−>s e l e c t (r |

r . r en t e r . id=pid and not

r@pre . oc lIsTypeOf (ClosedRental)) . oclAsType (ClosedRental) in

let dropPenalty : Boolean = closedR . dropOffBranch <>
currentBranch () in

closedR . actualReturn=now() and

closedR . actualReturnBranch=currentBranch () and

(c losedR . actualReturnBranch <> closedR . pickUpBranch implies

closedR . actualReturnBranch . car−>inc l ud e s (c losedR . car) and

closedR . pickUpBranch . car−>exc ludes (closedR . car)) and

i f (c losedR . oc l I sKindOf (LateReturn)) then

Fau l tSe r i ou sne s s . a l l I n s t a n c e s ()−>ex i s t s (f s | f s . oclIsNew ()
and f s . badExperience . type=BadExpType : : la teReturn and

f s . c l o s edRenta l=closedR and

f s . degree=degree (c losedR . oclAsType (LateReturn) . e x t r a I n t e r v a l))
and

not closedR . customer . oclIsTypeOf (LoyaltyMember)
i f dropPenalty then

r e s u l t = Tuple{ retCar=closedR . car ,
money=closedR . rentalPriceWithTax +
closedR . oclAsType (LateReturn) . extraCostWithTax +
dropOffPenalty () }

else

r e s u l t=Tuple{ retCar=closedR . car ,
money=closedR . rentalPriceWithTax +
closedR . oclAsType (LateReturn) . extraCostWithTax}

endif

else

i f dropPenalty then

r e s u l t=Tuple{ retCar=closedR . car ,
money=closedR . rentalPriceWithTax+dropOffPenalty () }

else

r e s u l t=Tuple{ retCar=closedR . car ,
money=closedR . rentalPriceWithTax}

40

endif

endif

and

closedR . paymentType=paymentT and closedR . creditCarNumberDamages=cc

3.5.10.2 Pay

The customer pays for the rental.

Deals with mate r i a l r e s ou r c e s .

3.5.10.3 Check Car

The mechanic checks the car for any damages.

Deals with mate r i a l r e s ou r c e s

3.5.10.4 Record Damages, Mileage and Maintenance

This action records the new mileage of a car and, as the car has been damaged,
it records a bad experience for the customer and schedules the car reparations.
It also checks if the car needs maintenance.

Additional comments:

• It is not clear if all drivers lose Loyalty Incentive Membership or only the
renter. However, drivers don't have to be customers, and the ones that
can belong to the Loyalty Incentive are customers. Therefore, we have
considered that the renter is the only one who loses the Loyalty Incentive
Membership.

• If the customer is blacklisted, when this operation ends the integrity con-
straints are not satis�ed, as the customer's reservations are not cancelled.
This is, apparently, a contradiction with the assumption that, if at the
end of an activity diagram the system's constraints are not ful�lled, then
the whole activity diagram is reverted. However, in the state machine di-
agram, it is shown how a customer being blacklisted implies a cancellation
of the reservation.

• charge() - Automatically charges customer's credit card. We have not
included this as a separate action because we have considered that it is
done automatically without the user's nor the clerk's involvement.

• blacklistingCriteriaAchieved() - Checks if the user ful�lls the blacklisting
criteria.

• getMaintenanceDate() - Obtains a date for which car maintenance can be
performed.

action RecordDamagesMileageMaintenance (retCar : Car , deg : Level ,
dcost : Money , mi leage : Double)

localPre CorrectMi leage :
i f (retCar . ocl IsTypeOf (OwnCar)) then

41

retCar . oclAsType (OwnCar) . cur rentMi l eage < mileage
else

t rue
endif

localPost :

−− Obtain the l a s t r en t a l a s so c i a t ed with the car −−
let closedR : c l o s edRenta l = retCar . rentalAgreement−>s e l e c t (ra |

ra . oc l I sKindOf (ClosedRental))−>f o rA l l (ra |
ra . oclAsType (ClosedRental))−>sortedBy (actualReturn)−>l a s t ()

in

−− Record a bad exper ience−−
Fau l tSe r i ou sne s s . a l l I n s t a n c e s ()−>ex i s t s (f s | f s . oclIsNew () and

f s . c l o s edRenta l=closedR and

f s . badExperience . type=BadExpType : : carDamage and f s . degree=deg)
and

−− Record Car Damage −−
DamageCost . a l l I n s t a n c e s ()−>ex i s t s (dc . oclIsNew () and

dc . c l o s edRenta l=closedR and dc . p r i c e=dcost and

dc . carDamage . type=BadExpType : : carDamage) and

−− Charge Cost o f Damages −−
charge (closedR . creditCardNumberDamages , dcost) and

−− Schedule car repara t i ons −−
closedR . car . oc lIsTypeOf (RepairsScheduled) and

closedR . car . oclAsType (RepairsScheduled) . beginningDate=today ()
and

−− Customer l o s e s Loya l ty Incen t i v e membership −−
not closedR . r en t e r . oc lIsTypeOf (LoyaltyMember) and

−− Check i f customer shou ld be b l a c k l i s t e d . I f he had been
b l a c k l i s t e d be f o r e he would not have been ab l e to rent the car
in the f i r s t p lace −−

i f b l a c k l i s t i n gC r i t e r i aAch i e v e d (closedR . r en t e r) then

closedR . r en t e r . oclAsType (EU_RentPerson) . oclIsTypeOf (B l a c k l i s t e d)
and

closedR . r en t e r . oclAsType (B l a c k l i s t e d) . b l a ck l i s t edDat e=today ()
else

t rue
endif and

−− Update mi leage i f car be longs to EU_Rent and check i f i t needs
maintenance

i f retCar . oclIsTypeOf (OwnCar) then

retCar . oclAsType (OwnCar) . cur rentMi l eage=mileage and

i f (retCar . oc l I sKindOf (NeedsMaintenance)) then

retCar . ocl IsTypeOf (MaintenanceScheduled) and

retCar . oclAsType (MaintenanceScheduled) . beginningDate
= getMaintenanceDate ()

else

t rue
endif

else

t rue
endif

3.5.10.5 Record Mileage, Maintenance

The actions updates the car mileage and checks if it needs maintenance or has
to be sold.

action RecordMileageMaintenance (retCar : Car , mi leage : Double)

42

localPre CorrectMi leage :
i f (retCar . ocl IsTypeOf (OwnCar)) then

retCar . oclAsType (OwnCar) . cur rentMi l eage < mileage
else

t rue
endif

localPost :
−− Update mi leage i f car be longs to EU_Rent and check i f i t needs

maintenance
i f retCar . oclIsTypeOf (OwnCar) then

retCar . ocAsType (OwnCar) . cur rentMi l eage=mileage and

i f (retCar . oc l I sKindOf (NeedsMaintenance)) then

retCar . ocl IsTypeOf (MaintenanceScheduled) and

retCar . oclAsType (MaintenanceScheduled) . beginningDate
= getMaintenanceDate ()

else

−− Car doesn ' t need maintenance and t h e r e f o r e we
check i f i t needs to be so l d . We don ' t check
i f i t has been ass i gned because i t has j u s t
been returned −−

i f (retCar . oc l I sKindOf (NeedToBeSoldCar)) then

retCar . ocl IsTypeOf (ToBeSoldCar)
else

t rue
endif

endif

else

t rue
endif

43

Bibliography

[1] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu.
Artifact-centered operational modeling: lessons from customer engage-
ments. IBM Syst. J., 46(4):703�721, October 2007.

