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Abstract: Hammerstein and Wiener models are nonlinear representations of systems composed
by the coupling of a static nonlinearity N and a linear system L in the form N-L and L-N
respectively. These models can represent real processes which made them popular in the last
decades. The problem of identifying the static nonlinearity and linear system is not a trivial
task, and has attracted a lot of research interest. It has been studied in the available literature
either for Hammerstein or Wiener systems, and either in a discrete-time or continuous-time
setting. The objective of this paper is to present a unified framework for the identification of
these systems that is valid for SISO and MIMO systems, discrete and continuous-time setting,
and with the only a priori knowledge that the system is either Wiener or Hammerstein.
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1. INTRODUCTION

Hammerstein and Wiener models are block-oriented mod-
els composed by the coupling of a static nonlinearity N
and a linear system L in the form N-L and L-N respec-
tively. Although simple, these structures can capture the
behavior of many real-life processes [4, 15, 8]. The problem
of identifying the static nonlinearity N and linear system
L from input-output data has attracted a lot of research
interest, and many methods are available for this problem
as early as [16]. In [13], sine waves are used to excite
a SISO 1 Wiener continuous-time system, and frequency
techniques are used to determine the unknowns. Frequency
techniques for SISO Wiener systems is also used in [3]. In
[5] a MIMO 2 Hammerstein discrete-time system is con-
sidered with a nonlinearity N that has a special structure
in terms of cardinal spline functions. In [6] a discrete-
time Wiener system with a special class of nonlinearities
is considered. In [9] a discrete-time Hammerstein system
with a special class of nonlinearities is considered. Other
references include [10, 17, 19, 22, 7]. A recent overview of
previous works may be found in [11].

The objective of this paper is to present a unified frame-
work for the identification of Wiener and Hammerstein
systems. This framework is valid for SISO and MIMO sys-
tems, continuous and discrete-time systems. The nonlinear
static function is a linear combination of known functions

? Supported by grant DPI2011-25822 of the Spanish Ministry of
Science and Innovation.
1 Single input single output
2 Multi-input multi-output

with unknown multiplying parameters. It is assumed that
the linear system has an invertible static gain matrix. The
identification methodology consists in three stages:

(1) The first stage consists in determining the nonlinear
static function using constant input signals and using
the fact that the linear system is asymptotically
stable.

(2) The second stage consists in transforming the non-
linear Hammerstein or Wiener identification problem
into a linear identification problem that can be solved
using standard techniques. This is done by assuming
that the nonlinearity is a local homeomorphism, so
that it can be locally inverted.

(3) The third stage consists in performing a validation
test on the previously obtained (Wiener and Ham-
merstein) models, and retaining the one that passes
better this test.

The main features of the proposed identification approach
are:

(1) It is not needed to know a priori whether the system
is Wiener or Hammerstein. It is only required that the
system belongs to the set {Wiener, Hammerstein}.

(2) Both SISO and MIMO, continuous- and discrete-time
systems are simultaneously handeled within the same
framework.

This paper is organized as follows. Section 2 presents the
identification problem under study and introduces the as-
sumptions needed to solve this problem. Section 3 presents
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and analyzes the identification algorithm in the absence of
noise and Section 4 analyzes the identification algorithm in
the presence of noise. Conclusions are presented in Section
5.

2. PROBLEM FORMULATION

Consider the linear system:

x̄(t) =Ax(t) +Bϑ(t) (1)

θ(t) =Cx(t) +Dϑ(t) (2)

x(0) = x0 ∈ Rp (3)

where x̄ =
dx

dt
for continuous-time systems and x̄(t) =

x(t + 1) for discrete-time systems. We consider that A ∈
Rp×p is Hurwitz, 3 B ∈ Rp×n, C ∈ Rn×p, D ∈ Rn×n.
For continuous-time systems we have t ∈ R+ and ϑ ∈
L∞(R+,Rn) 4 so that x ∈ W 1,∞(R+,Rp) 5 and θ ∈
L∞(R+,Rn). For discrete-time systems we have t ∈ N,
and the sets {ϑ(t), t ∈ N}, {θ(t), t ∈ N}, {x(t), t ∈ N} are
bounded.

