

978-1-6654-4399-9/21/$31.00 ©2021 IEEE

Discord Server Forensics: Analysis and Extraction

of Digital Evidence

Farkhund Iqbal1, Michał Motyliński2, Áine MacDermott2

1College of Technological Innovation, Zayed University, United Arab Emirates
2Department of Computer Science, Liverpool John Moores University, Liverpool, UK

farkhund.iqbal@zu.ac.ae; motylm66@gmail.com; a.m.macdermott@ljmu.ac.uk

Abstract—In recent years we can observe that digital

forensics is being applied to a variety of domains as nearly any

data can become valuable forensic evidence. The sheer scope of

web-based investigations provides a vast amount of information.

Due to a rapid increase in the number of cybercrimes the

importance of application-specific forensics is greater than ever.

Criminals use the application not only to communicate but also

to facilitate crimes. It came to our attention that the gaming chat

application Discord is one of them. Discord allows its users to

send text messages as well as exchange image, video, and audio

files. While Discord’s community is not as large as that of the

most popular messaging apps the stable growth of its userbase

and recent incidents indicate that it is used by criminals. This

paper presents our research into the digital forensic analysis of

Discord client-side artefacts and presents experimental

development of a tool for extraction, analysis, and presentation

of the data from Discord application. The work then proposes a

solution in form of a tool, ‘DiscFor’, that can retrieve

information from the application’s local files and cache storage.

Keywords—digital forensics, cache analysis, discord,

discord server, forensic analysis, VoIP.

I. INTRODUCTION

The evolution of the Internet and technology has changed
our lives and the way we interact with each other forever. In
recent Instant Messaging (IM) and Voice over IP (VoIP)
communications have become prevalent and allowed us to
share thoughts at low cost and with unparalleled speed [1].
There is a plethora of IM applications available across all
mobile platforms and the daily transmission of data varying.
The advanced capabilities of digital forensic tools for analysis
and presentation of potential ‘evidence’ available from these
devices has been enhanced by the facilities of tools such as
Cellebrite UFED and MSAB XRY, with some comparable
literature exploring these applications and different operating
systems (OS). Discord is an application that allows text,
image, video, and audio communication using VoIP. Unlike
other social media platforms Discord does not have a home
news feed like Facebook or Twitter. It is built around a
network of private and semi-private groups, known as
"servers," which are created by mostly anonymous user [2].
With a large number of potential victims’ this application is
an ideal space for criminals. Moreover, as it allows the
creation of private servers it is easier to form closed groups
and hide criminal activities. There are more servers that have
not been shut down which members can be involved in other
illegal activities like selling stolen goods and personal
information, child grooming, harassment or spreading
malware. In the Discord Transparency Report Q1 2019 [4]
there were over 50000 user reports of actions violating the
Community Guidelines, ranging from spamming, harassment,
threatening behaviour and exploitative content. While spam is
the most common reason for banning exploitative content
comes second with 10642 bans. It clearly shows that the

problem exists, and it is likely to grow with the number of
Discord users. More evidence of Discord related crime can be
found on YouTube where many Discord users publish videos
documenting their encounters with child grooming and other
criminal activity. Whether these situations are real or if they
are just another way of gaining viewership remains unknown
but a growing number of videos with such disturbing content
is alarming. Considering that Discord has now a large
community it is surprising that there can be found little to no
academic research investigating this platform.

Therefore, the project focuses on answering the following
research question “What digital artefacts of forensic value can
be recovered from Discord application?”. The work then
proposes a solution in form of a tool, ‘DiscFor’, that can
retrieve information from the application’s local files and
cache storage. Written in Python, our tool can be run from the
command line as well as from within another forensic
software supporting Python-like Cellebrite. DiscFor performs
extraction and presentation of the Discord data in a
forensically sound manner. The structure of this paper is as
follows: Section II provides background on the VoIP instant
messaging applications and cache in digital forensics. In
Section III, we presented the analysis of Discord data sources.
In Section IV our tool DiscFor is presented. Section V details
our findings and the performance of the program. The
conclusion of our research and further work areas are
discussed in Section VI.