[2] K. Bhattacharya, R. Guthman, K. Lyman, F. F. Heath III, S. Kumaran,
P. Nandi, F. Wu, P. Athma, C. Freiberg, L. Johannsen, and A. Staudt.
A model-driven approach to industrializing discovery processes in pharma-
ceutical research. IBM Syst. J., 44(1):145�162, January 2005.

[3] Kamal Bhattacharya, Richard Hull, and Jianwen Su. A Data-Centric De-
sign Methodology for Business Processes. In Handbook of Research on
Business Process Management, pages 1�28. 2009.

[4] Elio Damaggio, Alin Deutsch, Richard Hull, and Victor Vianu. Automatic
veri�cation of data-centric business processes. In Stefanie Rinderle-Ma,
Farouk Toumani, and Karsten Wolf, editors, BPM 2011, volume 6896,
pages 3�16. Springer, 2011.

[5] Leonor Frías, Anna Queralt, and Antoni Olivé. EU-Rent Car Rentals
Speci�cation. Technical Report Technical report LSI-03-59-R, Universitat
Politècnica de Catalunya, 2003.

[6] Richard Hull. Artifact-centric business process models: Brief survey of
research results and challenges. In Robert Meersman and Zahir Tari, edi-
tors, OTM 2008, volume 5332 of LNCS, pages 1152�1163. Springer Berlin
/ Heidelberg, 2008.

[7] A Nigam and N S Caswell. Business artifacts: an approach to operational
speci�cation. IBM Syst. J., 42(3):428�445, 2003.

[8] Antoni Olivé. Conceptual Modeling of Information Systems. Springer, 2007.

[9] OMG. Uni�ed Modeling Language superstructure 2.4.1, 2011. Available
at: http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

[10] OMG. OMG Object Constraint Language version 2.3.1, 2012. Available
at: http://www.omg.org/spec/OCL/2.3.1/PDF/.

[11] Anna Queralt and Ernest Teniente. Specifying the semantics of opera-
tion contracts in conceptual modeling. In Journal on Data Semantics VII,
volume 4244 of LNCS, pages 33�56. Springer Berlin / Heidelberg, 2006.

44

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/OCL/2.3.1/PDF/

Appendices

45

Appendix A

Structural Schema in OCL

The following appendix includes the de�nition of the integrity constraints and
the derivation rules in OCL corresponding to class diagrams in Chapter 3.

A.1 Class Diagram

Following the method described in [8], in this section we present the class di-
agram with the corresponding operations that de�ne the derivation rules for
attributes and their relationships, together with the integrity constraints, also
represented as operations.

A.2 Integrity Constraints

The following section de�nes, for each class in Chapter 3, its integrity constraints
and derivation rules.

A.2.1 Branch

Id id key:

context Branch : : nameIsKey () : Boolean

body : r e s u l t=Branch . a l l I n s t a n c e s ()−> isUnique (name)

Derived relationship carsAvailableNow

context Branch : : carsAvai lableNow () : Set (OwnCar)
body : r e s u l t = s e l f . car−>s e l e c t (c | c . oc l I sKindOf (OwnCar) and

c . oclAsType (OwnCar) . a v a i l a b l e) . oclAsType (OwnCar)

Derived relationship groupsAvailableNow

context Branch : : carsAvai lableNow () : Set (CarGroup)
body : r e s u l t = s e l f . carsAvai lableNow . carModel . carGroup−>asSet ()

46

 n
am

e
: S

tri
ng

<<
IC

>>
 n

am
eI

sK
ey

()
 c

ar
sA

va
ila

bl
eN

ow
()

 g
ro

up
sA

va
ila

bl
eN

ow
()

B
ra

nc
h

 re
gi

st
ra

tio
nN

um
be

r :
 S

tri
ng

<<
IC

>>
 r

eg
is

tr
at

io
nN

um
be

rI
sK

ey
()

<<
IC

>>
 o

nl
yO

ne
A

ss
ig

nm
en

t(
)

 c
ar

G
ro

up
()

C
ar

 fa
ul

ts
()EU

_R
en

tP
er

so
n

<<
IC

>>
 r

en
ta

ls
D

oN
ot

O
ve

rla
p(

)
C

us
to

m
er

 n
um

be
r

: N
at

ur
al

 is
su

e
: D

at
e

 e
xp

ira
tio

n
: D

at
e

<<
IC

>>
 v

al
id

Li
ce

ns
e(

)
<<

IC
>>

 n
um

be
rI

sK
ey

()

D
ri

vi
ng

Li
ce

ns
e

 /
 b

as
eP

ric
e

: M
on

ey
 /

 b
es

tP
ric

e
: M

on
ey

 /
 la

st
M

od
ifi

ca
tio

n
: D

at
e

<<
IC

>>
 c

or
re

ct
In

te
rv

al
()

<<
IC

>>
 v

is
is

ts
B

ra
nc

hC
ou

nt
rie

s(
)

 b
as

ic
Pr

ic
e(

)
 b

es
tP

ric
e(

)
 b

es
tD

ur
at

io
nP

ric
es

()
 a

gr
ee

dE
nd

in
g(

)
 a

pp
lic

ab
le

D
is

co
un

tP
er

D
ur

at
io

n(
)

 re
nt

G
ro

up
()

 la
st

M
od

ifi
ca

tio
n(

)

R
en

ta
lA

gr
ee

m
en

t

 n
am

e
: S

tri
ng

 m
ec

ha
ni

ca
lC

on
di

tio
ns

R
eq

s
: S

et
(S

tri
ng

)
 e

m
is

si
on

sR
eq

s
: S

et
(S

tri
ng

)
 c

ar
Ta

x
: D

ou
bl

e
<<

IC
>>

 n
am

eI
sK

ey
()

C
ou

nt
ry

 e
xp

ec
te

dP
re

pa
re

dT
im

e
: T

im
e

<<
in

iIC
>>

 p
ic

kU
pB

ra
nc

hI
sR

es
po

ns
ib

le
()

A
ss

ig
ne

dC
ar

 a
ct

ua
lT

im
e

: T
im

e
P

re
pa

re
d

 n
am

e
: S

tri
ng

<<
IC

>>
 n

am
eI

sK
ey

()
<<

IC
>>

 t
ot

al
O

rd
er

()

C
ar

G
ro

up

 n
am

e
: S

tri
ng

 c
ha

ra
ct

er
is

tic
s

: S
eq

ue
nc

e(
St

rin
g)

<<
IC

>>
 n

am
eI

sK
ey

()

C
ar

M
od

el

D
at

eT
im

e

 re
se

rv
at

io
nD

at
e

: D
at

eT
im

e
<<

IC
>>

 o
nT

im
eR

es
er

va
tio

n(
)

<<
IC

>>
 m

od
el

sI
nG

ro
up

()

R
es

er
va

tio
n

 n
am

e
: S

tri
ng

<<
IC

>>
 n

am
eI

sK
ey

()
<<

IC
>>

 t
ot

al
O

rd
er

()

C
ar

G
ro

up

 a
ct

ua
lP

ic
kU

pT
im

e
: T

im
e

O
pe

nR
en

ta
l

 p
ay

m
en

tT
yp

e
: P

ay
Ty

pe
 c

re
di

tC
ar

dN
um

be
rD

am
ag

es
 :

N
at

ur
al

 /
 re

nt
al

Pr
ic

eW
ith

Ta
x

: M
on

ey
 re

nt
al

Pr
ic

eW
ith

Ta
x(

)

C
lo

se
dR

en
ta

l

<<
IC

>>
 t

ru
eE

xt
en

si
on

s(
)

 a
gr

ee
dE

nd
in

g(
)

