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The group velocity of light has been measured at eight different wavelengths between 385 nm and
532 nm in the Mediterranean Sea at a depth of about 2.2 km with the ANTARES optical beacon systems.
A parametrisation of the dependence of the refractive index on wavelength based on the salinity, pres-
sure and temperature of the sea water at the ANTARES site is in good agreement with these

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The ANTARES neutrino telescope is located on the bottom of the
Mediterranean Sea (42°50' N, 6°10' E) at a depth of 2475 m,
roughly 40 km offshore from Toulon in France. The main objective
of the experiment is the observation of neutrinos of cosmic origin
in the southern hemisphere sky. Sea water is used as the detection
medium of the Cherenkov light induced by relativistic charged par-
ticles resulting from the interaction of neutrinos. The particle tra-
jectory is reconstructed from the measured arrival times of the
detected photons. The detector consists of 885 photomultiplier
tubes (PMTs) mounted on twelve vertical lines with a length of
about 450 m. The horizontal separation between lines is about
70 m. Further details can be found elsewhere [1-3].

Charged particles traveling through sea water produce the
emission of Cherenkov light whenever the velocity of the particle
exceeds that of light in water. The Cherenkov photons are emitted
at a characteristic angle, 6., with respect to the particle direction.
This angle is related to the index of refraction of the medium as

cos 0, = ﬁ In this, B is the velocity of the particle relative to the

speed of light in vacuum. The index of refraction, np, corresponds
to the ratio between the speed of light in vacuum and the phase
velocity of light in water. The individual photons then travel
through the water at the group velocity. Both the phase and the
group velocity depend on the wavelength of the photons. This is
usually referred to as chromatic dispersion. The group velocity is
related to its phase velocity in the following way:

n
me =2 (1)

l+4 di

np
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where 2 is the wavelength of light. The index of refraction, ng, cor-
responds to the ratio between the speed of light in vacuum and the
group velocity of light in water.

Since the PMTs cannot distinguish the photon wavelength, the
variation of the photon emission angle and the group velocity
due to chromatic dispersion cannot be accounted for on the indi-
vidual photon level. Nevertheless, the average effect of the wave-
length dependencies are accounted for in the algorithm used to
reconstruct the particle trajectory [4,5].

A measurement of the group velocity of light has been made
using the optical beacon system of ANTARES. This system consists
of a set of pulsed light sources (LEDs and lasers) which are distrib-
uted throughout the detector and illuminate the PMTs with short
duration flashes of light. The refractive index is deduced from the
recorded time of flight distributions of photons at different dis-
tances from the sources for eight different wavelengths between
385 nm and 532 nm.

2. Experimental setup

The PMTs of ANTARES are sensitive to photons in the wave-
length range between 300 nm and 600 nm. The maximum quan-
tum efficiency is about 22% between 350 nm and 450 nm. The
arrival time and integrated charge of the analogue pulse from the
PMT are measured by the readout electronics [6]. The transit time
spread of single photo-electrons of the PMT is around 3.5 ns
(FWHM) [7].

The group velocity of light has been measured using the
ANTARES optical beacon system. This system was primarily
designed to perform time calibration in situ [7,8]. There are two
types of optical beacons, the LED optical beacons and the laser
beacons. There are four LED optical beacons distributed along each
detector line and two laser beacons at the bottom of two central
lines. The in situ measurement of the temperature and salinity is
provided by some conductivity/temperature/depth sensors.’

5 SEABIRD CTD (SBE37-SMP), http://www.seabird.com/.
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Fig. 1. Picture of a standard LED optical beacon (left), the modified LED optical beacon (middle) and a laser beacon (right).

A standard LED optical beacon contains 36 individual LEDs dis-
tributed over six vertical faces forming a hexagonal cylinder
housed in a pressure resistant glass enclosure (Fig. 1, left). On each
face, five LEDs point radially outwards and one upwards. All LEDs
emit light at an average wavelength of 469 nm, except the two
LEDs located on the lowest LED optical beacon of Line 12 which
emit light at an average wavelength of 400 nm. A modified LED
optical beacon was installed in 2010 on Line 6. This LED optical
beacon has three LEDs per face instead of six, all of them pointing
upwards (Fig. 1, centre). The three LEDs of each face emit light of
the same colour. The average wavelength of the light from the
six faces are 385, 400, 447, 458, 494 and 518 nm. The LEDs emit
light with a maximum intensity of about 160 p] and a pulse width
of about 4 ns FWHM. The intensity of the emitted light can be
varied changing the voltage feeding the LEDs.