II. BACKGROUND AND RELATED WORK

In recent years we have observed an increase in the use of
web and smart phone applications to facilitate cybercrimes.
Many criminals shifted their interest towards communication
software due to almost unlimited possibilities of spreading
malicious software and conducting illegal activities. With
everyday social activities becoming more device and
application centric it has become apparent that attackers can
take advantage of this popularity and use digital devices and
software with criminal intent. Such activity has led to the
emergence of new sub-branches of digital forensics focused
solely on research and development of tools needed for the
recovery of evidence from new sources of data, i.e.
application-specific forensics.

Application-specific forensics focuses on the recovery,
analysis, and presentation of data from various applications,
also ensuring this evidence is taken in a forensically sound
manner and admissible in the court of law. Residual data, file
remnants and cache data are of interest when considering
application-specific data and client-side storage. Cache is a
hardware or software component that stores data so that future
requests for that data can be served faster. When a user decides
to access the same resource again it is loaded from the local
cache to avoid redownloading the content from the server.
This method results in the earlier computation of data,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/417686122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reduction in the amount of information that needs to be
transmitted across the network and provides better application
user experience. Client-side storage can provide forensic
investigators with valuable information about recent activities
of the suspect. However, it can be challenging to read the data
from the cache structure especially when neither source code
nor design is available to the public.

Although Discord was designed for gaming many

communities of people have adopted Discord to share

information. This mass adoption has opened Discord as a

good source for digital evidence. Discord is available both on

a desktop environment with any variety of OS choices as well

as on both iOS and Android mobile platforms. Each server

has a variety of channels that can be joined based on specific

topic areas or one can be made for the group that you create.

In [10], the authors focused on an analysis of Google Chrome

cache structure adopted by Discord. A detailed description of

cache format is provided, in addition to the potential data

available. The storage features of data blocks and cache

addresses are explained also. While cache storage can be a

source of valuable information about recent activities of a

suspect, the analysis of its content can be challenging due to

its specific structure. Similarly, in [11], analyses of cache

storage have been performed to extract YouTube and

Facebook stream content. The case study methodologies

involved X-Ways Hex editor and ChromeCacheView, the use

of which allowed identification, carving and reconstruction

of the video files found within the cache storage [11].

As noted previously, while there is limited literature on

Discord, there are some tools that can be used for the partial

recovery of the application’s contents. For example,

ChromeCacheView (CCV) [12] is a free cache viewing tool

for Google Chrome web browser. CCV allows viewing the

content of the cache storage (including metadata) and allows

extraction of files found within. However, CCV is available

only on Microsoft Windows systems. While CCV is currently

the best solution for forensic analysis of the Chromium cache

structure, there are specific limitations discovered during

analysis of Discord data sources. Firstly, CCV does not

analyse all files of Simple Cache thus missing some

potentially crucial data. Secondly, audio and video files are

often stored in two separate parts which are not reconstructed

by the tool.

III. DISCORD APPLICATION

After installation, when a user first logs into the app with
Discord credentials, the application creates a cache structure
and log file which stores information about the user’s recent
activity. Further use of Discord leads to the generation of new
cache files and log entries. Location of the Discord directory
depends on the OS the app is installed on. Table II presents
default installation locations of Discord. Within the
installation directory multiple files and folders can be found
that contain various data. We have recognised two main
sources of data, i.e. the cache storage and activity log. It was
also discovered that Discord uses two different caching
structures. On Windows and macOS platforms a Chromium
Disk Cache was adopted, while for Linux distributions Simple
Cache was implemented.

TABLE I. DISCORD INSTALLATION DIRECTORY

OS Path

Windows C:\Users\[username]\AppData\Roaming\discord

MacOS ~/Library/Application Support/Discord

Linux /home/[username]/.config/discord

The cache structures are in the folders “GPUCache”,

“Code Cache” and “Cache”. The “GPUCache” folder

contains data used to increase the performance of the

application but does not retain any information about the user.

The second folder stores code used by the application though

it does not hold any forensically valuable information. The

last directory contains data about recently viewed messages,

channels, servers etc. and is one of the applications digital

artefact sources. The activity log can be found in

“discord/Local Storage/leveldb” where it resides among

other types of files.