E
xt

en
de

dR
en

ta
l

 n
am

e
: S

tri
ng

 e
ffe

ct
 :

St
rin

g
 d

es
cr

ip
tio

n
: S

tri
ng

 b
eg

in
ni

ng
D

at
e

: D
at

e
 re

se
rv

at
io

nT
im

e
: B

oo
le

an
<<

IC
>>

 n
am

eI
sK

ey
()

D
is

co
un

t

 n
am

e
: S

tri
ng

 m
in

im
um

D
ur

at
io

n
: N

at
ur

al
 m

ax
im

um
D

ur
at

io
n

: N
at

ur
al

 ti
m

eU
ni

t :
 P

er
io

d
<<

IC
>>

 n
am

eI
sK

ey
()

<<
IC

>>
 c

oh
er

en
tP

ric
es

()
<<

IC
>>

 t
ot

al
O

rd
er

()

R
en

ta
lD

ur
at

io
n

D
at

eT
im

e

 p
ric

e
: M

on
ey

C
ar

G
ro

up
D

ur
at

io
nP

ric
e

 e
nd

in
gD

at
e

: D
at

e
<<

IC
>>

 c
or

re
ct

E
nd

in
g(

)

E
nd

D
ur

at
io

nP
ric

e

 e
nd

in
gD

at
e

: D
at

e
<<

IC
>>

 c
or

re
ct

E
nd

in
g(

)

C
lo

se
dD

is
co

un
t

 ty
pe

 :
Ba

dE
xp

Ty
pe

<<
IC

>>
 t

yp
eI

sK
ey

()

B
ad

E
xp

er
ie

nc
e

/C
ar

D
am

ag
e

 d
eg

re
e

: L
ev

el
Fa

ul
tS

er
io

us
ne

ss

 p
ric

e
: M

on
ey

D
am

ag
eC

os
t

 re
gi

st
ra

tio
nN

um
be

r :
 S

tri
ng

<<
IC

>>
 r

eg
is

tr
at

io
nN

um
be

rI
sK

ey
()

<<
IC

>>
 o

nl
yO

ne
A

ss
ig

nm
en

t(
)

 c
ar

G
ro

up
()

C
ar

 e
xt

en
si

on
D

on
e

: D
at

eT
im

e
E

xt
en

si
on

 p
ric

e
: M

on
ey

C
ar

G
ro

up
D

ur
at

io
nP

ric
e

 d
eg

re
e

: L
ev

el
Fa

ul
tS

er
io

us
ne

ss

 c
ur

re
nt

M
ile

ag
e

: D
ou

bl
e

 m
ile

ag
eF

ro
m

La
st

Se
rv

ic
e

: D
ou

bl
e

 la
st

M
ai

nt
en

an
ce

D
at

e
: D

at
e

 a
cq

ui
si

tio
nD

at
e

: D
at

e
 /

 a
va

ila
bl

e
: B

oo
le

an
 /

 a
ss

ig
ne

d
: B

oo
le

an
 a

va
ila

bl
e(

)
 a

ss
ig

ne
d(

)

O
w

nC
ar

 /
 q

ua
nt

ity
 :

N
at

ur
al

 q
ua

nt
ity

()

/A
pp

lic
ab

le
R

en
ta

lD
ur

at
io

ns

1.
.*

0.
.*

1

1.
.*

1

*

ag
re

ed
En

di
ng

0.
.1

0.
.1

w
or

se

be
tte

r

1

0.
.*

1

*
pi

ck
U

pB
ra

nc
h

*

1
ac

tu
al

R
et

ur
n

0.
.*

0.
.*

*

1.
.*

0.
.1

0.
.1

sh
or

te
r

lo
ng

er

1

*

*

*

gr
ou

ps
Av

ai
la

bl
eN

ow

0.
.1

0.
.*

la
st

N
ew

En
di

ng

0.
.1

*

*

1 dr
op

O
ffB

ra
nc

h

*

*

dr
iv

er

re
nt

al
sA

sD
riv

er

*

*

1.
.*

1

*

in
itE

nd
in

g

*
0.

.1

*

0.
.1

re
qu

es
te

dM
od

el

1

1

1

*

re
nt

G
ro

up

be
st

D
ur

at
io

nP
ric

es

*

1
re

qu
es

te
dG

ro
up

1.
.*

*

1

1.
.*

ac
tu

al
R

et
ur

nB
ra

nc
h

1

*

1.
.*

*

be
gi

nn
in

g
re

nt
er

*

be
gi

nn
in

g

1.
.*

1

ca
rG

ro
up

0.
.*

1.
.*

fa
ul

ts

0.
.*

0.
.1

ca
rs

Av
ai

la
bl

eN
ow

*

/A
pp

lic
ab

le
R

en
ta

lD
ur

at
io

ns

Ap
pl

ic
ab

le
G

ro
up

s

/is
A

va
ila

bl
e

/G
ro

up
A

va
ila

bi
lit

y

/H
as

Fa
ul

ts

/B
es

tD
ur

at
io

ns

^i
sR

es
po

ns
ib

le
Fo

r

{s
ub

se
ts

}

D
am

ag
eC

os
t

Fa
ul

tS
er

io
us

ne
ss

A
pp

lic
ab

le
D

ur
at

io
ns

Ex
te

ns
io

n

R
et

ur
ne

dT
o

R
et

ur
ne

dA
t

R
en

ta
lA

gr
ee

m
en

t

in
iti

al
E

nd
in

g

/ a
gr

ee
dE

nd
in

g

<
is

In

is
O

fA

/ i
sG

ro
up

ca
te

go
ry

O
rd

er

/

vi
si

ts
^

is
Lo

ca
te

dA
t

pi
ck

U
p

As
si

gn
ed

C
ar

<
dr

iv
es

dr
op

O
ff

ha
s

Vi
su

al
 P

ar
ad

ig
m

 fo
r U

M
L

C
om

m
un

ity
 E

di
tio

n
[n

ot
 fo

r c
om

m
er

ci
al

 u
se

]

F
ig
u
re

A
.1
:
M
a
in

cl
a
ss

d
ia
g
ra
m

fo
r
E
U
-R
en
t
C
a
r
R
en
ta
l
S
er
v
ic
e.

47

 faults()
EU_RentPerson

<<IC>> rentalsDoNotOverlap()
Customer

 membershipDate : Date
 / availablePoints : Natural
 availablePoints()
<<IC>> meetsLoyalPermanence()

LoyaltyMember

 blacklistedDate : Date
<<IC>> noRentals()

Blacklisted

 id : String
 name : String
 address String
 birthdate : Date
 telephone : Natural
<<IC>> is25orOlder()
<<IC>> idIsKey()

EU_CoPerson
Visual Paradigm for UML Community Edition [not for commercial use]

Figure A.2: Class diagram of EU_CoPerson and its subclasses

A.2.2 EU_CoPerson

Id is key:

context EU_CoPerson : : idIsKey () : Boolean

body : r e s u l t = EU_CoPerson . a l l I n s t a n c e s ()−>isUnique (id)

Must be 25 or older:

context EU_CoPerson : : i s25OrOlder () : Boolean

body : r e s u l t = today ()− s e l f . b i r thda t e () >= year (25))