The laser beacon consists of a Nd-YAG solid state laser (Fig. 1,
right). It can emit pulses of light with an intensity of about 1 pJ
and pulse width of about 0.8 ns FWHM. The average wavelength
is 532 nm. This light is spread out by an optical diffuser, so that
the light can reach the surrounding lines. During calibration runs,
the LEDs and lasers flash at a frequency of 330 Hz. Further details
about the optical beacon system can be found elsewhere [7-9].

The wavelength spectra of the light sources used for this analy-
sis were measured using a calibrated spectrometer® (see Fig. 2a).
The typical width of each spectrum is around 10 nm except for the
green LED (518 nm), which is larger, and the laser (532 nm), which
is much smaller.

Due to the wavelength dependence of the absorption of light in
water, the spectra change as a function of the distance travelled by
the light. The expected wavelength distributions as a function of
distance have been estimated by Monte Carlo simulations using
the dependence of absorption length on wavelength given by
Smith and Baker [10]. In Fig. 2b the spectra at a distance of
120 m are shown for the different light sources. In particular,
absorption has a large effect for wavelengths above 500 nm. Notice
that the distributions have been renormalised to unity in each peak
and therefore the relative effect of absorption between sources is
not observed. This renormalisation is performed in order to show
the change in the shapes of the distributions, which is what influ-
ences the velocity measurement. The evolution of the spectra is
taken into account in the final results (Section 4), in particular
the uncertainty assigned to the wavelengths has been taken to
be the root mean square (RMS) of the wavelength distribution
given by the simulation.

3. Data acquisition and analysis

In order to measure the optical properties of the deep sea water,
designated data taking runs were performed using the optical bea-
con system. During these runs, one single LED located in the lowest
optical beacon of a line and pointing upward was flashed. Only the
signals recorded by the PMTs along the same line are used in the

6 Ocean Optics HR4000CG-UV-NIR, http://www.oceanoptics.com/.

analysis. As a result, the line movements due to the sea currents
can safely be ignored.

The runs used in this analysis were taken between May 2008
and April 2011. Each run contains typically more than 100,000
light flashes. Each flash is detected by a small PMT inside the
optical beacon. The time of the flash and the arrival times of the
photons on the PMTs were recorded within a time window from
1500 ns before to 1500 ns after the flash. The integrated charge
of the analogue pulses of the PMTs were also recorded. Only runs
were used when the average rate of background light was below
100 kHz.

In Fig. 3, the distribution of the arrival times of photons on a PMT
located 100 m above the LED optical beacon (4 = 469 nm) is shown.
The time, t = 0 ns, corresponds to the time of the flash. A clear peak
at t = 470 ns can be seen which corresponds to the shortest propa-
gation time of the light. The tail with late photons can be attributed
to light scattering. The flat background arises from the optical back-
ground due to “° K decays and bioluminescence.

A convolution of a Gaussian and an exponential distribution on
top of a flat background is fitted to the data. The Gaussian distribu-
tion reproduces the transit time spread of the PMTs, the duration of
the light flash and the effect of the chromatic dispersion in water.
The exponential distribution takes into account the effect of the
scattering of photons in water. The fit function can be formulated
as:

f(t)=B+S. e xerfc(% (%—“T“» 2)

where t is the arrival time of the photons. The fit parameters are the
optical background, B, the signal strength, S, the mean, y, and width,
o, of the Gaussian distribution and the exponential decay constant,
7. In Eq. 2, erfc(t) is the complementary error function distribution.
An example of the fit is shown in the inset of Fig. 3. The fit is deter-
mined in the range from 200 ns before the most populated bin and
20 ns after. The arrival time of the light flash at each PMT is esti-
mated by the fitted mean value of the Gaussian distribution.