Note that since the matrix A is Hurwitz, it is invertible
for continuous-time systems and Ip − A is invertible for
discrete-time systems where Ip is the identity matrix of
Rp×p. The static gain of the linear system (1)-(2) is given
by the matrix G = −CA−1B + D for continuous-time
systems and by G = C(Ip −A)−1B +D for discrete-time
systems.

Assumption 1. The matrix G is invertible.

Remark 1. Assumption 1 only excludes pure derivative
systems which are rarely met in real-life situations.

We consider a continuous function f : E ,
∏n
i=1[−ai, ai] ⊂

Rn → Rn where ai > 0, i = 1, . . . , n, that can be written
in following way. There exist a known N ∈ N, 6 known
functions Ψi : E → Rn, i = 1, . . . , N such that

∀x ∈ E, f(x) =

N∑
i=1

ρiΨi(x) (4)

where the ρi’s are unknown parameters to be determined.
These functions Ψi, i = 1, . . . , N are chosen in such a
way that the knowledge of f(x) for some finite number
of values x gives the values of the unknown parameters
ρi, i = 1, . . . , N . For example when the Ψi’s are scalar

3 That is such that all its eigenvalues have negative real part for
continuous-time systems, and with eigenvalues inside the open unit
disc for discrete-time systems.
4 This is the Banach space of essentially bounded Lebesgue measur-
able functions [18].
5 The Sobolev space W 1,∞(R+,Rn) is the Banach space of abso-
lutely continuous functions u : R+ → Rn, where n is a positive
integer. For this class of functions, the derivative u̇ is Lebesgue
measurable and is equal a.e. to the weak derivative of u. Moreover,
we have ‖u‖∞ < ∞ and ‖u̇‖∞ < ∞ [1].
6 In fact, only an upper bound on N is needed.

Fig. 1. Wiener system.

Fig. 2. Hammerstein system.

polynomials, the inversion of the so-called Vandermonde
matrix gives the unknown parameters [12]. The Ψi’s may
also constitute a set of orthogonal functions (e.g. Laguerre
polynomials). In this case, the unknown parameters may
be recovered using least square estimators.

Assumption 2. There exists a (possibly unknown) ζ =

(ζ1, ζ2, . . . , ζn)
T ∈ E and a (possibly unknown) δ0 > 0

such that f is a homeomorphism 7 on the set Eζ,δ0 ,∏n
i=1[−δ0 + ζi, δ0 + ζi] ⊂ E.

Remark 2. Assumption 2 holds if the function f is con-
tinuously differentiable on Eζ,δ0 and its Jacobian matrix
at ζ is invertible.
Remark 3. ζ and δ0 may not be unique.

We consider the two following systems in which u is the
input signal that is chosen by the designer to fit the identi-
fication goals, y is the output that is accessible to measure-
ments, w is an internal signal not necessarily accessible to
measurements, and ν is a noise not necessarily accessible
to measurements. Wiener systems are characterized by the
relations ϑ = u, θ = w, y1 = f(w), y = y1 + ν; we denote
by Hw the operator that maps (u, x0) to y1 (see Figure 1).
Hammerstein systems are characterized by the relations
w = f(u), ϑ = w and θ = y1, y = y1 + ν; we denote by Hh
the operator that maps (u, x0) to y1 (see Figure 2).