A.2.3 EU_RentPerson

Derived relationship faults:

context EU_RentPerson : : f a u l t s () : Boolean

body :
let f au l t sAsDr iv e r : Fau l tSe r i ou sne s s = s e l f . r en ta l sAsDr ive r −>

s e l e c t (rA |
rA . oclIsTypeOf (ClosedRental)) . oclAsType (ClosedRental) . f a u l t S e r i o u s n e s s

let f au l t sAsRenter : Fau l tSe r i ou sne s s = Customer . a l l I n s t a n c e s () −>
s e l e c t (c | c . id = s e l f . id) . rentalAgreement −> s e l e c t (rA |
rA . oclIsTypeOf (ClosedRental)) . oclAsType (ClosedRental) . f a u l t S e r i o u s n e s s

in

r e s u l t = fau l t sAsDr ive r−>asSet ()−> union (fau l t sAsRenter)−>asSet ()

48

 reservationDate : DateTime
<<IC>> onTimeReservation()
<<IC>> modelsInGroup()

Reservation

 bestPrice()
ReservationWithSpecialDiscount

 cancellationDate : DateTime
<<IC>> correctCancellation()

CanceledReservation

<<IC>> _14DaysInAdvance()
PointsPaymentReservation creditCardNumber : Natural

GuaranteedReservation
 motivation : CancellingMotivation

CanceledCustomerLiable CanceledCompanyLiable

 / fine : Money {frozen}
 fine()
 allInstances()

/ GuaranteedCanceled

{d,c}

Visual Paradigm for UML Community Edition [not for commercial use]

Figure A.3: Class diagram of Reservation and its subclasses

A.2.4 RentalAgreement

The pick-up and drop-o� branches' countries must be included in the list of
countries of the RentalAgreement :

context RentalAgreement : : v i s i t sBranchCount r i e s () : Boolean

body : r e s u l t = s e l f . Countr ies−>inc l ud e s (s e l f . PickUpBranch . Country)
and s e l f . Countr ies−>inc l ud e s (s e l f . DropOffBranch . Country)

Correct interval for rental agreement:

context RentalAgreement : : c o r r e c t I n t e r v a l () : Boolean

body : r e s u l t=s e l f . beginning< s e l f . in i tEnd ing and

s e l f . actualReturn> s e l f . beg inning

Derived attribute basicPrice1:

context RentalAgreement : : b a s i cP r i c e () : Money
body :
−− We have to c a l c u l a t e the pr i c e cons ider ing the b e s t a p p l i c a b l e

pr ices , but wi thout any d i s coun t s . −−
−− 1 . Each RentalAgreement i s a s soc i a t ed to var ious

RentalDurations .
−− 2 . Each RentalAgreement i s l i n k ed to var ious

CarGroupDurationPrices (through bes tDurat ionPr ices) . This
conta ins the b e s t p r i c e f o r each r en t a l durat ion fo r the
CarGroup of the RentalAgreement . That i s , f o r every
RentalDuration , there i s e x a c t l y one CarGroupDurationPrice . −−

−− 3 . This imp l i e s that , i f we nav iga te the r e l a t i o n s h i p
bes tDura t ionPr ices and s e l e c t the CarGroupDurationPrice f o r a
p a r t i c u l a r RentalDuration , there w i l l on ly be ONE
CarGroupDurationPrice .

−− 2 . 3 . 4 . We c a l c u l a t e the pr i c e o f the r en t a l by i t e r a t i n g
through the RentalDurations l i n k ed to the RentalAgreement and
s e l e c t i n g the corresponding pr i c e in bes tDurat ionPr ices . We

1This code has been changed from the original speci�cation in [5].

49

 registrationNumber : String
<<IC>> registrationNumberIsKey()
<<IC>> onlyOneAssignment()
 carGroup()

Car

 currentMileage : Double
 mileageFromLastService : Double
 lastMaintenanceDate : Date
 acquisitionDate : Date
 / available : Boolean
 / assigned : Boolean
 available()
 assigned()

OwnCar

 beginningDate : Date
RepairsScheduled

<<IC>> notOver10Percent()
 allInstances()

/NeedsMaintenance

<<IC>> notAssignedReservation()
ToBeSoldCar

 beginningDate : Date
MaintenanceScheduled

 allInstances()
/NeedToBeSoldCar

BeingTransferred

Visual Paradigm for UML Community Edition [not for commercial use]

Figure A.4: Class diagram of Car and its subclasses

then mu l t i p l y t h i s f o r the number o f a p a r t i c u l a r
RentalDuration there i s in a RentalAgreement . F ina l l y , we add
t h i s va lue to the accumulated pr i c e and we examine the next
RentalDuration . −−

r e s u l t =
s e l f . app l i cab leRenta lDurat ion−>i t e r a t e (elem ;
tup : Tuple{ cu r r en tPr i c e : Money=0, accPr i c e :
Money=0} |

cu r r en tPr i c e = s e l f . be s tDurat i onPr i c e s −>
s e l e c t (cGDP |
cGDP. renta lDurat ion=elem . renta lDurat ion) . p r i c e

accPr i c e = accPr i c e +
cur r en tPr i c e ∗elem . quant i ty

) . a ccPr i c e

Derived attribute bestPrice2 :

context RentalAgreement : : b e s tPr i c e () : Money
body :

−− We have to c a l c u l a t e the pr i c e cons ider ing the d i s coun t s
a v a i l a b l e . However , we must exc lude those d i s coun t s t ha t are
only a p p l i c a b l e at r e s e r va t i on time , as the func t i on i s in
RentalAgreement and may not be o f the Reservat ion subtype . −−

−− 1 . We s e l e c t those d i s coun t s a p p l i c a b l e to the p a r t i c u l a r
rentGroup and the l a s t mod i f i ca t i on o f the ren ta l , e xc l ud ing
those t ha t must be s e l e c t e d at r e s e r va t i on time . We a l s o check
i f i t s a p p l i c a b l e to the Customer . −−

let

app l i c ab l eD i s count s : Set (Discount)=s e l f . rentGroup . discount−>s e l e c t (d i s
| d i s . beginningDate<=s e l f . in i tEnd ing and

(d i s . oc l IsTypeOf (ClosedDiscount) implies

d i s . oclAsType (ClosedDiscount) . endingDate>=s e l f . l a s tMod i f i c a t i o n)
and d i s . reservat ionTime=f a l s e and app l i c ab l e (d is , c)) in

2This code has been modi�ed from the original speci�cation in [5].

50

 paymentType : PayType
 creditCardNumberDamages : Natural
 / rentalPriceWithTax : Money
 rentalPriceWithTax()

ClosedRental

 / extraInterval : Duration
 / extraCostWithTax : Money
 allInstances()
 extraCostWithTax()

/LateReturn allInstances()
/EarlyReturn

<<IC>> enoughInAdvance()
<<iniIC>> customerIsLoyaltyMember()
 allInstances()
 bestPrice()

/PaidWithPointsRental

return_time {d,c}

Visual Paradigm for UML Community Edition [not for commercial use]

Figure A.5: Class diagram of ClosedRental and its subclasses

 blacklisting
 no_show
 unable_to_drive
 customer_canceled

<<enumerat ion>>
Cancell ingMotivation

 EUCorpCustomer
 EURentCustomer
 NotRegistered

<<enumerat ion>>
CustomerType

 CarReady
 CarNotReady
 NoReservation

<<enumerat ion>>
ReservationStatus

 Points
 SpecialDiscount
 BestPrice
 BasePrice

<<enumerat ion>>
PayType

 veryhigh
 high
 medium
 low
 verylow

<<enumerat ion>>
Level

 lateReturn
 carDamage
 paymentProblem

<<enumerat ion>>
BadExpType

 hour
 day

<<enumerat ion>>
Period

 mileageForService : Double = 10000
 timeForService : Duration = (month, 3)