An example of the measured arrival times as a function of the
distance between the optical beacon and the PMT is shown in
Fig. 4a. A linear function has been fitted to the data to extract
the group velocity of the light. In the fitting procedure, the distance
between the light source and the PMT has been restricted to the
range between 50 m and 250 m in order to limit the effects of time
slewing [7] and optical background on the measurement.

A Monte Carlo simulation of the response of the detector to LED
flashes has been made. The analysis method was performed to val-
idate the analysis procedure and to study the systematic effects
due to the assumed light absorption and scattering parameters.
Table 1 shows the different contributions to the systematic uncer-
tainty in the measurement of the refractive index. These contribu-
tions have been determined as follows. For the wavelength values
of 400 nm, 470 nm and 532 nm, the difference of the refractive in-
dex obtained after the fitting procedure with respect to the input
refractive index is shown in the first row of Table 1. This variation,
which has been computed for the default values of absorption and
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Fig. 2. (a) Wavelength spectra of the light sources used in this work as measured with a calibrated spectrometer. The spectrometer measurements are made in air. The data
points have been smoothed and the highest value of each spectrum is set equal to one. On the top of the Figure the peak wavelengths are indicated in units of nm. (b)
Simulated light spectra at a distance of 120 m in sea water with the highest value renormalized to one. The differences between the spectra are due to the variation of the
absorption length as a function of the wavelength.
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Fig. 3. Example of a distribution of arrival times observed at a distance of 100 m from an LED. The inset shows a zoom around the signal region. The solid curve corresponds to
a fit function as described in the text and given in Eq. 2.
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data (see text). (b) Distribution of the measured refractive index for a total of 42 runs.
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Table 1

The systematic uncertainty of the refractive index measurement is estimated for
three different wavelengths by varying the absorption length and the scattering
length (see text).

Wavelength [nm] 400 470 530
Source of uncertainty Variation in [%]

Method 0.27 0.13 0.04
Absorption length 0.11 0.05 0.07
Scattering length 0.22 0.34 0.24
Total systematic uncertainty [%] +0.37 +0.37 +0.25

scattering lengths, is termed “Method”. In the second row, the
variation in percentage of the fitted value is shown when the
absorption length changes by +50%. Finally, in the third row the
variation in percentage of the fitted value is shown when the scat-
tering length is varied between 20 m and 70 m [11]. As can be seen,
the latter is the largest contribution to the systematic uncertainty.
Adding in quadrature these values one obtains a systematic error
that varies from 0.25% to 0.37% depending on the wavelength.

4. Determination of the refractive index

Between May 2008 and March 2010, a total of 42 runs were
taken using an LED with an average wavelength of 469 nm. Three
different LED intensities were used. For a high, middle or low inten-
sity run the range of distances between the optical beacon and the
PMT used in the fit were 50-250 m, 40-220 m and 10-130 m,
respectively. The measured refractive index values of these runs
are shown in Fig. 4b. In addition to these runs, 14 runs using an
LED with an average wavelength of 400 nm and 13 runs using an
LED with an average wavelength of 532 nm were taken. Between
November 2010 and April 2011 eight runs with a modified optical
beacon were taken, extending the measurements with six addi-
tional wavelengths. The index of refraction is estimated at each
wavelength by the mean of the distribution. The measured refrac-
tive indices with the systematic uncertainty are shown in Fig. 5
and tabulated in Table 2. As mentioned in Section 2, the uncertain-
ties in the wavelengths have been taken to be the RMS of the corre-
sponding distribution at the middle of the distance ranges. The
variation of the RMS values in this range with respect to the middle
is +2 nm.

1.43|— = Data 2010 - 2011 This paper
1423 e Data 2008 - 2010 This paper
oE s Data 2000 Ref. [11]
> 141 [ ] systematic uncertainty
2 E — Parametrisation of n,
° 1.4;
= =
5 139
g E
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350 400 450 500 550
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Fig. 5. Index of refraction corresponding to the group velocity of light as a function
of the wavelength. Also shown are results from measurements made in [11]. The
grey band shows the systematic uncertainty. The two solid lines correspond to a
parametrisation of the index of refraction evaluated at a pressure of 200 atm (lower
line) and 240 atm (upper line) (see text).