Fig. 1. Discord local directory structure with activity log location

Disk Cache

Disk Cache was developed as part of a Chromium project
by Google and became a base for multiple web browsers such
as Google Chrome, Opera and Brave. The structure is
available under an open-source licence [15] and was well
described in [8]. There is a significant difference between the
index file and data_0 that may be of great value for forensic
analysis and recovery of evidence. The file data_0 consists of
two parts: a header and a rankings table. The header contains
control information about the file and the table below. The
rankings table is comprised of blocks that store the address of
cache entries alongside its eviction information. The rankings
file contains more forensically valuable data in comparison to
the index file. The use of data_0 can significantly simplify the
process of data recovery. The eviction information that can be
found in the file may provide vital information on when the
file was created and accessed for the last time. Figure 2
presents the structure of a data_0 file and its blocks of rankings
data.

Last accessed time Last modified time

Next ranking
address

Previous ranking
address

Ranking hash
Cache entry

address
Entry is being
modified flag

Ranking block

Fig. 2. Ranking block (data_0) structure

The cache entry block files (data_1, data_2, data_3) are

responsible for holding control data as well as addresses for

resources stored in separate chunks. These separate data

streams include server HTTP response and actual resource

data. The general structure of the files is similar to data_0

while data streams are well explained in [10].

 Simple Cache

Simple Cache is currently used by Discord as the main

cache storage for Linux and Android distributions. The

Simple Cache folder contains a fake index file, several cache

entry files and folder index-dir which contains the-real-index.

The-real-index file contains cache addresses for each cache

entry. An overview of the Simple Cache folder in presented

in Figure 3. The real-index file, as shown in Figure 4, consists

of three parts: a header, entry hash table and an end of the file,

called a footer. The header size is 40 bytes and contains

information about the amount of entries in the hash table,

cache size and control data. The hash table contains a list of

entries and each entry is 24 bytes in size. The cache entry

structure is comprised of three parts, as shown in Table II.

Cache
entry files

Fake
index

Index
file

Fig. 3. Simple Cache directory structure

The header contains the following information:

 Payload size – Represents the size of the entire the-
real-index file

 Payload CRC32 – Error checking the hash of the file

 Magic - Unique identification value of the file which
in case of for every “the-real-index” file is “6F 79 20
72 65 74 6E 65”

 Version – value used for verification of file integrity

 Number of entries – Value representing a number of
cache entries stored in a the-real-index file

 Cache size - Represents the size of the entire cache
storage

 Reason – Value used to signal the current state of the
file and trigger other functions for example flushing
function that clears the file of all the content.

Payload size

Version

MagicPayload CRC32

Number
of entries Cache size

Reason

Entry last used time Entry hashEntry size

Index entry

Index header

Index
modified time

Fig. 4. The-real-index file structure

TABLE II: THE-REAL-INDEX CACHE ENTRY STRUCTURE

The main difference between Simple Cache and Disk
Cache is that the former method does not make use of block
files. The overall structure is simpler because resource content
and HTTP response are stored in a single file. This structure
simplifies not only the process of reading and writing cached
data but also the analysis and recovery of potential evidence.
The name of a cache entry file is a reverse entry hash address
from the index file in hexadecimal with an underscore and a
stream number which can be either 0, 1 or s. The most used
format is with stream number 0 and its structure is as follows:

 A file header

 URL

 Resource content

 EOF (End of File)

 HTTP response

 SHA256 of the URL (optional part)

 EOF

Magic Version URL lengthURL MD5 Padding

URL address Resource content

EOF

HTTP response

Magic Flag StreamCRC32 Stream size

EOF

Fig. 5. Structure of the Simple Cache entry file

File reading is being done from the end of the file with the
use of EOF sections that contain information about the data

Offset Size (bytes) Description

0 8 Cache entry hash (name of the cache

entry file)

8 8 Cache entry last accessed time

16 8 Cache entry size

stream above. Our analysis of stream format “1” files does not
indicate an existence of potential information of forensic value
although this may change in future. #####_s keeps payload of
large media or downloadable files. This file contains a list of
multiple partial resource copies of the same source which the
full version is stored at the beginning of the file. HTTP
response of the resource payload is stored within #####_0 of
the same name.