MaintenanceRequirements

 Unit : Period
 numberOfUnits : Natural

Durat ion

Visual Paradigm for UML Community Edition [not for commercial use]

Figure A.6: De�nition of types

−− 2 . We crea t e a func t i on to determine , o f a l l
app l i cab l eDi scoun t s , the b e s t one f o r a p a r t i c u l a r durat ion −−

let bestDiscountPerDurat ion (rd : RentalDuration , p r i c e :
Money) : Discount = app l i cab l eDi s count s−>s e l e c t (d |
d . r enta lDurat ion=rd)−> r e j e c t (disAct : Discount |
app l i c ab l eD i s count s −> s e l e c t (d2 |
d2 . r enta lDurat ion=rd) −> ex i s t s (d isOther : Discount |
apply (disOther , p r i c e) . i sB e t t e r (apply (disAct ,
p r i c e)))−>any ()

−− 3 . We c a l c u l a t e the pr i c e o f the r en t a l i n c l ud ing the d i s coun t s
−−

−− 3 . 1 . Each RentalAgreement i s a s soc i a t ed to var ious
RentalDurations . −−

−− 3 . 2 . Each RentalAgreement i s l i n k ed to var ious
CarGroupDurationPrices (through bes tDurat ionPr ices) .
This conta ins the b e s t p r i c e f o r each r en t a l durat ion
fo r the CarGroup of the RentalAgreement . That i s , f o r
every RentalDuration , there i s e x a c t l y one
CarGroupDurationPrice . −−

51

−− 3 . 3 . This imp l i e s that , i f we nav iga te the r e l a t i o n s h i p
bes tDura t ionPr ices and s e l e c t the
CarGroupDurationPrice f o r a p a r t i c u l a r RentalDuration ,
there w i l l on ly be ONE CarGroupDurationPrice . −−

−− 3 . 4 . We c a l c u l a t e the pr i c e o f the r en t a l by i t e r a t i n g
through the RentalDurations l i n k ed to the
RentalAgreement and s e l e c t i n g the corresponding pr i c e
in bes tDurat ionPr ices . We then ob ta in the b e s t
Discount f o r a p a r t i c u l a r RentalDuration and CarGroup ,
app ly t h i s Discount to the pr i c e in
CarGroupDurationPrice and mu l t i p l y t h i s f o r the number
o f a p a r t i c u l a r RentalDuration there i s in a
RentalAgreement . F ina l l y , we add t h i s va lue to the
accumulated pr i c e and we examine the next
RentalDuration . −−

r e s u l t =
s e l f . app l i cab leRenta lDurat ion−>i t e r a t e (elem ;
tup : Tuple{ cu r r en tPr i c e : Money=0, accPr i c e :
Money=0} |

cu r r en tPr i c e = s e l f . be s tDurat i onPr i c e s −>
s e l e c t (cGDP |
cGDP. renta lDurat ion=elem . renta lDurat ion) . p r i c e

cu r r en tPr i c e =
apply (bestDiscountPerDurat ion (elem . renta lDurat ion ,
cu r r en tPr i c e) , cu r r en tPr i c e)

accPr i c e = accPr i c e +
cur r en tPr i c e ∗elem . quant i ty

) . a ccPr i c e

Derived attribute lastModi�cation:

context RentalAgreement : : l a s tMod i f i c a t i o n () : DateTime
body :
i f s e l f . oc l IsTypeOf (Reservat ion) then

r e s u l t = s e l f . r e s e rvat i onDate
else

r e s u l t = s e l f . beg inning
endif

Derived relationship bestDurationPrices

context RentalAgreement : : be s tDurat i onPr i c e s () :
Set (CarGroupDurationPrice)

body :
let app l i cab l eDurat i on : Set (CarGroupDurationPrice)=

s e l f . rentGroup . carGroupDurationPrice −> s e l e c t (cg :
CarGroupDurationPrice | cg . beginning<= s e l f . ending and

(cg . ocl IsTypeOf (EndDurationPrice) implies

cg . oclAsType (EndDurationPrice) . endingDate >=
s e l f . l a s tMod i f i c a t i o n)

let bestCurrentDurat ion : Set (CarGroupDurationPrice)=
appl i cab leDurat ion−>r e j e c t (cgCur : CarGroupDurationPrice |
app l i cab leDurat ion−> ex i s t s (cgOther : CarGroupDurationPrice |
cgOther . r enta lDurat ion=cgCur . r enta lDurat ion and

cgOther . carGroup= cgCur . carGroup and

cgOther . p r i c e<cgCur . p r i c e))
in

r e s u l t = bestCurrentDurat ion −> sortedBy (renta lDurat ion . s ho r t e r)

Derived relationship rentalDuration3

3This relationship and its correspoding associative class do not appear in the original
speci�cation in [5]. We suppose that duration of a rental is measured either in days or hours.

52

context RentalAgreement : : r enta lDurat ion () : Set (RentalDuration)
body :
let renta lDur : Duration = durationT (s e l f . agreedEnding −

s e l f . in i tEnd ing)
let renta lDays : Natural = renta lDur . numberOfUnits in

let poss ib leRenta lDur : Set (RentalDuration) =
i f (renta lDur . un i t = Period : : day) then

RentalDuration . a l l I n s t a n c e s ()−>s e l e c t (rd |
rd . timeUnit=Period : : day)−>sortedBy (maximumDuration)−>rev e r s e ()

else

−− The r en t a l w i l l on ly be f o r a few hours −−
RentalDuration . a l l I n s t a n c e s ()−>s e l e c t (rd |

rd . timeUnit=Period : : hour)−>sortedBy (maximumDuration)−>rev e r s e ()
endif

in

poss ib leRenta lDur−>i t e r a t e (elem ;
se lRentalDur : OrderedSet (RentalDuration)−>isEmpty ()
|

i f (renta lDays >= elem . maximumDuration)
then

se lRentalDur=selRentalDur−>inc lud ing (elem)
renta lDays=renta lDays%maximumDuration

else

t rue
endif

i f (renta lDays >= elem . minimumDuration)
then

se lRentalDur=selRentalDur−>inc lud ing (elem)
renta lDays=renta lDays%minimumDuration

else

t rue
endif

)
r e s u l t = se lRentalDur

Derived relationship agreedEnding.

context RentalAgreement : : agreedEnding () : DateTime
body : r e s u l t= in i tEnd ing

Derived relationship rentGroup:

context RentalAgreement : : rentGroup () : CarGroup
body :
i f s e l f . oc l I sKindOf (Reservat ion) then

i f s e l f . car−>isEmpty () or

s e l f . car . carGroup<>s e l f . carGroup . worse then

r e s u l t=s e l f . carGroup
else

r e s u l t=s e l f . carGroup . worse
endif

else

r e s u l t=s e l f . car . carGroup
endif

A.2.5 Reservation

Reservation date of a rental must be previous to its beginning date.

context Reservat ion : : onTimeReservation () : Boolean

body : r e s u l t=s e l f . r e s e rva t i onDate < s e l f . beg inning

53

Requested car model must be in requested car group.

context Reservat ion : : modelIsInGroup () : Boolean

body : r e s u l t=s e l f . requestedModel−>notEmpty () implies

s e l f . requestedModel . carGroup=s e l f . requestedGroup

A.2.6 ReservationWithSpecialDiscount

Derived attribute bestPrice:

• This code has been modi�ed from the original speci�cation in [5].