Table 2
Summary of the refractive index results for the 2008-2011 data shown in Fig. 5. For
the refractive index first the statistical uncertainties are shown. They are computed as
the RMS of the measured refractive index for each wavelength divided by the square
root of the number of runs. In addition, there is a total systematic uncertainty of
+0.005.

Wavelength (nm) Refractive index Number of runs Time period

403 £10 1.3916 + 0.0007 14 2008-2010
469 + 12 1.3825 +0.0002 42 2008-2010
532+1 1.3702 + 0.0007 13 2008-2010
387+11 1.3960 + 0.0007 8 2010-2011
403 +10 1.3930 £ 0.0007 8 2010-2011
449+13 1.3854 + 0.0003 8 2010-2011
460 £ 15 1.3817 £ 0.0003 8 2010-2011
489+ 11 1.3785 £ 0.0003 8 2010-2011
491 11 1.3794 + 0.0006 8 2010-2011
532+1 1.3666 + 0.0006 8 2010-2011

The velocity of light in sea water at a given wavelength depends
on the temperature, the salinity and the pressure of the water,
because the density of sea water depends on these variables. A
parametrisation of the light velocity proposed by Quan and Fry
[12] is based on data from Austin and Halikas [13]. This paramet-
risation was modified to incorporate a correction for pressure
[11]. During the data taking period, the temperature and salinity
were measured in situ at a depth of 2250 m. At an ambient temper-
ature of T=12.9+0.1°C and salinity of S=38.48+0.01 %o, the
refractive index corresponding to the phase velocity as a function
of wavelength is expressed as:

p — 200

my(4,p) = 1.32202 + (1.32394 - 1.32292) x 3 0

16.2561 4382 1.1455 x 10° 3
+ ) - )»2 + /13 ( )
where / is the wavelength (in units of nm) and p is the pressure (in
units of atm). Using Eq. 1, the result of this parametrisation can be
compared to the measurements (see Fig. 5).

From the known variations of temperature, salinity and pres-
sure, the refractive index for a particular wavelength and at a given
depth can be determined with an accuracy of better than 4 x 107>,
The parametrisation is in good agreement with the measurements.

As mentioned in Section 1, the PMTs are unable to distinguish
the wavelength of the incoming photons, so the effect of this chro-
matic dependence can only be taken into account on average. The
spread of the arrival time residuals with respect to the expected
arrival time of a 460 nm photon have been computed by means
of a standalone Monte Carlo simulation using the phase velocity
for the emission angle and the group velocity (as given by the
Egs. 3 and 1) for the arrival time. This simulation indicates that
the spread of the time residual is 0.6 ns at 10 m, 1.6 ns at 40 m,
2.7 ns at 100 m and 3.6 ns at 200 m. The time uncertainty intro-
duced by this spread is unavoidable and is taken into account in
the ANTARES official simulation program [14,15]. Even though
the exact influence of the medium depends on the particular
Cherenkov photon (wavelength, distance to the hit PMT) and
therefore requires a full simulation, a rough estimate of the
average effect can be obtained assuming that a majority of hits
are between 40 m and 100 m from the track, which gives a value
of ~2 ns for the uncertainty introduced by the transmission of light
in sea water, including chromatic dispersion. This value is to be
compared with ~1.3 ns coming from the PMTs transit time spread
and to ~1 ns from time calibration. Monte Carlo simulation studies
show also that an additional uncertainty of ~2 ns on the spread of
the time residual degrades the neutrino pointing accuracy about
0.1 degrees.
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5. Summary

Using pulsed light sources with wavelengths between 385 nm
and 532 nm the group velocity of light in sea water at the ANTARES
site has been measured as a function of wavelength. The emission
spectra determined in the laboratory for the different pulsed
sources have been used as input to a Monte Carlo simulation in or-
der to correct for the effect of absorption on the corresponding
velocity measurement. Except for two sources these corrections
are in general small. Likewise, a Monte Carlo simulation has been
used to evaluate the systematic uncertainties and to check, that
the procedure to obtain the speed of light is robust and unbiased.
The results obtained for the dependence of the group refractive in-
dex on wavelength are in agreement with the parametrisation as a
function of salinity, pressure and temperature of sea water at the
ANTARES site.
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