Resource content

Resource content describes any file stored in the cache in
the form of a stream of bytes, and this includes files generated
by Discord, as well as files directly uploaded by Discord users.
Generated files include JavaScript files, chat logs (generated
from content posted by users) and other application content
such as app images, emoticons, etc. All content uploaded by
users includes text messages, images, audio, video files,
linked attachments, etc. As Discord is a messaging app the
most interesting data can be found in chat logs stored in a
JSON format – shown in Figure 6. As attachments are parts of
many messages they are also stored in the cache and can be
recovered. While attachments are stored separately from the
chat logs, they can be traced back using attachment URL
which can be also found in the cache entry.

Fig. 6 Discord chat log structure

Server HTTP response provides valuable information on

the file from the server perspective and contains several entity

headers. The number of headers is not fixed, and different

files and applications use various combinations. In Discord,

it is often the case that a lot of files either miss some of the

mentioned headers or contain entirely different ones. The list

below covers the most important headers from the

perspective of forensic investigation of Discord application.

 Server response code: indicates whether a specific

request has been successfully completed

 Content type: Multipurpose Internet Mail Extension

(MIME) content type is a standard that indicates

format of a document, file, or assortment of bytes. It

consists of type (such as text) and subtype (such as

plain) for example text/plain, image/png, and

video/mpeg

 ETag: Unique identifier of the specific version of a

resource

 Response time: Time when the requested resource was

loaded last time

 Last modified time: Time when the resource was last

modified

 Expiry time: Time when the resource will be removed

from the cache storage

 Max age: Amount of time that source can be kept in

cache

 Server name: Name of the server hosting the service

 Server IP: IP address of the server

 Content encoding: This header indicates the method

that was used to compress the data

Figure 7 presents an overview of the server HTTP

response. The headers of interest are highlighted yellow.

While in this state data is legible it must be cleaned from

unnecessary characters to improve its readability.

Fig. 7. Discord server HTTP response overview

Activity Log

The last source of interest is an activity log which can be
found in the same location for all distributions:

/discord/Local Storage/leveldb

The log file is comprised of sections that store recorded

information about the user’s recent activity on Discord. Some

sections of the file cannot be decrypted with ASCII or UTF-

8 but most of the information is stored in clear text. Our

analysis of activity log entries shows that the log file stores

lists of servers and channels that the user joined as illustrated

in Figure 8.

User email address ID s of servers that user joined

Fig. 8. Activity log - example of recoverable data

IV. DISCFOR DESIGN AND IMPLEMENTATION

To uncover the story behind the criminal activity of a
suspect, a digital forensic examiner needs tools that will allow
him to view information stored in different formats and
sometimes dispersed among multiple locations. The goal of
DiscFor is to automate the process of evidence collection from

client-side Discord directories. To achieve this, our tool
consists of four main functionalities that address digital
forensic process stages. In this section, we present an
overview of the architecture used for DiscFor (Figure 9) and
implementation details.

Display main menu

Get discord path

2

1

3

Determine OS and
find discord directory

Get output path Get output path

Create backup copy

Extract relevant data

Produce report

Carve files from
cache

Custom path

System search Quit

Fig. 9. DiscFor main functionalities overview

The preservation of data is the first phase of the digital

forensic investigation. One of DiscFor’s options allows for

the creation of a logical copy of the source material. This

ensures that data is not being altered by Discord during

further examination and provides a backup of the original

data for further use. Prior to backup creation the user has the

option to either search a file system for the Discord directory

or provide an exact path to the target folder. The next stage is

an extraction of data that has been identified as potential

evidence. We have designed three different modules to

address all three possible sources: Disk Cache, Simple Cache

and activity log.

Figure 7 shows the functionality of the module

(maincache.py) responsible for the recovery of the data from

Disk Cache used on Windows OS and macOS. The dispersion

of data across multiple locations requires a lengthy process of

recovery. The process starts with reading all blocks of

rankings table in data_0 and fetching all addresses found

within. Next, DiscFor iterates through the addresses on the

list and finds cache entries located in one of three data block

files (data_1, data_2 and data_3). The cache entry address

provides all the information required to locate the position of

the entry in the block file.

The following calculation is used in the algorithm to find a

block of data in cache:

Block offset = (Block Number * Block Size) + 8192

With addresses calculated the tool performs extraction of

server HTTP response and stores all pulled data in a class

instance separate for each entry.