context Reservat ionWithSpec ia lDiscount : : b e s tPr i c e () : Money
body :
−− We have to c a l c u l a t e the pr i c e cons ider ing the d i s coun t s

a v a i l a b l e at r e s e r va t i on time −−
−− 1 . We s e l e c t those d i s coun t s a p p l i c a b l e to the p a r t i c u l a r

rentGroup and l a s t mod i f i ca t i on o f the r en t a l . We a l s o check
i f i t s a p p l i c a b l e to the Customer . −−

let

app l i c ab l eD i s count s : Set (Discount)=s e l f . rentGroup . discount−>s e l e c t (d i s
| d i s . beginningDate<=s e l f . in i tEnd ing and

(d i s . oc l IsTypeOf (ClosedDiscount) implies

d i s . oclAsType (ClosedDiscount) . endingDate>=s e l f . l a s tMod i f i c a t i o n
and app l i c ab l e (d is , c)) in

−− 2 . We crea t e a func t i on to determine , o f a l l
app l i cab l eDi scoun t s , the b e s t one fo r a p a r t i c u l a r durat ion −−

let bestDiscountPerDurat ion (rd : RentalDuration , p r i c e :
Money) : Discount = app l i cab l eDi s count s−>s e l e c t (d |
d . r enta lDurat ion=rd)−> r e j e c t (disAct : Discount |
app l i c ab l eD i s count s −> s e l e c t (d2 |
d2 . r enta lDurat ion=rd) −> ex i s t s (d isOther : Discount |
apply (disOther , p r i c e) . i sB e t t e r (apply (disAct ,
p r i c e)))−>any ()

−− 3 . We c a l c u l a t e the pr i c e o f the r en t a l i n c l ud ing the d i s coun t s
−−

−− 3 . 1 . Each RentalAgreement i s a s soc i a t ed to var ious
RentalDurations . −−

−− 3 . 2 . Each RentalAgreement i s l i n k ed to var ious
CarGroupDurationPrices (through bes tDurat ionPr ices) .
This conta ins the b e s t p r i c e f o r each r en t a l durat ion
fo r the CarGroup of the RentalAgreement . That i s , f o r
every RentalDuration , there i s e x a c t l y one
CarGroupDurationPrice . −−

−− 3 . 3 . This imp l i e s that , i f we nav iga te the r e l a t i o n s h i p
bes tDura t ionPr ices and s e l e c t the
CarGroupDurationPrice f o r a p a r t i c u l a r RentalDuration ,
there w i l l on ly be ONE CarGroupDurationPrice . −−

−− 3 . 4 . We c a l c u l a t e the pr i c e o f the r en t a l by i t e r a t i n g
through the RentalDurations l i n k ed to the
RentalAgreement and s e l e c t i n g the corresponding pr i c e
in bes tDurat ionPr ices . We then ob ta in the b e s t
Discount f o r a p a r t i c u l a r RentalDuration and CarGroup ,
app ly t h i s Discount to the pr i c e in
CarGroupDurationPrice and mu l t i p l y t h i s f o r the number
o f a p a r t i c u l a r RentalDuration there i s in a
RentalAgreement . F ina l l y , we add t h i s va lue to the
accumulated pr i c e and we examine the next
RentalDuration . −−

54

r e s u l t =
s e l f . app l i cab leRenta lDurat ion−>i t e r a t e (elem ;
tup : Tuple{ cu r r en tPr i c e : Money=0, accPr i c e :
Money=0} |

cu r r en tPr i c e = s e l f . be s tDurat i onPr i c e s −>
s e l e c t (cGDP |
cGDP. renta lDurat ion=elem . renta lDurat ion) . p r i c e

cu r r en tPr i c e =
apply (bestDiscountPerDurat ion (elem . renta lDurat ion ,
cu r r en tPr i c e) , cu r r en tPr i c e)

accPr i c e = accPr i c e +
cur r en tPr i c e ∗elem . quant i ty

) . a ccPr i c e

A.2.7 PointsPaymentReservation

PointsPaymentReservation must be made at least 14 days in advance of its
beginning date.

context PointsPaymentReservation : : _14DaysInAdvance () : Boolean

body : r e s u l t =(s e l f . beginning−s e l f . r e s e rva t i onDate)>=day (14)

A.2.8 CanceledReservation

Cancellation date of a reservation must be after or on the same reservation date
and before the beginning date, on the same date or the day after. This has been
changed from the original report.

context Cance ledReservat ion : : c o r r e c tCanc e l l a t i o n () : Boolean

body : r e s u l t =(s e l f . cance l l a t i onDate>=s e l f . r e s e rva t i onDate and

s e l f . cance l l a t i onDate <=(s e l f . beg inning+day (1)))

A.2.9 GuaranteedCanceled

Derived class:

context GuaranteedCanceled : : a l l I n s t a n c e s () :
Set (GuaranteedCanceled)

body : r e s u l t=CanceledCustomerLiable . a l l I n s t a n c e s ()−>
i n t e r s e c t i o n (GuaranteedReservation . a l l I n s t a n c e s ())

Derived attribute �ne:

context GuaranteedCanceled : : f i n e () : Money
body :
i f s e l f . beg inning=s e l f . c anc e l l a t i onDate then

r e s u l t = s e l f . bes tDurat ionPr ices−>s e l e c t (cGDP |
not (cGDP. oclIsTypeOf (EndDurationPrice)) and

cGDP. renta lDurat ion . timeUnit= Period : : day and

cGDP. renta lDurat ion . minimumDuration=1)−>f i r s t () . p r i c e
else

r e s u l t = 0
endif

55

A.2.10 ExtendedRental

Rental extension must be done after the beginning date of the rental agreement
and the new end date should be later than initial end date. Note that this
constraint has been rewritten, as the original code did not tally with the original
class diagram.

context ExtendedRental : : t rueExtens ion () : Boolean

body : r e s u l t= s e l f . ex t ens i on . extensionDone > s e l f . beg inning and

s e l f . lastNewEnding > s e l f . i n i t i a lEnd i n g

Derived attribute lastModi�cation. Note that this constraint has been rewritten:

context ExtendedRental : : l a s tMod i f i c a t i o n () : DateTime
body : r e s u l t=s e l f . ex t ens i on . extensionDone

Derived attribute agreedEnding :

context ExtendedRental : : agreedEnding () : DateTime
body : r e s u l t=s e l f . lastNewEnding

A.2.11 ClosedRental

Derived attribute rentalPriceWithTax :

context ClosedRental : : rentalPriceWithTax () : Money
body : r e s u l t= s e l f . b e s tPr i c e ∗

s e l f . actualReturnBranch . country . carTax

A.2.12 PaidWithPointsRental

The Reservation for the corresponding rental was made at least 14 days in
advance of the rental's beginning date.

context PaidWithPointsRental : : enoughInAdvance () : Boolean

body : r e s u l t= (s e l f . oc l IsTypeOf (Reservat ion) and

(s e l f . beg inning . day ()−
s e l f . oclAsType (Reservat ion) . r e s e rvat i onDate . day ())>=day (14))

Customer must be member of Loyalty Incentive Scheme in order to pay with
points. It is a initial constraint as the customer must be a Loyalty Incentive
Member only at the time of paying; later on he/she may not be a member any
longer.

context PaidWithPointsRental : : customerIsLoyaltyMember () : Boolean

body : r e s u l t = s e l f . r en t e r . oc l IsTypeOf (LoyaltyMember)

Derived class:

context PaidWithPointsRental : : a l l I n s t a n c e s () :
Set (PaidWithPointsRental)

body : r e s u l t= ClosedRental . a l l I n s t an c e s−>s e l e c t (cR | cR . paymentType=
payType : : po in t s)

Derived attribute bestPrice:

context PaidWithPointsRental : : b e s tPr i c e () : Money
body : r e s u l t=ba s i cP r i c e