Our objective is to determine the function f and the
matrices A,B,C,D from input/output data. Note that the
determination of the unknowns can be done only up to
an invertible matrix. That is, from input/output data it
is only possible to determine Kf and A,BK−1, C,DK−1

where K ∈ Rn×n is an arbitrary invertible matrix, for
Hammerstein systems; and fK and A,B,K−1C,K−1D
for Wiener systems. Without loss of generality, we take
K = G. Thus, for Hammerstein systems, our objective
will be the determination of the function Gf and ma-
trices A,BG−1, C,DG−1 while for Wiener systems, our
objective will be the determination of the function fG

7 A homeomorphism is a bijective continuous function whose inverse
function is continuous. A homeomorphism is an open mapping.
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and matrices A,B,G−1C,G−1D. Note that the linear sys-
tems (A,BG−1, C,DG−1) and (A,B,G−1C,G−1D) have
a static gain equal to the identity matrix In of Rn×n. Thus,
without loss of generality, the identification problem can
be transformed into the following equivalent one:

Problem statement: Determine the function f and the
matrices A,B,C,D where Assumption 1 is replaced by:

Assumption 3. G = In.

3. IDENTIFICATION IN THE ABSENCE OF NOISE

In this section, we assume that ν(t) = 0,∀t ≥ 0.

3.1 First stage: Identification of the function f

Let σ ∈ E be given, and take as input signal u(t) =
σ, ∀t ≥ 0. Consider first the case of the operator Hw.
Due to Assumption 3, it follows that limt→∞ w(t) =
σ. On the other hand, y(t) = f(w(t)),∀t ≥ 0, thus,
using the continuity of f we get that limt→∞ y(t) =
limt→∞ f(w(t)) = f(σ). Now, consider the operator Hh,
we have w(t) = f(σ),∀t ≥ 0 so that by Assumption 3 we
have limt→∞ y(t) = f(σ). Thus, the value f(σ) is given in
both cases by the relation

f(σ) = lim
t→∞

y(t) (5)

Since the output y is accessible to measurements, the value
f(σ) is determined. This process is repeated for a finite
number of values of σ which gives the unknown parameters
ρi, i = 1, . . . , N .

Remark 4. It is usual in identification techniques to
obtain an unknown element ρ as limt→∞ ρ̂(t) where ρ̂ is an
estimate of ρ at instant t. This means that we can obtain
the exact value of ρ only after an infinite time. However,
in practice, the values ρ̂(t), t ≥ T and ρ can be set as close
as desired by choosing T large enough. This means that
in the relation ρ = limt→∞ ρ̂(t) we need not to wait an
infinite time to obtain the exact value of ρ but we can get
an approximation of ρ with arbitrary precision by waiting
a long enough finite time T . So, relation (5) implies that,
in practice, after some finite time T , the value f(σ) is
obtained with a precision that depends on T . Since this
experiment takes a finite time, it can be repeated for a
finite number of values of σ.

3.2 Second stage: Identification of the matrices A, B, C,
D

Let us consider the system described by Equations (1)-
(3) in which the input ϑ and output θ are accessible
to measurements, and where the unknowns are the ma-
trices A, B, C, D to be determined from input-output
data. This is a linear identification problem that has
been studied extensively in the literature, see for example
[22, 14, 20, 21, 2] and references therein. Let M be some
identification algorithm that allows the determination of
the unknown matrices of the linear system, using some
appropriate identification input ϑ. We chooseM with the

additional property that the convergence properties of M
do not change if the identification input ϑ is multiplied
by a nonzero constant (this is the case for example for
least-squares algorithms). Our objective is to show that
the identification of Wiener or Hammerstein system can
be reduced to that of identifying a linear system, which
can be solved using the algorithm M.

The function f has been identified in Stage 1 so that we
can obtain a known ζ ∈ E, and a known δ0 > 0 such that,
by Assumption 2, f is invertible in

∏n
i=1[−δ0 + ζi, δ0 + ζi].

Choose 0 < δ1 < δ0 and define the following known
compact set K1 = f (

∏n
i=1[−δ1 + ζi, δ1 + ζi]). We proceed

as follows.

Step 1: Preliminary experiment. Take u(t) = ζ,∀t ≥
0. Due to Assumption 3 and the continuity of f we get that
limt→∞ w(t) = ζ and limt→∞ y(t) = f(ζ) for the operator
Hw; and w(t) = f(ζ),∀t ≥ 0, and limt→∞ y(t) = f(ζ) for
the operator Hh.