Read cache address
and control data

Read HTTP response
address and file address

Read URL

Recover server HTTP
response

Recover file

data_0

data_1, data_2, data_3

data_1, data_2, data_3

data_1, data_2, data_3, f_******

f_0000a7
f_00006b
f_000189

Fig. 10. Functionality graph of Disk Cache recovery script

The Simple Cache as the name suggests is less complex

than Disk Cache, thus the process of evidence acquisition is

simpler as most of the data is stored in a single location. The

diagram in Figure 8 shows simple overview of this process.

The algorithm responsible for finding entries does not start

from reading index file but instead loops through cache

directory and reads every single entry found within. This

allows to pull information and recover files which trail does

not exist in the index file in a situation where the application

did not manage to update a file before it was closed. With the

cache entry file open, DiscFor proceeds to read data found

inside. End of file sections are read first and information

about corresponding entries is pulled.

Read cache address
and control data

the-real-index

Read URL

****************_*

Recover server HTTP
response

Recover file

0b4c259aafeeff3a_0
0f56cb6f76a0fa88_0

1a04223a78794e06_s

Read every cache entry
file in the folder

Simple Cache folder

Fig. 11. Functionality graph of Simple Cache recovery script

The case of partial data is sorted during entry read as data

is stored in the separate file of similar name where only

stream number is changed from “_0” to “_s”. If data does not

exist on #####_0 file, the tool opens its #####_s equivalent

and reads information required for extraction. The next stage

of recovery is to read information from the the-real-index file

which has a familiar structure to the data_0 file. The process

is similar and is based on reading data from index entry

blocks. The tool then compares addresses found in the the-

real-index file with ones saved in the main class instance and

if there is a match the data is joined.

Recovery of the data from the activity log is performed by

employing a simple pattern recognition algorithm which pulls

all necessary information. The identification numbers of

channels and servers are usually saved in a dictionary where

server ID is a key and channel ID is a value and this format

looks as follows:

"187217643009212416":"225448446956404738"

To recover this data, the following pattern was developed:

([0-9]+|null)\":\"([0-9]+|null)

For email address detection the following capture group

was used:

([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z0-9_-]+)

The last component of our tool is responsible for

presentation of findings. Information from all recovered files

is saved to a CSV file, the contents of which includes the file

name, server HTTP response and eviction information as well

as the addresses of all parts in cache files. Because Discord

compresses each file uploaded by its users, a decompression

function was also implemented. If gzip compression is

detected the algorithm decompresses data and the new

version is passed further. A MD5 hash value is calculated for

each recovered item and stored in the report.

The last reporting feature developed is used to parse data

from chat logs (in JSON format) to HTML format files. It was

found that some chat log files contain more than one

conversation. In the first phase program finds those files,

pulls conversations, and saves them to separate files. The

channel ID becomes the name of the file. After a basic

structure of the file is created the chat log data is loaded, and

the program reads all messages found within the

conversation. For every message found DiscFor recovers

message ID, timestamp, author name, ID and avatar, message

content and all attachments. All recovered objects are then

inserted into a prepared HTML template of a message. After

all, messages are reconstructed, they are joined and appended

to HTML structure. Lastly, the whole conversation structure

is written into a new HTML file that can be viewed in a web

browser.

The last component of our tool is responsible for the
presentation of findings. All files found in cache storage are
listed in a CSV file with a corresponding server HTTP
response, eviction information as well as location in the cache.
Because Discord compresses each file uploaded the MD5 hash
value is calculated for each recovered file and stored in the
report. DiscFor reconstructs chat messages into HTML format

from chat logs and corresponding multimedia files as shown
in Figure 9.

Fig. 12. Example of reconstructed message

V. TESTING AND ANALYSIS OF RESULTS

During the testing phase, it was discovered that Disk
Cache was flushing its older content when reaching between
3500-4000 files in a directory. This procedure effectively
reduces the possible number of evidences that can be collected
in the case when the application was extensively used, and
users joined many active servers. For testing purposes, we
created test scenarios by populating servers with a generic user
account and random content exchange. Joining multiple
servers allowed the creation of datasets, with varying content
such as server data, timestamps, user accounts, message
digests, etc. We have generated enough data to determine the
importance of Discord forensics and the usefulness of our tool.
Figure 13 shows an example message displayed by the
application presenting detailed information about each
recovery performed with DiscFor. Detailed information about
each recovery performed with DiscFor gives the user a good
look at how many files were recovered and how many were
ignored.