56

A.2.13 LateReturn

Derived class:

context LateReturn : : a l l I n s t a n c e s () : Set (LateReturn)
body : r e s u l t= ClosedRental . a l l I n s t a n c e s ()−>s e l e c t (cR |

cR . actualReturn > cR . agreedEnding)

Derived attribute extraInterval

context LateReturn : : e x t r a I n t e r v a l () : Duration
body : r e s u l t = s e l f . actualReturn−s e l f . agreedEnding

Derived attribute extraCostWithTax :

let timeUnit : Per iod=
i f s e l f . e x t r a I n t e r v a l . un i t=Period : : hour and

s e l f . e x t r a I n t e r v a l . numberOfUnits <= 6 then

Period : : hour
else

Period : : day
endif

in

let durat i onPr i c e : Money= s e l f . bes tDurat ionPr ices−>s e l e c t (cGDP |
not (cGDP. oclIsTypeOf (EndDurationPrice)) and cGDP. timeUnit=
timeUnit and minimumDuration=1)−>f i r s t () . p r i c e

let ex t r aPr i c e : Money=
durat i onPr i c e ∗(e x t r a I n t e r v a l /durationT (timeUnit , 1))+
durat i onPr i c e ∗(e x t r a I n t e r v a l%durationT (timeUnit , 1)) in

r e s u l t= ex t raPr i c e ∗ s e l f . actualReturnBranch . country . carTax

A.2.14 EarlyReturn

Derived class:

context EarlyReturn : : a l l I n s t a n c e s () : Set (EarlyReturn)
body : ClosedRental . a l l I n s t a n c e s ()−>s e l e c t (in i tEnding−

actualReturn> hour (1))

A.2.15 Car

Car can only be assigned, at most, to one rental; excluding both closed and
canceled rentals.

context Car : : onlyOneCarAssignment () : Boolean

body : r e s u l t = s e l f . rentalAgreement−>s e l e c t (rA |
not (rA . oclIsTypeOf (Cance ledReservat ion)) and

not (rA . oclIsTypeOf (ClosedRental)))−>s i z e ()<=1

Car is identi�ed by registration number

context Car : : reg i strat ionNumberIsKey () : Boolean

body : r e s u l t = Car . a l l I n s t a n c e s ()−>isUnique (reg i s t rat ionNumber)

Derived relationship carGroup:

context Car : : carGroup () : CarGroup
r e s u l t=s e l f . carModel . carGroup

57

A.2.16 OwnCar

Derived attribute available

context OwnCar : : a v a i l a b l e () : Boolean

body : r e s u l t= not (s e l f . oc l IsTypeOf (NeedsMaintenance)) and

not (s e l f . oc l IsTypeOf (RepairsScheduled)) and

not (s e l f . oc l I sKindOf (ToBeSoldCar)) and not (s e l f . a s s i gned) and

not (s e l f . oc l IsTypeOf (BeingTransferredCar)) and

not (s e l f . oc l IsTypeOf (NeedToBeSoldCar))

Derived attribute assigned

context OwnCar : : a s s i gned () : Boolean

body : r e s u l t= car . rentalAgreement−>ex i s t s (rA |
not (rA . oclIsTypeOf (Cance ledReservat ion) and

not (rA . oclIsTypeOf (ClosedRental)))

A.2.17 AssignedCar

At the time when a car is assigned to a RentalAgrement (exluduing closed rentals
and canceled rentals) the pick-up branch becomes responible for the car.

context AssignedCar : : p ickUpBranchisRespons ib le () : Boolean

body : r e s u l t= s e l f . car . branch = s e l f . rentalAgreement . pickUpBranch

A.2.18 NeedsMaintenance

A Car that needs maintenance cannot have more than 10% of the mileage re-
quired for maintenance and not more than 10% of the required time between
services may have elapsed.

context NeedsMaintenance : : notOver10Percent () : Boolean

body : r e s u l t = ((cur rentMi l eage − mileageFromLastService) <=
(1 ,1∗MaintenanceRequirements . mi l eageForServ i ce)) or ((now() −
lastMaintenanceDate) <=
(1 ,1∗MaintenanceRequirements . t imeForServ ice))

Derived class:

context NeedsMaintenance : : a l l I n s t a n c e s () : Set (NeedsMaintenance)
r e s u l t= OwnCar . a l l I n s t a n c e s ()−>s e l e c t (currentMi l eage −

mileageFromLastService >=
MaintenanceRequirements . mi l eageForServ i ce or now()
−lastMaintenanceDate > MaintenanceRequirements . t imeForServ ice)

A.2.19 NeedToBeSoldCar

Derived class:

context NeedToBeSoldCar : : a l l I n s t a n c e s () : Set (NeedToBeSoldCar)
body : OwnCar . a l l I n s t a n c e s ()−>s e l e c t (c | today ()−c . a cqu i s i t i onDate >=

year (1) or s e l f . currentMi leage >=40,000)

58

A.2.20 ToBeSoldCar

A Car that is to be sold cannot be assigned to a rental, excepting those rentals
that are closed or canceled.

context ToBeSoldCar : : notAss ignedReservat ion () : Boolean

body : r e s u l t = s e l f . rentalAgreement−>f o rA l l (r |
r . oc l I sKindOf (ClosedRental) or

r . oc l I sKindOf (Cance ledReservat ion))

A.2.21 CarModel

CarModel is identi�ed by its name.

context CarModel : : nameIsKey () : Boolean

body : r e s u l t = CarModel . a l l I n s t a n c e s ()−>isUnique (name)

A.2.22 CarGroup

CarGroup is identi�ed by its name.

context CarGroup : : nameIsKey () : Boolean

body : r e s u l t = CarGroup . a l l I n s t a n c e s ()−>isUnique (name)

Makes sure that the order of CarGroups is coherent (i.e there are no cycles).

context CarGroup : : to ta lOrder () : Boolean

let isWorse (w, b : CarGroup) :Boolean= b . worse=w or isWorse (w, b . worse)
let i sB e t t e r (b ,w: CarGroup) :Boolean= w. be t t e r=b or

i sB e t t e r (b ,w. b e t t e r)
in r e s u l t = CarGroup . a l l I n s t a n c e s ()−>one (cg | cg . worse−>isEmpty ())

and CarGroup . a l l I n s t a n c e s ()−>one (cg | cg . bet te r−>isEmpty ()) and

CarGroup . a l l I n s t a n c e s ()−>f o r a l l (cg1 , cg2 | isWorse (cg1 , cg2)
implies not i sB e t t e r (cg1 , cg2) and i sB e t t e r (cg1 , cg2) implies

not isWorse (cg1 , cg2))

A.2.23 Customer

RentalAgreements of a Customer do not overlap.

context Customer : : rentalsDoNotOverlap () : Boolean

body : r e s u l t=s e l f . rentalAgreement−> r e j e c t (rA |
rA . oc l I sKindOf (Cance ledReservat ion)−>notEx i s t s (rA |
s e l f . rentalAgreement−>s e l e c t (rAOther |
rAOther . beg inning . day ()> rA . beg inning . day ())−>ex i s t s (rAOther |
rAOther . beg inning . day () <= rA . agreedEnding . day ()))

A.2.24 LoyaltyMember

A member of the loyalty incentive scheme rented at least one car during the last
year and does not have any bad experience.

context LoyaltyMember : : meetsLoyalPermanence () : Boolean

body : r e s u l t = (s e l f . rentalAgreement . beginning−>ex i s t s (dT |
dT>(now()−year (1))) and s e l f . f a u l t s−>isEmpty ())