Step 2: Estimation of the linear subsystem param-
eters. Let ϑ be the identification input of the algorithm
M for the determination of the unknown matrices A, B,
C, D of the linear system (1)-(3).

If we knew that the process is Wiener, we would use the
following procedure Pw. Choose a series (εk ∈ (0,∞))k∈N
such that εk > εk+1 and limk→∞ εk = 0.

(1) Take k = 1.
(2) Take u(t) = ζ + εkϑ(t),∀t ≥ 0. If there exists some

t ≥ 0 for which y(t) /∈ K1, then k ← k + 1.

This algorithm has a finite number of loops as there
exists some α that depends on A, B, C, D such that
‖w − ζ‖∞ ≤ α‖u − ζ‖∞. That is, for some value of
k = k? we will have ∀t ≥ 0, y(t) ∈ K1 which shows that
∀t ≥ 0, w(t) ∈

∏n
i=1[−δ1 + ζi, δ1 + ζi]. Thus w(t) can be

computed from y(t) using the relation

w(t) = f−1(y(t)) (6)

Due to the linearity of the system (1)-(3), the identification
algorithmM can now be applied to the input εk?ϑ = u−ζ
and its corresponding output w − ζ that is accessible to
measurements due to Equation (6). As the convergence
properties of M do not change if ϑ is multiplied by a
nonzero constant (which is in this case εk?), it follows that
we have determined an estimate (Aw, Bw, Cw, Dw) of the
system (A,B,C,D).

If we knew that the process is Hammerstein, we would use
the following procedure Ph. We have by Assumption 2 that
the mapping f is open on Eζ,δ0 . Thus, the set K1 contains
an open ball B(f(ζ), δ3) centered on f(ζ) with radius δ3 >

0. Choose u(t) = f−1
(
f(ζ) + δ3

2‖ϑ‖∞ϑ(t)
)
,∀t ≥ 0; this

choice is possible as f(ζ) + δ3
2‖ϑ‖∞ϑ(t) ∈ B(f(ζ), δ3) ⊂ K1

and f is invertible by Assumption 2. Due to the linearity
of the system (1)-(3), the identification algorithm M can
now be applied to the input δ3

2‖ϑ‖∞ϑ = f(u) − f(ζ) and
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its corresponding output y − f(ζ). As the convergence
properties of M do not change if ϑ is multiplied by a
nonzero constant (which is in this case δ3

2‖ϑ‖∞ ), it follows

that we have determined an estimate (Ah, Bh, Ch, Dh) of
the system (A,B,C,D).

However, we do not know whether the process is Wiener
or Hammerstein. Thus we will apply both procedures Pw
and Ph to the process. If the process is Wiener, and Ph is
applied, we may have the following scenarios:

(1) When applying the algorithmM to the input f(u)−
f(ζ) and the output y− f(ζ), the estimated parame-
ters do not converge. If this happens we can be sure
that the process is not Hammerstein.

(2) When applying the algorithmM to the input f(u)−
f(ζ) and the output y − f(ζ), the estimated param-
eters converge. This would happen, in particular, if
the function f is linear in the region B(f(ζ), δ32 ).

In the second case, we obtain two models using the proce-
dures Pw and Ph. In this case, the identification method
has a third step which is model validation. The same would
happen is the process is Hammerstein and we apply Pw,
that is we may be certain that the process is not Wiener,
or get two models.

Step 3: Model validation. At this point two hypothet-
ical models are available. One is of Wiener type, denoted
Mw, and the other of Hammerstein type, denoted Mh.
The two models have a common nonlinearity f(·), deter-
mined in Stage 1 of the identification procedure. They only
differ by the linear subsystem model which is defined by
(Aw, Bw, Cw, Dw) for the first and (Ah, Bh, Ch, Dh) for
the second, along with the position of the linear system
with respect to the nonlinearity. To determine the nature
(Hammerstein or Wiener) of the true system, a prediction
criteria based validation test is used. One applies a quite
exciting input signal (e.g. a PRBS) to the system and
collects the resulting output y(t) over a sufficiently large
interval, say [0, T ]. Then, one applies the same input signal
to both hypothetical models and collects the resulting
outputs, respectively denoted yw(t) and yh(t). Compute
the two mean square prediction errors:

In continuous-time: Jw =
1

T

T∫
0

(y(t)− yw(t))2 dt,

Jh =
1

T

T∫
0

(y(t)− yw(t))2 dt.