Fig. 13. DiscFor extraction messages

Table III summarizes the results of running DiscFor on all
datasets created for the experiment. The total number of
entries represents the amount of all entries in the cache
structure. The valid entries column holds a number of entries
that contain both server HTTP response and resource payload.
Ignored entries values represent entries that were either empty
or duplicate data. In addition to data recovery, DiscFor also
reconstructs partial entries which mostly include audio and
video files.

TABLE III. RECOVERY RESULTS

Cache Structure Files Entries Valid Ignored

Disk Cache 1001 3108 3061 47

Disk Cache 2000 5706 5627 79

Disk Cache 3011 8328 8216 112

Simple Cache 1004 998 986 12

Simple Cache 2000 1991 1970 21

Simple Cache 3003 2994 2952 42

Simple Cache 4013 4004 3956 48

Simple Cache 5002 4990 4932 58

Simple Cache 6000 5986 5920 66

Simple Cache 7000 6979 6910 69

Simple Cache 8034 8006 7929 77

Simple Cache 9071 9036 8927 109

Simple Cache 10038 10001 9880 121

Simple Cache 11023 10997 10872 125

Simple Cache 12071 12052 11927 125

Simple Cache 13002 12993 12563 430

Simple Cache 14014 14004 13539 465

Simple Cache 15029 15014 14547 467

The tool recovers all data of a forensic value that we have
discovered including server HTTP responses, content files, as
well as information listed in the activity log. All content types
of potential interest are listed in Table IV. Text messages,
images, audio, and video files are one of the most important
data types for digital investigation having high likelihood of
becoming an evidence. While timestamps can be used to
identify and confirm when certain message was sent, or voice
chat took place there is little use of server and channel ID’s as
they also exist in cache.

TABLE IV: DISCORD CONTENTS

Content type Cache Activity log

User email No Yes

User password No No

Channel ID Yes Yes

Server ID Yes Yes

Timestamps Yes Yes

Attachments Yes No

Chat logs Yes No

Users’ avatars Yes No

JavaScript files Yes No

In addition to messages on their content, we were also able
to clean the HTTP response and extract information about files
sent. Table V presents information found in the response.

TABLE V. DATA TYPES FOUND IN HTTP RESPONSE

Data type Example

Server response HTTP/1.1 200

Content type image/jpeg

Etag W/"6f76ae9bc6a2779c8300dce5475601db"

Response time 08/03/2020 21:51

Last modified time 04/03/2020 18:13

Max age 2592000 (given in seconds)

Server name cloudflare

Expire time 08/03/2020 21:56

Content encoding gzip

Server IP 162.159.130.233

Time zone GMT

DiscFor results were compared to ChromeCacheView
which also allows recovering most of the data from Discord
cache however it does not provide reporting features and some
of the data is not being recovered as can be seen in Table 5.
Apart from verification of completeness of the recovered data
we have also tested the speed of recovery of both solutions.

The performance of both programmes is good even when
analysing a large number of files however clearer difference
can be observed when performing extraction of the greater
number of files (Figure 11). The performance of DiscFor can
be improved with further optimisation in order to decrease the
time of extraction. Analysis of the reports that DiscFor
produced shows that the information displayed is accurate and
complete. The CSV format used to save data provides a clear
view of details about the files recovered.