59

Derived attribute availablePoints:

let cand idateRenta l s : Set (ClosedRental)= s e l f . RentalAgreement−>
s e l e c t (rA | rA . oclIsTypeOf (ClosedRental) and (now()−
rA . agreedEnding)< year (3) and rA . agreedEnding >
(membershipDate − year (1)) . oclAsType (ClosedRental)−>asSet ()

let earnRenta l s : Set (ClosedRental)= candidateRenta ls−>
r e j e c t (cR | cR . oclIsTypeOf (PaidWithPointsRental)

let accumulatedPoints : Integer= earnRentals−>f o rA l l (r |
r e s u l t−>inc lud ing (pointsEarned (r . b e s tPr i c e)))−>sum()

let spendRentals : Set (ClosedRental)=
candidateRental−>s e l e c t (oclIsTypeOf (PaidWithPointsRental))

let spentPoints : Integer= spendRentals−>f o rA l l (r
| r e s u l t−>inc lud ing (po intsSpent (r . b e s tPr i c e)))−>sum() in

r e s u l t= accumulatedPoints−spentPoints

A.2.25 Blacklisted

The reservations or rentals of a blacklisted driver that begin after the black-
listedDate must be cancelled.

context B l a ck l i s t e d : : noRentals () : Boolean

body : r e s u l t= s e l f . r enta l sAsDr iver−>s e l e c t (rA | rA . beg inning >
s e l f . b l a ck l i s t edDat e)−>
f o rA l l (rA | ra . oclIsTypeOf (Cance ledReservat ion))

A.2.26 DrivingLicense

DrivingLicenses are identi�ed by their number.

context Driv ingL icense : : numberIsKey () : Boolean

body : r e s u l t = Dr iv ingL icense . a l l I n s t a n c e s ()−>isUnique (number)

Driver has at least one year of experience and the license does not expire before
the agreed end of a rental of the driver.

context Driv ingL icense : : v a l i dL i c enc e () : Boolean

body : r e s u l t = today ()− s e l f . i s sue>year (1) and

s e l f . eU_RentPerson . r en ta l sAsDr ive r . agreedEnding−>
f o rA l l (d | d<s e l f . e xp i r a t i on)

A.2.27 RentalDuration

RentalDurations are identi�ed by their name.

context RentalDuration : : nameIsKey () : Boolean

body : r e s u l t = RentalDuration . a l l I n s t a n c e s ()−>isUnique (name)

Price for a particular rental duration and car group must be higher than the
price for the same rental duration but worse car group, excluding those that
have ended.

context RentalDuration : : c ohe r en tPr i c e s () : Boolean

body : let curCGDPrices : Set (CarGroupDurationPrice) =
s e l f . carGroupDurationPrice−>r e j e c t (cgdp | cgdp . oclIsTypeOf (EndDurationPrice))
in

r e s u l t = curCGDPrices−>f o rA l l (cgdp | cgdp . p r i c e >=
(curCGDPrices . carGroup . worse . carGroupDurationPrice−>
s e l e c t (cg | cg . r enta lDurat ion=s e l f)) . p r i c e)

60

Makes sure that the order of RentalDurations is coherent (i.e. there are no
cycles).

context RentalDuration : : to ta lOrder () : Boolean

let i s Sh o r t e r (s , l : RentalDuration) :Boolean= l . sho r t e r=s or

i s Sh o r t e r (s , l . s ho r t e r)
let i sLonger (l , s : RentalDuration) :Boolean= s . l onge r=l or

i sLonger (l , s . l onge r) in

r e s u l t = (RentalDuration . a l l I n s t a n c e s ()−>one (rd |
rd . shor te r−>isEmpty ()) and RentalDuration . a l l I n s t a n c e s ()−>
one (rd | rd . longer−>isEmpty ()) and RentalDuration . a l l I n s t a n c e s ()
−>f o rA l l (rd1 , rd2 | i s Sho r t e r (rd1 , rd2) implies not

i sLonger (rd1 , rd2) and i sLonger (rd1 , rd2) implies not

i s Sh o r t e r (rd1 , rd2)))

A.2.28 ApplicableRentalDuration

Derived class4 :

• Will be the result of the derived relationship between RentalAgreement
and RentalDuration.

Derived attribute quantity :

context Appl icableRenta lDurat ion : : quant i ty () : Natural
body :
let renta lDur : Duration = durationT (s e l f . agreedEnding −

s e l f . in i tEnd ing)
let renta lDays : Natural = renta lDur . numberOfUnits
−− Al l RentalDurations r e l a t e d to a p a r t i c u l a r RentalAgreement can

be ob ta ined by acces s ing the RentalAgreement and , from there ,
nav i ga t ing to RentalDuration . Accessing the RentalDuration
from t h i s c l a s s w i l l on ly re turn one RentalDuration . −−

let a l lRenta lDur : Set (RentalDuration) =
s e l f . rentalAgreement . r enta lDurat ion in

al lRentalDur−>i t e r a t e (elem ; qty : Natural = 0 |
i f (renta lDays >= elem . maximumDuration) then

i f (elem = s e l f . r enta lDurat ion) then

qty=qty+renta lDays /maximumDuration
else

t rue
endif

renta lDays=renta lDays%maximumDuration
else

t rue
endif

i f (renta lDays >= elem . minimumDuration) then

i f (elem = s e l f . r enta lDurat ion) then

qty=qty+renta lDays /minimumDuration
else

t rue
endif

renta lDays=renta lDays%minimumDuration
else

t rue
endif

)
r e s u l t = qty

4This class and its corresponding relationship do not appear in the original speci�cation
in [5]. We suppose that duration of a rental is measured either in days or hours.

61

A.2.29 Discount

Discounts are identi�ed by name.

context Discount : : nameIsKey () : Boolean

body : r e s u l t = Discount . a l l I n s t a n c e s ()−>isUnique (name)

A.2.30 EndDurationPrice

Ending date of EndDurationPrice must be on the same day or later than its
beginning date.

context EndDurationPrice : : correctEnding () : Boolean

body : r e s u l t = s e l f . endingDate >= s e l f . beg inning

A.2.31 ClosedDiscount

Ending date of ClosedDiscount must be on the same day or later than beginning
date.

context ClosedDiscount : : correctEnding () : Boolean

body : r e s u l t = s e l f . beginningDate <= s e l f . endingDate

A.2.32 BadExperience

BadExperience is identi�ed by type.

context BadExperience : : typeIsKey () : Boolean

body : r e s u l t = BadExperience . a l l I n s t a n c e s ()−>isUnique (type)

A.2.33 CarDamage

Derived class:

context CarDamage : : a l l I n s t a n c e s () : Set (CarDamage)
r e s u l t = BadExperience . a l l I n s t a n c e s ()−>

s e l e c t (b | b . type=BadExpType : : carDamage)

A.2.34 Country

Countries are identi�ed by name.

context Country : : nameIsKey () : Boolean

body : r e s u l t = Country . a l l I n s t a n c e s ()−>isUnique (name)

62

	Introduction
	Artifact-Centric Business Process Models in UML
	Introduction
	Business Artifacts
	Business Artifact Lifecycle
	Services
	Associations
	Summary

	EU-Rent Car Rental Service as an Artifact-Centric Model in UML
	Introduction
	Assumptions
	Business Artifacts as a Class Diagram
	Lifecycle of RentalAgreement as a State Machine Diagram
	Associations as Activity Diagrams and Services as Action Contracts

	Appendices
	Structural Schema in OCL
	Class Diagram
	Integrity Constraints