In discrete-time: Jw =
1

T

T∑
t=0

(y(t)− yw(t))2,

Jh =
1

T

T∑
t=0

(y(t)− yw(t))2.

If Jw < Jh (resp. Jw > Jh ), then the nature of the true
nonlinear system under study is a Wiener (resp. Ham-
merstein) type, and the Wiener model (Aw, Bw, Cw, Dw)

(resp. Hammerstein model (Ah, Bh, Ch, Dh)) must be re-
tained for the linear subsystem.

Note that in case the amplitude of the input signal is not
large enough, the resulting output signal may not be very
sensitive to the nonlinear effect of the system nonlinearity
f(·). Then, the criteria Jw and Jh will be comparable
making difficult the detection of the system nature. In this
case, one must increase the amplitude of the input signal.

4. IDENTIFICATION IN THE PRESENCE OF NOISE

In this section the noise ν may not be identically zero.

Assumption 4. The stochastic process ν is zero mean and
mean ergodic.

4.1 Identification of the function f

The identification methodology of Section 3.1 is modified
as follows. Let σ ∈ E be given, and take as input signal
u(t) = σ, ∀t ≥ 0. Consider first the case of the operator
Hw. Due to Assumption 3, it follows that limt→∞ w(t) =
σ. On the other hand, y1(t) = f(w(t)),∀t ≥ 0, thus,
using the continuity of f we get that limt→∞ y1(t) =
limt→∞ f(w(t)) = f(σ). Now, consider the operator Hh,
we have w(t) = f(σ),∀t ≥ 0 so that by Assumption 3 we
have limt→∞ y1(t) = f(σ). We have y(t) = y1(t) + ν(t) so
that in steady-state we obtain y(t) = f(σ) + ν(t),∀t ≥ 0.

By Assumption 4 it follows that limT→∞
1
T

∫ T
0
ν(t)dt = 0.

Since the output y is accessible to measurements, the value
f(σ) is determined by the relation 8

f(σ) = lim
T→∞

1

T

T∫
0

y(t)dt (7)

This process is repeated for a finite number of values of σ
which gives the unknown parameters ρi, i = 1, . . . , N .

4.2 Identification of the matrices A, B, C, D

As the function f has been identified on E, the identifica-
tion methodology follows as in Section 3.2 and consists in
transforming the identification problem for Hammerstein
or Wiener systems into that of identification of a linear
system in the presence of noise. The latter problem has
been studied extensively in the literature and numerous
algorithms exist to solve it [22, 14, 20, 21, 2]. This means
that using any of these algorithms 9 solves the problem of
determining the matrices A, B, C, D.

5. CONCLUSION

This paper has presented a simple algorithm for identifying
a wide class of Hammerstein and Wiener systems. The
framework is valid for SISO and MIMO systems, and
also for discrete-time and continuous-time systems. The
algorithm has three main steps. The first step consists in

8 If time is discrete, the symbol
∫

is replaced by
∑

.
9 under the condition that the convergence properties of the algo-
rithm do not change if the identification input is multiplied by a
nonzero constant.
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identifying the static nonlinearity. The second step consists
in transforming the Hammerstein or Wiener identification
problem into a linear identification problem for which
standard methods exist. The second step may lead to two
models, in which case a third step of model validation
is applied. The main contributions of the paper is that
we only need to know that the system belongs to the
set {Wiener, Hammerstein}; and that SISO and MIMO
systems, along with continuous and discrete-time settings
are dealt within the same framework.
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