TABLE V. COMPARISON OF DICFOR AND CHROMECACHEVIEW RECOVERY

RESULTS

Cache Structure
Valid

entries

Complete files recovered

DiscFor ChromeCacheView

Disk Cache 3061 3061 3055

Disk Cache 5627 5627 5610

Disk Cache 8216 8216 8189

Simple Cache 986 986 981

Simple Cache 1970 1970 1962

Simple Cache 2952 2952 2944

Simple Cache 3956 3956 3948

Simple Cache 4932 4932 4921

Simple Cache 5920 5920 5907

Simple Cache 6910 6910 6890

Simple Cache 7929 7929 7902

Simple Cache 8927 8927 8893

Simple Cache 9880 9880 9844

Simple Cache 10872 10872 10848

Simple Cache 11927 11927 11909

Simple Cache 12563 12563 12555

Simple Cache 13539 13539 13530

Simple Cache 14547 14547 14534

VI. CONCLUSION AND FUTURE WORK

With an increasing number of Internet users, messaging
applications like Discord are seeing rapid popularity growth.
With millions of users exchanging messages every day they
become rich sources of data which if extracted and
appropriately pre-processed can become valid evidence. From
the forensic investigator’s perspective, it is important to
always have access to tools allowing the recovery of important
information. While large software solutions are perfect in data
recovery from most common sources they often cannot
retrieve as much information from other applications.The
existence of smaller solutions targeting specific application
can often be the only way to collect evidence quickly without
the need to perform a lengthy manual extraction. The main
advantage of our solution is its ability to perform a full
recovery of important data in a timely manner which is often
crucial in digital forensic investigation. While available data
is limited to the last 30 days from extraction this period of time
should allow collecting substantial information for a given
case.

Reporting features allow the examiner to find relevant data
quickly without manual investigation of cache or JSON files
and if such analysis is needed a location of each cache
information is included in the report. Future work may involve
the examination of mobile application and web variants of
Discord as our study was limited to the PC version of the
application. Further examination of the activity log is required
to ensure if more valuable information can be found within its
entries. Due to frequent updates that Discord receives it can
be assumed that the structure of the described storage will
change.

ACKNOWLEDGEMENT

This study is supported with Research Incentive Fund
(Activity code: R20090 and R19044), Zayed University,
United Arab Emirates.

REFERENCES

[1] C. Sgaras, M. T. Kechadi, and N. A. Le-Khac, “Forensics acquisition
and analysis of instant messaging and VoIP applications,” 2015, doi:
10.1007/978-3-319-20125-2_16.

[2] D. Patterson, “Cybercriminals are doing big business in the gaming
chat app Discord,” CBS, 2020.

[3] “Discord: The $2 Billion Gamer’s Paradise Coming To Terms With
Data Thieves, Child Groomers And FBI Investigators.” .

[4] Discord, “Discord Transparency Report,” Nelly, Discord Blog, 2019.

[5] M. N. Yusoff, A. Dehghantanha, and R. Mahmod, “Forensic
Investigation of Social Media and Instant Messaging Services in
Firefox OS: Facebook, Twitter, Google+, Telegram, OpenWapp, and
Line as Case Studies,” in Contemporary Digital Forensic Investigations
of Cloud and Mobile Applications, Elsevier Inc., 2017, pp. 41–62.

[6] G. Hongtao, “Forensic method analysis involving VoIP crime,” 2011,
doi: 10.1109/KAM.2011.71.

[7] T. Dargahi, A. Dehghantanha, and M. Conti, “Forensics Analysis of
Android Mobile VoIP Apps,” in Contemporary Digital Forensic

Investigations of Cloud and Mobile Applications, Elsevier Inc., 2017,
pp. 7–20.

[8] G. S. Suma, S. Dija, and A. T. Pillai, “Forensic Analysis of Google
Chrome Cache Files,” 2018, doi: 10.1109/ICCIC.2017.8524272.

[9] G. Horsman, “Reconstructing streamed video content: A case study on
YouTube and facebook live stream content in the chrome web browser
cache,” 2018, doi: 10.1016/j.diin.2018.04.017.

[10] ChromeCacheView Homepage,
https://www.nirsoft.net/utils/chrome_cache_view.html, last accessed
2020/06/02.

[11] O. Bryant, "Retrieval of Digital Artefacts from TeamSpeak and
Discord: A Forensic Investigation and Analysis of the Malicious Use
of Gaming Communication Clients", 2018.

[12] Alfuananzo, “A discord forensics tool.”, GITHUB, 2018;
https://github.com/alfuananzo/discrecorder

[13] Cristi8, “Parse Chromium cache files on Linux (using ‘simple’
disk_cache backend).” 2020.

[14] Abrignoni, "JSON-to-HTML-and-XLS: Simple script to convert JSON
to html or excel”, 2020, GITHUB; https://github.com/abrignoni/JSON-
to-HTML-and-XLS

[15] Chronium, The Chronium Projects, “bloomberg/chromium.bb:
Chromium source code and modifications.”
https://www.chromium.org/developers/how-tos/getting-around-the-
chrome-source-code

